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The probability distribution for the envelope
tions from many meteor trails is derived theoretically.

of the received signal composed of reflec-
Both the effects of numerous, small

meteors and the residual reflections from infrequent, large meteors are treated simultaneously.
For the particular example of exponential decay of initial spikes which are themselves dis-
tributed as the inverse square of their amplitudes, we find that the probability that the
composite residual signal amplitude exceeds a preseribed level r is given by
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This function behaves

isolated meteor reflections.
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as a Rayleigh distribution for small amplitude margins 7.
larger, less likely amplitudes it agrees with the
Possible refinements of these results

For the
result predicted by elementary analysis of
are also discussed. A

second paper will discuss time correlation of composite meteor signals at different times.

1. Introduction

Backscattering of radiowaves by meteor trails in
the £ region of the ionosphere is a valuable direct
means for studying meteors. VIHE signals are also
propagated obliquely to as far as 1,500 km by oblique
reflections from the same meteor trails. Signals
reflected from the largest meteors are easily recog-
nized as individual spll\(\% in amplitude records.
There are also overlapping signal contributions from
much smaller meteors which cannot be so distin-
guished.

The smaller meteors have been suggested as a
possible source of the continuous background signal
observed on the VHE scatter circuits. To dis-
tinguish between the signal due to turbulence and
that due to small meteors, the cumulative probability
distribution for signal amplitudes has been measured
for narrow beams directed both on and off a great
circle path. However, a theoretical distribution for
overlapping meteors does not seem to have been
developed thus far, and this paper is addressed to
that problem.

The very small meteors can be analyzed if one
considers only the meteor signals which arrive at the
precise instant of signal evaluation. A vector com-
bination of many randomly oriented (phased) signal
vectors is known to follow a Rayleigh distribution.
The corresponding probability that the echo signal
lies in the range R to R+dR 1s:
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Los Angeles 45, Calif.
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is the mean square voltage in the ensemble of meteor
echoes.  Although this description does recognize ¢
distribution of meteor signals, it is deficient in that it
ignores the residual effect of meteor signals created
prior to the measuring instant. Even though such
signals may have (‘\polwn(e(l appreciable decay,
their combined effect may make a significant contri-
bution to the distribution. This is especially true of
the larger meteors, which have a poorer chance of
occurring prec m'l_\' at the instant of measurement,
although their residual signal may still be com-
paratively large.

The very lau«r(' meteors can be treated as isolated
random events. The probability of receiving such
an echo signal with an initial pulse hmght lying
between p and p4dp (volts) is experimentally found
to follow a distribution of the form

D(pdp—i 9 i, (1.3)

where the parameter e is commonly taken to be
zero for analytical convenience. The residual signal
left after ¢ seconds is adequately described by an
exponential decay of the initial spike p.
R=pe"/n, (1.4)
where 7 is the characteristic (diffusion) decay time
of the meteor trail itself. The probability that the
residual signal exceeds a prescribed level 7 is thus an
interlocking marginal average over the distribution
of observing a signal of exactly strength p and the
probability of having received an echo at all.  Since
the echoes are found to occur at random at an average
rate v,
P(R>/-):J de -
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The distribution W(R) for the signal produced by
large isolated meteor echoes is obtained from this
result by differentiation.

W(R)IR—wmQ L
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Large:

This form is evidently quite different in nature
from the Rayleigh distribution (1.1) ascribed to the
smaller meteor contributions. However, these two
results will emerge as asymptotic behaviors of a
distribution which accounts for the effect of both the
large and small meteors simultaneously.
tribution is derived in section 3, after the basic
probabilistic expressions are developed in section 2.
The bivariate probability density function for
observing two meteor echo signals within prescribed
ranges at different times will be discussed in a second
paper on the subject.

2. General Amplitude Distribution
Expressions

To derive the statistical distribution of the fading
signal amplitude produced by a variety of meteor
signals, one must recognize a spectrum of echo signal
strengths in various stages of decay. It is convenient
to tabulate the random occurrence of each meteor
echo according to the envelope amplitude p with
which the echo first appears. A typical sequence of
meteor echoes is so separated in figure 1. The
individual signals are randomly phased as they arrive,
but figure 1 plots only the envelope magnitudes,
independent of phase. The larger, less frequent
signals are plotted on the top line as they might occur
in time; with the smaller, more frequent echoes
plotted on the lower scales. Actually, we shall wish
to deal with a continuum of initial echo amplitudes
p, and one should really show an infinite number of
traces to handle each signal size interval p to p-+dp.

