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Part I. Discussion of the Extended W.K.B. Approximation

The W.K.B. approximation for the solution of the height-gain differential equation for
a curved stratified troposphere is discussed in detail. The approximation depends mainly
on a variable u;(r) which can be interpreted as the height dependent contribution of the
phase for a field solution obtained by separation of variables. An expansion of u,(r) with the
aid of partial integrations leads to further approximations which facilitate the determination
of the eigenvalues, and of the amplitudes of the modes connected with the propagation
problem. The influence of the refractive-index profile, if assumed as smooth, then appears
to be restricted to a dependence on the surface values of this index and of its gradient insofar
as propagation over the ground is concerned. Further, all height effects of elevated antennas
can be expressed in terms of the distance to the corresponding radio horizon. This results
in simple relations between the fields connected with two different refractive-index profiles,
provided both profiles coincide near the earth’s surface.

1. Introduction

The propagation theory of a concentrically stratified atmosphere usually concerns a
discussion of the corresponding height-gain differential equation. The W.K.B. approximation of
the latter has amply been discussed, but little attention has been paid to its corrections. Some
material on the form of these corrections has been presented by Pekeris [1]? while applying
an earth-flattening approximation. This paper concerns (in part II) an expansion of the
solution for a curved stratified atmosphere which starts with an “extended W.K.B. approxi-
mation.” By the latter we understand a well-known modification of the W.K.B. approxi-
mation, in terms of Hankel functions of order 1/3; 1t 1s determined such as to remain finite at
a turning point of the geometrical optics trajectory associated with the solution. The dis-
cussion of this extended W.K.B. approximation (in part I) shows the dominating role of the
refractive-index profile near the earth’s surface, provided that this profile and all its derivatives
are continuous functions of the height throughout the troposphere.

2. Reduction to a Scalar Problem

We start from Maxwell’s equations for time-harmonicsolutions (time factor e~ «7) for a me-
dium with spherical symmetry, the refractive index n(r) of which only depends on the distance
7 to the center of symmetry. We further assume a permeability 1; the equations in question
then read as follows in Gaussian cgs units:

Curl e—1i ‘ci h=—0, (1)
Curl h+i‘§nﬂ(r)e:o. (2)

1 Contributions from Philips Research Laboratories, N. V. Philips’ Glocilampenfabrieken, Eindhoven, Netherlands.
2 Figures in brackets indicate the literature references at the end of this paper.
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The two standard solutions, known as the electric and the magnetic solution respectively,
can be represented by:

i 3
e=_ 2( " curl curl {n(ILr}, } 3)
h,=carl {n(r)Ir}, J
and
e X curl {n?(r)IL,r}, ]
o) @

h,,—curl [ﬁcurl {n2(r)Hmr}:|-

The symbol r represents the radial vector of length (z*--12-22)1/.

The Maxwell eq (2) is verified at once for the electric solution (3); the same holds with
respect to the other Maxwell eq (1) for the magnetic solution (4). The remaining Maxwell
equations can be checked by deriving the following relations with the aid of a tedious analysis
based on vector-field identities:

iw ic 1 w?
Curl ee"‘”g he:~~(;-curl [r{ﬁAH_*_(EE dl"2 ) }
y 2
Curl hm—l—%w n?e,,— — curl I:r{ AII-I—(‘C—OZ— n*l }:I

Therefore, both Maxwell equations are satisfied, for the electric as well as the magnetic
solution, if the scalar II does satisfy a wave equation of the form,

AH—l— nﬂ(r)n 0; (5)

the effective refractive index then has to be defined as follows:

02 d* 1
dr2

2 (r) =n?— for the electric solution,

(6)

nZ;(r)=n* for the magnetic solution.

3. Height-Gain Differential Equation and Its Extended W.K.B. Approximation

We are particularly interested in the solutions corresponding to a vertical electric or magnetic
dipole. In the system of spherical coordinates r, 6, o(z-+dy=r sin fe’¢, z=r cos ) this dipole
may be situated at »=6, §=0. The field then becomes independent of ¢, and particular solu-
tions II; of (5) are found by a separation of variables according to

I,=f,(r) P (cos 6). ()
The corresponding height-gain differential equation for f;() can be put in the form
dZ 2
{ gt mio } wr01=0, ®)
if
(41
mi) =nta)—" LD, 0)

ky=w/c being the wave number in vacuum.
The W.K.B. approximation of (8) consists of a linear combination of the functions

exiko fT my(s) ds_
()7
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it therefore breaks down at a so-called turning pomt that is a zero =7, of m,(r). In the case
of a single turning point a better approximation is obtained, as is well known, by approximat-
ing m}(r) near r=r,; by a linear profile; the equation can then be solved there rigorously with
the aid of Hankel functions of order 1/3. This procedure leads to the following “extended
W.K.B. approximation:”

rfi(r) ~4, {f . ds} H{}} {/LUJ my(s) Js‘}‘ "

m (,) Ty R

it reduces to the conventional W.K.B. approximation il the Hankel function is replaced by
the first term of its asymptotic expansion for large arguments.

