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The use of logarithmic frequency spacing brings se veral advantages to t he r eduction of 
ionograms to electron density profiles . Among them is the fact that, when co mputin g factors 
for the analys is, one need not determin e the group re fract ive index. Formu las involving 
only t he phase refractive index are presen ted ; for t he ordinar y co mpon ent on e exact and one 
approximate formu la a re g iven , while for t h e extraordinary compon ent t here is a n approx i
mate formula valid over a wid e r a nge of geomagnetic latitudes. Ther e is a brief discussion 
of quas i-l ongitudin al a pproximat ions to t he extraordinary pha e refract ive ind ex. 

1. Introduction 

In his important paper on obtaining electron den
sity profiles, Budden [1 ]3 used for illustra tion a 
linear sampling of the frequency scale of the iono
gram. He also mentioned the po sibili ty of other 
samplings, including logarithmic. At about the same 
time, King [2] presented an illustration based on 
logarithmic sampling, and later [3] showed that this 
spacing simplifies inclusion of the earth's magnetic 
field in the analysis, by the use of an accurate 
approximation. 

The methods of real height analysis using sum
mation of spaced ordinates due to K elso [4], Shinn 
(described by Thomas [5]), and Schmerling [6], are 
much easier to apply if the ionograms have a loga
rithmic frequency scale, for then overlays can be 
used . Tbis derives from the fact that the properties 
of the propagation equation depend mainly on Iv/i, 
the ratio of the plasma frequency to the exploring 
frequency, and to a much less extent on the absolute 
frequencies (determined by f~di, whereiH is the gyro
frequency. As is usual in treating this subject, the 
effects of electron collisions are neglected.) 

The purpose of this note is to inquire more closely 
into the advan tages of logarithmic spacing and to 
present an approximation using it for analysis of the 
extraordinary ionogram trace. 

2. General Equations 

The basic equation relating the virtual height, h', 
and the real height, h" at the reflection point (as
suming geometrical optics) is, [2] 

where J.1.' is the group refractive index. This can be 
rewritten 

hI J <I>, , dh d'" . = J.1. - ,.> , 
<1>0 dip 

(2) 

where ip is any single valued function of the electron 
density. The integratio n can now be divided into a 
series of steps within which dh!dCfJ is varying suffi
ciently slowly to be taken out of the integral sign. 

(3 ) 

The integral r J.1.'clip, which we shall denote by Fm , 
J .6(T)?n 

defines constant factors used in the analysis of the 
ionograms to obtain h. Once the table of ffl.ctors is 
prepared, the reduction to real heights is simply a 
matter of solvi ng a set of simultaneous equations in 
(tJ.h/tJ.cfJ)m' 

If now ip is identified with the loo'aritbm of i N, a 
simplification results. (The natur~ logarithm, In, 
will be discussed here to simplify the presentation, 
although common logari thms may be used in 
practice.) 

For, at fixed iN, 

J.1.1 = [ 0(J.1.f) ] 
of IfN 

=J.1.+[0~: f1/ (4) 

(1) where J.1. is the phase refractive index; it is a function 
of bothf andfN' 
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Us ing the theorem 

(5) 
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relating the partial differential at fixedjN/f to partial 
differentials at fixedjN and at fixedj, we get 

11' =1l-[~rnjNI +[~rnj IN/!' (6) 

The factors used in the ionogram analysis then 
become 

(7) 

where the "bars" denote mean values of the quan
tities over the interval. 

All terms of eq (7) can be evaluated from a table 
of 11 (Inj,lnjN) , so that one can avoid the tedious 
calculation of the group refractive index. In a 
recent paper, Titheridge [7] has given an expression 
with the same advantage. 

3. Ordinary Component 

While one would normally use the complete eq 
(7), it is worth noting that, for routine analysis of 
the ordinary component, the last term can be 
dropped [3]. Experience shows that the heights 
deduced from the ionograms are not seriously affected 

The assumption here is 

[~J ·0· o Inj IN/I· 
(8) 

4. Extraordinary Component 

While eq (7) applies formally to either the ordi
nary or the extraordinary component its use with 
the latter is made difficult by the rapid change of 
the last term near the gyrofrequency. By making 
the transformation 

(9) 

where y jH/j, one can adopt an assumption similar 
to eq (8), 

[~l == 0, (10) o In ~ N/~' 

and so simplify the computations. 
The approximation of eq (lO) will be considered 

in the next section where it will be shown to hold 
extremely well down to geomagnetic latitudes as 
low as 30 0 (where the propagation angle, e, between 
the earth's magnetic field and the vertical is as 
large as 50 0 ). 