At any given time, the total measured signal is the
vector summation of the individual residual signals
produced by each meteor in all size classes. Of
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Fraure 1. Typical occurrence history of individual meteor
echoes arranged according to increasing initial pulse height.

course, the pulses which occur closest to the measur-
ing instant produce the greatest remnant signals.
On the other hand, there are an infinite number of
very small signal remnants in the receiver from all
previous meteors which may well contribute signifi-
cantly to the composite total signal. To calculate
the precise distribution in which both effects take
their balanced roles, we use the Markoff method.
The application of this method to the meteor echo
problem follows closely Chandrasekhar’s derivation of
the Holtzmark distribution® for stellar attractive
forces.

Consider first a finite time interval 7" prior to the
time of measurement. The number of meteors
which are likely to have occurred during this fixed
interval is, of course, a random variable. Let us
suppose, however, that exactly N meteor echoes occur
in this interval. Since the meteor echoes form a
Markoff process of small probability, one can argue
that the probability of observing exactly N echoes
in a fixed interval 7 should follow a Poisson distribu-
tion.

m\ T
PAIT)=YD o, 2.1)

The average number of meteors to be expected in an
interval 7" is »7T, and this estimate becomes sharper
as this interval is lengthened. Let us assume that
N is fixed for the moment, and label the individual
meteor echoes by a subsecript 7. The residual vector
signal S, remaining at the measuring instant f,

2
produced by an initial pulse p; at time ¢; becomes:

§z‘:7)il"(f0“fz), 1<i<N, (2.2)

where F(r) is the form factor which describes the
temporal decay of the initial pulse. The composite
signal at t,is the vector sum of all N residual signals.

, (2.3)
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According to Markofl’s method, the probability
-

distribution for the total measured vector I at
time ¢, is the two-dimensional Fourier transform of
a finite product taken over the set of initial echoes.

W(R)=-, f Pk R A(K) (2.4)
@0’ e , ;
where
N > >
A(k)=<_T1I exp ik-p 1“(10—1‘1)>~ (2.5)
i=1 i

In the definition of A(k), the averaging brackets
must sum over all possible: (1) times of echo oc-
currence t;, (2) initial echo vector pulse amplitude

i
p., and (3) total number of echoes N in the interval

1 . Chandrasekhar, Stochastic problems in physics and astronomy, Rev. Mod.
Phys. 15, 1 (1943).
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-
T. The initial pulses p, are independent of one
another, since multiple (i.e., trail-to-trail) scattering
is apparently unimportant, and there is insignificant
gravitational interaction between the meteors. The
infinite product thus becomes:

" T — N
4‘/1(k):<[J d*p f dt v (;,t)(f‘"k';”[“_“] > y (2.6)
0 N

-
where y(p,t) is the probability that a single meteor
echo occurs at time ¢ and produces a vector signal
p in the receiver.

The average over N can be performed by multi-
plying with the probability (2.1) of observing ex-
actly N echoes in the interval 7" and summing over

all V.
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To proceed further, one must examine the proba-
-

bility density function v(p,t) for a single echo pulse.
If.we were to examine the interval 7"in an a priori
fashion, we could estimate that N=»7T echoes
would most probably occur somewhere in the in-
terval. However, their actual time ol occurrence
could not be predicted at all accurately, and one
could only say that an individual meteor is equally
likely to occur anywhere in the interval, viz,

Ab=32

. S
v (p,)=737 (p)- (2.8)

One can exploit this form in equation (2.7) by

noting that
1 .2 (7 =
p e [y o,
- 0

=
since y(p) itself must be normalized to unity. Sub-
stituting this expression for the one in the exponent
of (2.7) allows one to cancel off the arbitrary finite
time interval 7.

2 7 >
A(k)=exp—r [(ﬁpf dt v (p) [1—emma=19] (2.9)
. 0

At this stage one can safely take the limit of infinite
sample length, 7— e, since the exponential term’s
unit value for large time displacements (i.e.,
small) is now cancelled in the integrand.

One can further reduce expression (2.9) by recalling
that the initial echo pulses are randomly phased,
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cach
when

since the distance from the transmitter to
meteor (and back) is a random variable,
expressed in wavelength units.