In (10) we assume Im 72,>0, which guarantees an exponential decrease for r— o if Im m;
differs from zero; the function (10) then represents an approximation in accordance with the
radiation condition at infinity. In part 1T of this paper (10) will appear as the first term of a
complete expansion for the solution IT;.

4. Position of a Turning Point for a General Profile of the Refractive Index

The significance of a turning-point level 7=r; is obvious when 7; is a real quantity larger
than the earth’s radius . We then consider the relation

{ ) 11/2
Negr (1) -1+ SN 7 (1) = ,/({jl)y (11)
Co

it determines a ray trajectory in a stratified troposphere with refractive index 7.y, if 7(r)
represents the angle, at any level r, between the tangent to the trajectory and the radius vector
towards the center of the earth. On the other hand, the turning-point relation m,(r;)=0 can
be written as follows in view of (9):

Mgt (rl) =

{ l [ 1 1/2
{é( ,,i/:;(??,}_. (12)

Therefore, 7=r, characterizes the level at which the trajectory in question becomes horizontal
(r==/2). In other words, the turning-point level constitutes an altitude at which this tra-
jectory passes continuously from a rising branch into a descending branch.

In the absence of a turning point in the physical space a<r< e, a zero 7, of m,(r) might
occur in the interval »< a outside the troposphere (in accordance with some (\\tmpolatlon
there of n(r)), or also at some complex value of ». The “extended W.K.B. approximation”
(10), defined with the aid of such a nonphysical turning-point level, will still be important
when the latter proves to be situated near the section a<r< = of the real axis in the complex
r-plane.

As a matter of fact zeros 7, of this type occur for the most important modes (7), since all
these modes correspond to complex / values situated near , defined by

%aneﬁ(a):{ZO(Z()+1)}‘/2. (13)

According to (12) [, itself 1s connected with a ray trajectory tangenting the earth’s surface, 7,
then assuming the value @. Hence we expect for all eigenvalues / near /, (to be discussed in
part 1I) a corresponding turning point 7; near a.
The exact position of this turning point can be derived from an expansion to be obtained
as follows. We replace (12) by the equivalent equation:
L({+1)

M2(ry) = ‘k'(g;lg—: (1, say, (14)
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in which
Mo (r) =" - na(r) (15)

denotes a modified refractive index which includes the effects of both the curvature and the
profile of the effective refractive index 7.  We consider the following Taylor expansion of (14):

oo A_j j__ [(l+1) 3
J 3ﬁ(a)+]‘=21 ajj—‘ (rl— ) - :1('2 2 (16)

in which the dimensionless parameters
d(M3) :
A= { dri (17)

characterize the complete tropospheric profile. In view of (14), (15), and (9) we may replace
(16) by

2 a7 (i ay=Cl—ni(@)=— mi(a).

We next assume the possibility of inverting this latter relation. The inverted series can
be represented as follows:

T‘l_(l__m%((ﬁ__ﬁ <A3 % 6 <i A2A3_§£§_ A4 8
o =4, 2ar ™M@+ (gaimaas) M@ 3 4T g oang ) M@+ (18)

It shows how the turning point can easily be evaluated for modes with small values of m3}(a)=
ny(a)— C%, which, however, are the only modes of practical interest.

5. Dependence of the Extended W.K.B. Approximation on the Profile

In view of (10) this approximation can be represented by the expression

rf )~y 9OV g ), (19)

{dr ) }

which depends uniquely on the variable:

u,(r)=k0f7 m,(s)ds:koafrd?s {MZ&(s)—C3}12 (20)
U i

This variable constitutes, apart from the factor ¢z, the exponent in the asymptotic approx-
imation of (19) for large values of |u;(r)|. Therefore, u; may be interpreted as the radial con-
tribution to the phase of the complete wave function f,(») P;(cos 6).