When eq (7) is put in terms of ~ and eq (10) is 
applied, one obtains 

Fxm=f ll 'd ln jN= iL.:lln jN-dd lln j~[.:lllh' (ll) 
tJ.lnfN n 

where the subscript x in Fxm denotes the extraordi
nary component. 

As constant ~ implies constant j, and 

dIn ~ l - y/2 
dlnf= l -y' (12) 

the factors for analysis of the extraordinary compo
nent become 

Fxm= }j. .:lIn fN- l
l - Y/2 [.:lIl]/· 
- y 

(13) 1 

5 . Phase Refractive Index for the Extra
ordinary Mode 

In order to justify use of the approximation (10), 
a few remarks on quasi-longitudinal approximations 
to the phase refractive index of the extraordinary 
mode are appropriate. 

Common approximations are [81. 

1 . f2 
-1 - 2 • f2 (l-y cos e) -11 N 

and [9], 

1 f2 
1-112 : fN2 (l-y) = em" 

The exact expression is 

1 f2( "f) I-p,2= fN2 l - y cosecot2" ' 

where 

tan"f 2(f2-fN2) c?~e. 
f fEl sm e 

(14) 

(15) 

I 
(16) 

(17) 

Equations (14), (15), and (16) can be compared as 
follows: For the extraordinary trace, the least value 
of tan "f occurs at the reflection point, where it is 
2 cos e/sin2 e, so that the greatest value of cot "f/2 I 
is l /cos e. 

That is to say, 

"f 1 l < cot -<-
2 cos e (18) 

Therefore the exact value for 1/ 1-112 (16) always 1 

lies between those given by the two approximate I 

expressions (14) and (15), except at the reflection I 
point, where (15) is exact. 

Now if we let A represent the ratio of (16) to (14), 
and B the ratio of (16) to (15), i.e., 

l - y cos e cot ~ 
A (19) 

l-y cose 

and 

l-y cos e co t ~ 
B l - y , 

(20) 
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the following table compare the ratios for y = ! and 
various values of (fN/J)2, at different geomagnetic 
la ti tudes. 

Latitude (~'f' )= 0.5 0.4 0.3 0.2 0.1 0.0 

_ ._--------------------
14° A 0.644 0. 714 0.762 0.797 0.823- 0.844-

B 1.000 1.109 1.184 1. 238 1.278 1.310 

23!O A 0. 743 0.792 0.825 0.850 0.868- 0.883-
B 1. 000 1. 065 1.UO 1.143 1.168 1.187 

30° A 0.804 0.840 0. 864 0.883 0.897- 0.908-
B 1.000 1. 045 1. 075 1. 098 1.U6 1.129 

45° A 0. 904 0.921 0.933 0. 941 0.948 0.954' 
B 1.000 1. 018 1. 031 1. 041 1.048 1.054 

60° A 0. 962 0.969 0.973 0.977 0. 979 0. 982" 
B 1. 000 1. 007 LOU 1. 015 1.018 1. 020 

Onlv in those positions of the table marked by an 
asterisk is A closer to unity than B. Clearly, then, 
the approximation (15) is the better, especially near 
the reflection point [(fN!.f)2 = 1- y] where the need for 
accuracy is greatest. Accepting eq (15), eq (10) 
follows. 

Writing the exact expre ion , using eqs (16) , (20) , 
and (9), as 

1 e 
1- M2 jN2 B, (21) 

it can be shown that , because of the slow rate of 
change of B with (f NIJ)2 (and hence with e /jN2) , eq 
(10) is applicable to ionogrnm analysis over a wider 
range of latitudes than eq ( 1 ~). Rydbeck (9] used a 
relation equivalent to eq (15) m a method of lOnogram 
analysis for e< 20° (latitudes greater than 54°), 
where i t certainly holds within the accuracies to 
which the ionograms can be read. Use of eq (10) 
extends the range of npplication down to geomagnetic 
latitude 30°. 