< ® om
J(Pm (p):fO dpp Jﬂ

Here D(p) is the distribution of initial pulse heights,
and ¢ is the angle between p and a convenient
reference, which we choose as the transform vector k.
One can now use the integral definition of the zero-
order Bessel function to carry out the angular ¢
integration in (2.9).

(2.10)

D(p)
27p ’

A(k)=exp—v [ dt ’ dpD (p) {1—J,[kpF (t,—1)]}

J 0 JO

(2.11)

This expression, in conjunction with the Fourier
transform (2.4), represent the formal solution to the
problem at hand. To proceed further with the cal-
culation of the probability density, one must assume
explicit forms for the temporal decay function F(r)
and the pulse height distribution D(p).

3. Meteors Which Decay Exponentially

Most of the smaller, underdense meteor echo sig-
nals are found to decay exponentially, viz,

A= (3.1)

corresponding to molecular diffusion of reflecting

electrons in the ionized column of the meteor trail

itself. The decay time constant n is rvelated to the

diffusion constant ) at the height of reflection and
the wavelength X of the radiation employed.

16721
- 20m L
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There are, of course, overdense meteor echoes?
which do not obey thz simple decay law (3.1), and
one must treat them separately.

In evaluating A(k) from eq (2.11)
to take the reference or measuring llIn" ty to be
and to run the time backward in a p()blth(‘ sense.

, 1t 1s convenient,
Zero

A (k):exp—“yf“’ /{‘DD (p) fm (]t [1_J0 (kl)(]/~t/~q)J.
0 0
(3.3)

One can simplify the calculation by settling u=/kp
exp—t/n and reversing the order of integration.

A(k)=exp—uwy JO ay — [1—Jy (u)] j B dpD (p).
(3.4)

2 1., A. Manning and V. R. Eshelman, Meteors in the ionosphere, Proc. IRE
47, 186 (1959).



The cumulative integral of D(p) expresses the proba-
bility that the initial pulse height equals or exceeds
the lower limit. As noted earlier, measurements of
individual echo pulse heights show that

fr (lpD(p)zy%; (3.5)
and it is presumed that this same law extends down
to the smaller meteors which cannot be distinguished
as individual echoes. The fractional exponent e
has been variously reported to lie between 0 and 0.3.

The case e=0 is analytically important, since all
of the required integrations can be performed for
this case and it serves as a good working example.
Combining (3.4) and (3.5), we find for this special

case,
o 2 du Qk
Ay=esp—r | W =01 (%)
or since the definite integral has unit value.

A(k)=exp—mQk. (3.6)
One may now compute the probability distribution
for the resultant signal by introducing (3.6) into
expression (2.4).

y 2 © 2T
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(3.7)

This distribution is independent of the phase angle
¢, expressing the fact that the vector sum of a large
number of randomly phased vectors is itself randomly
oriented. The probability density for R alone 1s
obtained by integrating over ¢.

(nQRAR
R+ Q)7

It is important to note that this distribution does
not possess finite moments of any order, although 1t
is properly normalized to unity. This means that
one cannot define an RMS signal level for describing
the cumulative probability as suggested in eqs (1.1)
and (1.2). The root of the problem, of course, lies
in the initial pulse height distribution assumption
of eq (3.5). The lntegrdls of W(R) diverge for
large amplitudes, which, in turn, are produced by
the very large individual echoes. The assumed
distribution (3.5) does not suppress these large
echoes rapidly enough to insure convergence, although
most workers agree that the form (3.5) must eventually
change its rate of decrease with 7 5o as to properly
I(‘pl(‘%(‘llt the rarity of really large meteors.

W(R)IR= (3.8)

The function which is commonly measured experi-
mentally is the cumulative probability that the
total signal amplitude R exceeds a prescribed level 7.