Unfortunately, the definition (20) of u; involves the turning point r;; hence, the expan-
sion (18) should be substituted in order to show the complete dependence of u,(r) on the
profile M (r). Under practical circumstances, however, this dependence can also be estab-
lished without having to resort to the turning point at all. 1In fact, by applying partial integra-
tions to (20) we obtain an expansion in which the turning point disappears in all but the last
term, such in consequence of (14). The expansion in question reads:

y 1
(—1)! (Mo ()— 1} { AvES

iz (2.7+3) 4 (M%)’ Tdr
1 |
222 2 s 2 otz 4 2 .
557 @ V[ Me—ar e gaa s L) (e e‘*(s)]
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This expression suggests the infinite series

u(r):kaigg?---—2 (—1)7 (M ) —cpyroe. P 4;4 C@)
: 35T 2543 o ‘ d{Mu ()} | r=o

In the case of convergence of this series, we can verify, differentiating term by term, the
relation
duy (r) koa

T (ML ()0

this proves the correctness of (21) when taking into account the property u,(r;)=0.
As an example we consider the magnetic solution in the case of the “Eckersley profile.”
The refractive index n(r) of the latter is defined by

o=@ { +(1-2)5 ) (22)

@ being the effective earth radius. The corresponding effective modified refractive

index, viz
3
Aetr
leads to the following series for (21):

Bt 5 22 -ty rit(a) | @) (1—afag) = CF \ 7,
CROINCL S HERRRT S e {aam e !

The convergence condition here amounts to:

|1, @G [ @ Ot | _..
\1_}— = {1 Aot '”z(a)}i<1,

in view of the smallness in practice of the quantities (r—a)/a=Ah/a and 6C,=C,—n(a) this
reduces to the following approximative condition

2h 2@y 60,

@ a n(a)
which is satisfied for all relevant values of the height 4 and the parameter €. The actual smooth
profiles, excluding ducts and so on, deviate only slightly from the Eckersley profile; this sug-
gests the validity of the corresponding expansion (21) in all practical cases.

M os(r)=

<1,

Actual profile

Eckersley profile

(2)" cos™ (2)

cos {(&= ) 9(”}

£6=8'(r") —8(r")

Ficure 1. Geomelry of radio ray bending.
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6. Formulation of the Eigenvalue Problem

It is now well established [2] that our propagation problem concerning the two media of
the spherical earth and its surrounding stratified atmosphere can be reduced approximatively
to a one-medium problem by introducing a proper boundary condition at the earth’s surface.
This condition is arrived at by considering the surface impedance

74 Ei,

c f]i[
which depends on the ratio of the horizontal components £ and H) of the electric and the
magnetic field at the earth’s surface. The factor 47/c is such that Z represents the ratio of the
tangential electric field at the earth’s surface, and of the density of a properly chosen two-
dimensional current distribution on this surface; the effect of this fictitious current distribution
isidentical with that of the actual field inside the earth.

The value of Z depends on the field solution under consideration. In the case of a flat
boundary, and a plane incident wave arriving from the atmosphere, e.g., Z depends on the
direction of arrival 7 of the incident wave. The assumption which enables us to leave out of
consideration the medium inside the earth altogether is that Z may be replaced by its special
value for a plane wave at grazing incidence (r=m/2). The corresponding boundary condition,
viz

. c

ILEI:-/Er Zo—r1oH) ANE—a

can be worked out with the aid of (3) and (4) for the electric and magnetic solution respec-
tively. It results in a relation of the following form for the scalar IT describing these solutions:

0 r
> (r H)ma 711 at r=a. (23)
The parameter T'1s then given, respectively, by
i W (@

) : m2—1)" 2/ (a) draw
2 — A ——==1, — . e
= 1 O (@) Zy—a ) ko an(a) o D) "=ieZ

—ikoan(a) (ni—1)"%

in these expressions n(a) denotes the atmospheric refractive index at the earth’s surface, and
n, the refractive index associated with a refraction from the atmosphere towards the earth.

The boundary condition (23) can only be fulfilled for a discrete set of modes (7). Hence-
forth the parameter / will refer to a special complex eigenvalue fixing the order of the Legendre
function P;(cos?) that constitutes a factor of the field of such a mode. The amplitudes of
the modes depend on the source of the field. In the case of a vertical electric or magnetic-
dipole point source at r=b, =0 the expansion in terms of these modes becomes as follows [3]:

RB o\ QL)) [,0) Pfcos r—9)),
O {i A AR (24)

U ™ ) ormanm

M=

The constant B represents the moment of the dipole. Each function f,(r) constitutes a
solution of the height-gain differential equation, that has to satisfy the radiation condition
at infinity.
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7. Logarithmic Derivative of the Height-Gain Function at the Earth’s Surface

The boundary condition (23) can be put in the following form for the individual modes:

N

o
o W T (25)
"f)\ r:u:k:lia
[ 3
{ or ()
C "f)\ N r=a

proves to be important in connection with the evaluation of both the eigenvalues /, and of the
denominator of the amplitude factor in (24). Its approximation for small values of £/a and of
8C,=C,—n(a) (see the end of section 5) will be discussed now.