6. A Numerical Example 

The followinp" tables illustrate the computation of 
the factors F:m for analyzing the extraordinary 
ionogram trace. 

The first table gives M as a function of 10g1o jN and 
loglo~, This was calculated using eq (16). 

Table 01 !'XIO' /H= 1.4753 Me/s 

logiN 
1 Wg~ I __ -._-._-,_,-_,-_,--,,--, __ 

M e/s 

2.95 0.32 0000 4209 5658 6610 7302 7827 8236 8560 8821 
2.78 0.28 ---- -- 0000 4210 5660 6613 7305 7830 8239 8562 
2.63 0. 24 ------ ------ 0000 4211 5662 6616 7308 7833 8242 
2. 49 0.20 ------ ------ ------ 0000 4212 5661 6619 7311 7836 
2.36 0. 16 ------ ------ ------ ------ 0000 4214 5667 6622 7314 
2.25 0. 12 ------ ------ ------ --- --- --- --- 0000 4215 5669 6625 
2.15 0. 08 ------ - --- -- ------ ------ -- -- -- --- --- 0000 4217 5672 
2.06 0.04 --- --- ------ - - ---- ----- - ------ ------ ------ 0000 4219 
1. 98 0.00 ------ ------ ------ ------ ---- -- ---- -- ------ ------ 0000 

Lines parallel to the diagonal in the table define 
values of M for constant values of the ratio jN/~. 
Differences between the values along such a line, 
therefore, give [OM/a log ~] !N/t; and as this is very small 
compared with [OM/a log ~]!N and [OM/a log jNh, the 
assumption made in section 4 (eq (10)) is quite 
satisfactory. 

From this table one can obtain the components 
jj.fJ.logjN and M[(1 - y/2) / (1- y)] [fJ.M]h of the factors 
F xm (eq (13)). Here, 1Vl= 0.4343 is the conversion 
factor to change from natural logarithms to common 
logarithms. Thus for log ~= 0.24 , we obtain the 
factor for the interval fJ.logjN (0.16 - 0.12) by adding 

jj.logjN (0.0246) and - M 1
1- Y/2 [fJ.M]! (0.0680) giving 
- y 

a value of 0.0926. 
The table of F xm X 104 is then, 

log ~ 

0.32 
. 28 
.24 
.20 
. 16 
. 12 
. 08 
. 04 
. 00 

Iutervaloflog/N 

0.28 0.24 0.20 0. 16 0. 12 0.08 0.04 0. 00 -0. 04 - 0.08 - 0. 12 
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

O. 32 O. 28 O. 24 O. 20 O. 16 O. 12 0. 08 O. 04 0. 00 - 0. 04 -0. 0 

2855 1l<l2 866 730 645 587 574 518 494 476 462 
--- --- 2976 1184 894 749 660 599 556 525 500 481 
------ ------ 3117 1233 926 772 677 613 566 534 506 
------ ------ ------ 320 1290 9&1 799 697 628 579 544 
------ ------ ------ ------ 3470 1356 1006 830 721 646 593 
------ ------ --- - -- ------ ------ 3692 1434 1058 867 749 668 
------ ------ ------ ------ ------ ------ 3954 1525 1117 910 780 
------ ------ ------ ------ ------ ------ ------ 4262 1631 1187 960 
------ ------ ------ ------ ------ ------ ------ ------ 4625 1757 1269 

This example is taken from part of a table prepared 
for testing methods of ionogram analysis which use 
both the ordinary and extraordinary traces to give 
information on the unobserved part of the iono
sphere [10], [11], [12]. 

7 . Conclusions 

The use of logarithmic frequency spacing allows 
easy computation of factor for the r eal height 
analysis of ionograms, using tables of phase refractive 
index; the group refractive index neecl not be calcu
lated. 

For the ordinary wave component, there i an 
exact formula for the factors eq (7), and an approxi
mate formula good enough for most work. The 
formula for the extraordinary wave component eq 
(13) contains an approximation, but it can be u ed 
with negligible error for analysis of ionograms from 
any but the lowest latitudes. 

In the justification of the extraordinary wave ap
proximation it was shown that the simplest quasi
longitudinal approximation to the phase refractive 
inclex eq (15) is better than one in common use 
eq (14). 

The work described in this paper was partly sup
ported by the International Geophysical Year pro
gram of the National Academy of Sciences. 
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