We start from the extended W.K.B. approximation (19) for » /. Its logarithmic deriva-
tive becomes:

Hence the quantity

0 h)
or M ra 1 71;/_(,—:-”; . Hyji(un). (26)

N 0
f 6y 2 u, g HO(uy)

Another logarithmic derivation of the expression

'U;— An(l{ M, (])ﬁ(vz\llrwlu) ‘[("( ) ‘]3}1/2 (._)7>
results in:
i, Mulr)-Mis(r) @5
uy  M&(r)—C? !
We next introduce a definition for the effective-earth radius for any profile, viz:
[ i) \[m(a) i
o= ‘I(n (l) (“‘)>

d,
—={ e (7) }
’[/_. (ﬂ( )J

r=a

This definition involves the following value of (28) at r—=a:

Uy ni(a) ‘
— : 30
<u)\>r a "(IT ”eﬂ((l) (V2‘ (; )

On the other hand, the expansion (21) may be approximated for small h/a and 6C; by its first
term. Its value for r=a reduces to:

koo {n2:(a) —C3 ;2
~N— — - -

u(e) ~=3 @ (31)

A comparison of (30), (31), and of the special value of (27) at r=a then proves the vanishing
(for the approximations under consideration) of the quantity

- ’ ”
L /U)\ 1 U)\

< 7
6u,  2uy

at 7=a. Further, when evaluating the remaining term in the right-hand side of (6) for r=a,
we may substitute, applying (27) and (31)

(@) ~ ko {nta(@)—C3) 2~y {“—”@}’“{uxa)w- (32)

kanﬂ'
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The following final approximation thus results from (26) for r=a:

O (rf)
or VI i J BEnEa(a) e H {un(a) ) _
i ‘ { A @ B @) G0

8. Equation for the Eigenvalues

According to (5) and (33) the eigenvalues are to be determined from the equation:

uY3(a) [’ﬂ?{wl _r gir/3{ @ e o (34)

T {w(a)} a 3kinis(a)

The resulting roots u,(a) fix in succession the corresponding values of ; and [/ (see (31) and
(14)).

The only profile parameters entering in the equations (34), (31), and (14) for the eigenvalues
are n(a), and the effective earth’s radius @ defined by (29). Hence the conventional diffrac-
tion theory for a homogeneous atmosphere with refractive index n(a) can be applied at once,
provided that the actual earth’s radius @ is replaced by aey.  This simple result depends on
the smallness of 6C,=C,—n(a) which will be proved later on in the rigorous theory of part
II. Tt then appears that the eigenvalues do only depend, in the approximations under con-
sideration, on profile properties of the refractive index near the earth’s surface; these properties
concern n(a) and the derivative n’(a), both of which determine the parameter a.;. However,
we emphasize the assumption of a smooth profile n(r) without any discontinuity of a derivative of
any order; such a discontinuity would involve higher-order terms in the expansion (21) for
u,(r) which are not negligible with respect to the first term.

9. Approximate Expansion in Terms of Modes

In order to obtain a final approximation replacing (24) we have to evaluate, among others,
the derivative of (33) with respect to A. This can be facilitated with the aid of two relations,
to be derived as follows. First we obtain {rom a differentiation of (31):

ouy ((l) — 313 ko a(()\2>

~ w3
O\ 2 nZz(a) @ =%

(35)

The last factor can further be reduced, with the aid of the approximation C';,~[/kea of (14).

We find:
2(0N) 21 2D 20y
ON  k? k2a? Feot

(36)

On the other hand, we shall make use of the identity

i ul/3H(1) (u) ir/3 1/3 —17/3 2(}% (U/) : Ly
T\ Hhw f 1+ A (n) ] 37)

The application of (35), (36) and (37) to the determination of the X derivative of (33) results
in an expression which can further be simplified for X equaling an eigenvalue /. In fact, we
then have O\=C,~n.(a); this latter zero-order approximation [which is equivalent to
I~k ne(a)] is well known from the diffraction theory for a homogeneous atmosphere. More-
over, we may then also eliminate the Hankel functions with the aid of (34). The procedure
outlined here results in:

o) %("fk) 32/3k(1)’3a1,43n ﬁ(a) T2 s 2/3
) ~ 2 N0 Dot Tet\B) | o 2/3 - d % .
O\ 7 a w*@)+o 3kin2s(a) } ] 1)

r=a,\=1
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We further substitute in (24):
20+ 1~20 ~2k.an q(a) (39)

as well as the well-known approximation for Legendre functions with large complex order
having a positive imaginary part. The latter reads:

P{cos(mr—9)} e
SOV o (2)1/2 —
sin (wl) &) (wl sin 9)17% 0
In view of the approximate value [~Fkanq;(a) we introduce the representation
l=Fkan.g(a)+dl, (41)

whereas the correction 8/ may be omitted in the factor /2. The substitution of (38), (39),
(40), and (41) into (24) leads to:

_ 2 2(im) V2B Seitanen @ 1, (b)f,(r) - (42)
chalif {ang(a) sin 9727 fHa) [ - H
{3u,(a) }*P4+— { ,?2“(0) } :I

We are interested first of all in the field strength attenuation that is due to the atmospheric
refraction and the diffraction by the earth. Therefore, we next pass to the ratio of |[II| and
the modulus [11,,| of the scalar determining the primary unattenuated field. The latter modulus
reads [4]:

B o1 B .
ol =25 75~ chad’ (43)

TP being the distance from the transmitter to the receiver.
We thus obtain from (42) and (43):

(44)

I N?Zikﬂliﬁ{ Ty 1/2‘ fi (b)fz(’) ()ijz 9
TP 4w \ nua(a) ’ fi(a) [{ 3u, (a)}>/s+l {kz,,m(a)} :]

The effects of the elevations b—a of the transmitter, and r—a of the receiver, are con-
tained, for each individual mode, in the height-gain factors

7))
7@ ™4 7

These factors depend, according to (19) and (20), on the complete profile between the earth’s
surface and the levels of the transmitter and receiver. On the other hand, these factors can
be left out of consideration when considering propagation along the ground. In this case the
field is completely determined by ney(a), aqr and T'; the dependence on the profile of the re-
fractive index (if assumed as smooth), then only concerns its properties at the vicinity of the
earth’s surface.

10. Connection of the Height-Gain Factors With Horizon Distances

For an investigation of the height-gain effects we can restrict ourselves to an elevated
receiver, the dependence on the height being completely similar for an elevated transmitter.
Substitution of the extended W.K.B. approximation (19) in both f;(r) and f;(a) yields:

fz(r)Na{ w(r)-wi(@) \ V2 Hij{wi(r)}

fl@) r Lw(@)-u(r) ) Hifj{w(a)}
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The effect of the height A=7—a enters implicitly through the variable u,(r), and also in
the factor
1 1

P ()} (oar) P (Mg (r)— CF} 7

The dependence on the height can therefore be expressed by:

1) Flu ()}
fi(a) er/z{Mgﬁ(,;)ﬁo%}m (46)

The variable u,(r) can be connected with a geometric property of the profile, viz the
angular distance ¢ (r) from the elevated receiver to its horizon point. This distance can be
evaluated with the aid of Snell’s law for the curved ray trajectory that passes through the
receiver, and meets the earth tangentially. For our spherically symmetric medium this law
amounts to the relation (11), if its refractive index is given by n;(r) instead of n(r) [thus
differing slightly from the actual refractive index in the case of the electric solution, see (6)].
We have:

7 Ne (") sin 7 (") =an g (@), (47)

if 7(r") represents the angle, at an arbitrary point (+',9’) of the trajectory, between the tangent
of the latter and the vertical through this point. Hence tan 7=7»"dd/dr’.
The relation (47), or the equivalent one

M (") sin 7(r") =Meq (a),
can also be put in the form:

dy’  tan7(r’) M (a)

a7 (M) — M)

An integration along the trajectory, from the horizon point at »’=a up to the receiver at
r’=r, yields the following formula for the angular horizon distance #(r) of the receiver:

T dr/
20 =Ma® [ rar mr -
We also need the derivative of this function, viz
dd Mys(a)

&) — M@ 7 &

The connection between » and #(r) is unique for the smooth troposphere profile (excluding,
e.g., “‘ducts”) under consideration. Therefore, all functions of » may also be considered as
functions of #(r), in particular the variable u;(r). In order to determine the explicit dependence
of u,(r) on #(r), we first derive, with the aid of (49), the relation:

d(M?)
A M) =M@} " dr
dd ~ 2n(a)

We can deduce similar relations for the higher-order derivatives of {M?%;(r)—M?2;(a)}? with
respect to ¢, again using (49); for instance we find:

2 d dM?;
s )Mt =gyt L B0 L (g2 )Mz

The special values of these derivatives at 7=a can be expressed in terms of the coefficients
Ay defined by (17). These latter derivatives determine the coefficients of the Taylor expansion

476



of {MZ;(r)—M:z::(a)}'? with respect to d, taken at the point r=a, that is #(r)=0. The expan-
sion in question starts as follows:

Al A2(A,+A)

\[e“(l)*AWe”(a)—{— (@) 02(/‘)+m H)+ .. (50)
moreover, the definition (29) implies the relation
Al*u“eﬁ(a) P (51)
eff

We next consider the approximation of w,(r) by the first term of (21), viz
(M&)—=C2_2 ke  {(M&(r)—C1HPP M50 —M%(a)}'*
AOTE) B ee(a) (Mo (52)

dr

2
u,(l’) ’\“q k(',(l

Each factor can be expanded with the aid of (50), but we shall only retain terms up to the
first one depending on ¢. This requires the validity of the relation

(A +Ay)-2(r) <n?(a). (53)
Moreover we substitute [compare (14) and (41)]:
Y 7 2 6[
OF= (ere(@) 450,12~ 02 (@) 4 201 0) 50~ 0 (0)-+ 2 () 12 (54)
()
The corresponding evaluation of (52) results in:
ko@ort 26l G e
R0 S (8.6 W A . G
ul(’) {nef ((l) } 1/2 ]{,'4;(1/ +7’? if(u) (IZIY (’) ( ) )>

Apart from the inequality (53) this approximation depends on the neglect of the higher-
order terms of (21). This neglect proves to be justified in view of the smallness of 8//k.a and
#? compared to unity, remembering also the order of magnitude of unity for ne (@) and a/aq;.
Moreover, (53) is even satisfied automatically for all 9 ()< <1 provided that we have |Ay| < <A;.
Under such circumstances u,;(r) only depends on the eigenvalue 6/, the horizon distance ¢ (r), and
the profile properties 74 (@) and aq; on the other hand, the eigenvalues 6/ merely depend on
Nerr(@) and @y (see section 8).  As a consequence 74 (@), oy and J(r) may be considered as
the only quantities determining u,(r). The same then holds for F{u,(r)} in (46), as well as
for the quantity [compare (50) and (54)],

l A"
A2 () ___(211/4__ <
{*‘[eﬁ(l) ( l} o { Zneﬂ(a> IC a 4,13('( <l> }

The still remaining factor »~"? of (46) can be approximated by a 2. We thus finally conclude
that the height-gain factor does depend, in the approximations under consideration [the most
restrictive one being (53)], on no other quantities than 7.y (a), @.; and 9(r).

11. Asymptotic Approximation of the Height-Gain Factors

We might substitute the approximations of the preceding section into the height-gain
factors (45) for both the transmitter and the receiver, and next the values of the latter into the
mode expansion (44). This would show the explicit dependence of the attenuation factor
o] on the four quantities 7q;(@), ey, #(r) and d(ry); F(r) and J(rp) here represent the
angular distances from the transmitter and receiver to their horizon point. The complicated
final expression depends, among other things, on Hankel functions of order 1/3. The latter
can be simplified considerably by replacing them by their asymptotic approximation. This
can be justified in the case of an argument with modulus well above unity. Unfortunately,
the argument u,(a) of the Hankel functions in the denominator of (45) proves to be of the
order of unity, but the other argument u,(r) of the Hankel functions in the numerator of (45)
may be much larger for elevated transmitters and receivers.
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Let us consider, once again, the height-gain function for the receiver, and estimate the order
of magnitude of |u;(r)]. When leaving out of consideration the term with #% in (55) we find
an order of unity for |u,(r)|, remembering (from the case of a homogeneous atmosphere) the
order of (k)" for 6l. 'Therefore, |u,(r)| > ">1will certainly hold provided we have

|~5[| 1

eff(a) 02( >>> (k‘ 0)2/3

(56)

Hence, a sufficient condition for applying the asymptotic expression for H{Ji{u,(r)} reads
very rouo*hly [ere(a) and afae, being of the order of unity]:

F(1)> —7 (57)

(k )1/5

This inequality holds for altitudes =r—a above some critical value, &, say.
Let us now assume A >h,, for the receiver in question. We may then also replace the

expression between braces in (55) by the first two terms of its binomial expansion with respeet

to 8, so as to obtain:
konen(a) a*

wy (1) ~ T 33(r)—60-9(r)- (58)

The substitution of the asymptotic expression for {3} {u,(r)} into (44) first results in:

Ju(r) _{‘ ~ uy(a) }”2 AR
fi@) U rwla)uj(r) HO{w (@)}

In the exponent we must take into account both terms of (58), but the dominating first
term suffices in the nonexponential factors. We shall substitute, moreover, the relations
(31) and (32) for evaluating u;(a) and u, () [applying also (54)], the approximation a/r~1,
and finally the following relation based on (20), (50), (54), (51) and (56):

) =12 vtz — oty st { M) - O s 00 B

; 2 1/2
:ko{ ) E‘%{—ﬁ”eff(jg’)“ 9(r) } Tt 3(r).
Veff ;
We then find:
Jkllneff( @ad S . _i,,l
‘7‘1(7) (b)l/Z _Saeff 83 (r) —ol.9 (r) 127 | (59)
fi(a)

—2sto) preaigy [ e GBI

3 k()lneﬁ ((L) }1/2@3/2

12. Mode Expansion for Transmitter and (or) Receiver Above the Critical
Altitude

We first assume a receiver at an elevation h,=r,—a above the critical height 4., given by
(57), and a transmitter on the ground. When evaluating the mode expansion (44) we can
then substitute (59) for the height-gain factor of the receiver, that of the transmitter being
unity. The term proportional to #° in the exponent of (59) drops out, it being real and
independent of /; it therefore has no effect on the modulus |1I/1L,,|.

The use of this substitution results in:

11 23/2]6.(1)/6{ 3ad 1/2 PLATECAGY
= || = . ’
1/3 2/3
td e e RO FEOIEE {lc%n @) )
(60)
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in which
Qoi (—280)%2
Dnel\' ((I) )'l/) i/z

uy (@) —A{

We next consider a transmitter and receiver at elevations h,—=7—a and h,—=7r,—a which
are both above the critical height.  We may then apply (59) to each of the two height-gain
factors 1,(r)/f,(a) and f,(r,)/f,(@) occurring in (44). It leads to the expression:

II

I,

()kl/(; (9(“9)1/2 ral {9—0(r))—o(ry)}

. XD 2 -
)jie ZM[MWM g 1] {wﬂm}'] HE ()}

alf {mne(@)9 ()9 (ry
13. Final Expressions for the Vertical Field Component

(61)

So far we have derived expressions for the scalar quantity II. The transition to the field
components is conditioned by (3) and (4). In the case of the electric solution this transition
is effected for the vertical component E, of the electric field by multiplying the coeflicient of
each individual mode by [5] /({4 1)/(key). In view of our approximations this quantity can
be simplified to .

s ~ kgt niz (@).

k()(l/
By combining this quantity with the expression (43), that is

B B

Wl ~ h s ™ ea?s’

we deduce the following converting factor for passing from the attenuation factor |1I/11,,| to |£,]:

B _kBis(a)
ca*d cat

ko - n2g(@) —

A similar factor proportional to ¢! applies to the reduction of |II/IT,,| to the vertical magnetic
field component |/, in the case of the magnetic solution.
With the aid of this factor we find the following representation replacing (44):

5| EBE@ (2 Y | LOLE) ] .
IIJTI ad >< : f2 a) { - ( 1/3_+_ Iwz ”77@” 2/3|" (()Q)
‘ tnen(a) |

calf®
We also mention the field representations corresponding to (60) and (61) for a transmitter
and (or) receiver well above the critical height:

|| ~ 2k "Bt (a) ei e m}
iy cait? ad- 19 ) e (2 N 28 " y
(6l> {3u(a)} + Unﬁ ] Y {u(a)}
(63)
(hI:O;h2>hcr)
and
]ETI’ 855" B, /2((1) ¢ oo —o (r)—o (1) |

Cu mad-J (ry) -9 (ry) }

=
il o)+ 5 s b [ @)

(64)
(h’l >hcr ;b/2>hcr)
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All these expressions contain the quantity F({3{u,(a)} either explicitly, or implicitly in the
height-gain factors. This quantity can not be reduced any further for the most general soil
conditions of the earth. However, a convenient expression may be obtained in the two limit-
ing cases of very long and very short waves. The latter case corresponds to an infinite value
of the right-hand side of (34). Let us denote this right-hand side by —e™*N. The solution
of (34) can then be expanded with respect to N7' a method well known in the diffraction
theory for a homogeneous atmosphere [6]. A corresponding expansion then exists for
H{wy(a)}. Tts leading term for large [N| reads:

e " H{p(u, o) %,
b

N

H{}{wy(a) } ~—
uy,., here marks a zero of H{(u).

14. Comparison Between the Fields Corresponding to Two Different Profiles

As stated above (end of section 9), the influence of the refractive-index profile is restricted
to that on the parameters n.(a) and a.; for propagation over the ground. Moreover, the
height-gain effects reduce to an additional dependence on the angular horizon distances 9 (ry)
and J(r,) of the elevated transmitter and receiver (see section 10). This involves an extremely
simple relation between the fields corresponding to two profiles having identical values of
Ner(@) and a.z.  Such two profiles show the same surface values of the refractive index and
its gradient, but they may differ noticeably at high altitudes. According to section 8 the
eigenvalues /, too, prove to be identical for these profiles; therefore, the same then holds for
all parameters occurring in expansions such as (62), (63) and (64).

We shall compare the actual profile with some reference profile, the quantities of which
will be marked by a dash (see fig. 1 in which the Eckersley profile (22) is assumed to be the
reference profile); both profiles are assumed to have coincident values of @ and a,. In view
of the above remarks, raising of an antenna (transmitter or receiver) to an elevation A=r—a
will produce the same field as an elevated antenna at a height #’=7»"—a in the reference profile,
provided that we have ¢ (r)=43"(").

This may be applied to atlases of propagation curves, such as edited by the C.C.I.R. [7]
and by the Japanese Ministry of Postal Services [8]. The data of these atlases are essentially
based on the Eckersley profile (22) with a,;= (4/3)a. The evaluation of (48) for the angular
horizon distance results for this profile in the expression:

1/2 7
dge (1) :C%r) arc cos (%)

Therefore, the curves of the mentioned atlases can also be used for other profiles with the same
ralue of a4 [the value of n4(a) is irrelevant, since 7 (a) ~1]. The antenna heights A=r—a,
corresponding to a horizon distance #(7), are then to be replaced by an effective height &' =7"—a
for which

a A

Tl 0}

Examples of the use of such corrections are given in two recent publications by Norton [9, 10].

7

15. Concept of the Effective or "'Angular’ Distance

The most striking feature of the expressions (63) and (64) concerns the presence of the
angular distances 9—d(r;) and 3—9(r)—3(r,) in the exponent. The effect of the antenna
heights is mainly contained in the corresponding exponential, the influence of the nonexpo-
nential factors {J () }"? and {9 (r,)}'* being much smaller. The importance of the distances in
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question has been emphasized in particular by Norton, Rice, and Vogler [11]. These authors
have introduced the term “angular distance” with an extension to the cases of propagation
over irregular terrain. For propagation over a smooth spherical earth beyvond the line of
sight the “angular distance” represents simply the actual distance between the radio horizons
of the transmitter and the receiver divided by the radius of the sphere.

For a smooth earth the expansions (63) and (64) justify the reduction of the height depend-
ence to that on the “angular” distance, under the following conditions: (a) the elevated
antennas are to be situated above the critical height 4., fixed by (57); and (b) the effect of the
square roots {#(r)}"? and {&(r,)}? should be negligible.

Let us abstract from the factor 4% in (63) and (64) which is not very critical. The
dependence on the “angular distance” then combines both the influence of the antenna eleva-
tions and of the horizontal distance. The influence of the former simply amounts to a reduction
of the actual distance d=a#d to that of the radio horizons, that is to a{d—3(ry)} or a{d—3J(r;) —
J(ry)}. The comparison with a reference profile (see the preceding section) can be expressed
here in terms of a shift Ad of the “angular” distance. In fact, let an antenna height h=r—a
in the actual profile produce the same field, at a distance d=ad, as the reference profile at a
distance d+A=a(d+Ad), the antenna elevation being kept constant. The unique dependence
on the “angular’” distance, assumed here for both profiles, then involves the relation:

”

I—I(r) =9+ A9—9'(r).
Hence
AY=1' (r)—3(r).

The corresponding linear distance shift is given, according to (48), by

v MU S S R 1
A:"“”“”“““Jar'[uwxov—Aﬂﬂw}w (M () = M@} ]

The derivative with respect to the antenna elevation A=r—a, reading

1
””[w >~wuwW9T7<»Aw<>WJ

can be reduced for small altitudes with the aid of the expansions:

M (r)— M2 (a)= +,,,,], AP < oo

meﬁwm>‘W+*z+

This leads to the following approximation for A itself for small heights:

’1(11((1) (Az A )}3/2 (/\2 2)0’, 573
6a'/2A 3% 12.2202(a)a?

Equivalent expressions have been derived by Millington [12] and Wait [13] in a simplified
derivation of the effective-distance concept.
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