TG

This result is plotted on Rayleigh graph paper versus
the ratio r/yn@) in figure 2. The Rayleigh cumula-
tive distribution P=exp—(r%/24%) plots as a straight
line with slope minus one on this paper. The
probability of observing very small signals r is seen
to follow the straight line Rayleich behavior with
slope minus one. This is because the small argument
expansion of eq (3.9)

P(IB|>7)— f ARW(R) — (3.9)

lim (P)=1

-0

Lo
= e 3.10

2 m@)* Y
is essentially identical to that for the Rayleigh
distribution (1.1) with ¢=(»@). On the other
hand, we have already noted that the meteor distri-
bution (3.8) does not possess a finite variance, so
that »nf) cannot be identified with an RMS signal
level. Note, however, that the curve in figure 2
is displaced upward from the normal Rayleigh
curve by a factor 02\"'2:0.707, since P (r) 1s plotted
versus »g(), not +2vp@Q) which would be the root
mean square signal level of a Rayleigh distribution
with the same small amplitude asymptotic behavior.
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Fraure 2. Probability that signal exceeds prescribed level for
exponential meteors with e=0, compared with Rayleigh
curve.
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The cumulative probability distribution for the
very large, unusual signals is markedly different
than a Rayleigh distribution, reflecting the unique
character of meteor echoes. One may expand (3.9)
for large » to find

P(R>1)=1
in agreement with the qualitative result (1.5).

This also agrees in form with the basic assumption
(3.5) for the cumulative probability that an indi-
vidual meteor echo amplitude exceeds the level 7.
The important difference is that eq (3.5) assumes
that a meteor signal has just been received, whereas
eq (3.11) cz aleulates the residual large meteox signal
at any time. 'The additional factor »y in (3.11)
is the average rate of occurrence times the half
life of individual meteors, and is a measure of the
fraction of time that the large, isolated meteor
signals are greater than ¢! of their initial value.

The simplified theoretical result of eq (3.9) was
compared with experimental data gathered by
Bowles * on the Havana, Ill., to Boulder, Colo.,
VHE scatter link Op(‘l(lt(‘(l by the National Bureau
of Standards. Totalizer outputs obtained with
rhombic antennas directed off path were employed,
s0 as to accentuate the meteoric signal contribution.
The experimental points follow a Rayleigh distribu-

tion above the 50 percent level, but indicate a
higher probability of observing the very large

signals produced by combinations of strong echoes
than is predicted by the Rayleigh distribution.
This is in qualitative agreement with the theoretical
result plotted in figure 2, although the quantitative
agreement is not as precise as one would like. Tt is
believed that the residual discrepancy can be traced
to the three basic assumptions used in deriving
eq (3.9):

1. The large meteors do not decay exponentially,
as assumed in eq (3.1), especially if they are strong
enough to produce overdense echoes.

2. The assumption e=0 in applying eq (3.5) i
not consonant with some meteor radar e\pemments
which suggest small fractional values.

3. The initial pulse height cumulative distribution
(3.5) is almost certainly not correct for the very
large meteor end of the spectrum.

The second possibility was checked numerically
by rederiving the transform function A(k) for
arbitrary e.

A (k)= exp —w;f o [1—cJo(w)]- Qe

L1+e

= exp —wnQk' et (3.12)

1—e
r( .

where

E:

3 K. L. Bowles, private communication.

However, the coefficient of £'*¢ which appears in
the polar integration for computing W(R) may be
removed by renormalizing £ itself.

W(R) RAR—RdR f " dkkeJy(kR) e~
0

—dp [ [ “azzeme ] 313
0
with
R
p=—ml—+6 and z=ky'/1te.
s
The funection given by the bracketed integral in
(3.13) was tabulated numerically on a digital com-

puting machine for the following values: e=0.1,
0.2, 0.25, 0.3, and the results are plotted in figure 3.
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Fraure 3. Plots of the probability that the instantaneous signal
lies in the range R to R-+dR for various values of the param-
eter e which determines the distribution of initial pulse heights
Jor individual meteors.

The cumulative probability
the various e-fractional
also computed numerically using
equivalence

corresponding  to
distributions (3.13) was
the analytical

P(P)::f dppj:) dngO(pz.)e_ZHe,

=1—p f dzdy(p2)e=?" (3.14)
0

which follows by reversing the order of integration,
and treating the limits cautiously. The second form
is plotted in figure 4 for various values of ¢ on Ray-
leich paper. The various curves in this figure do
not have the same asymptotic behavior because
of different normalizations of the vertical scale
for each e. However, one can imagine the signal
levels adjusted for each case so that all approach
the same Rayleigh limit. This would show that the
P (r) curves all fall between the e=0 curve shown
in figure 2 and the Rayleigh distribution straight
lines. Insofar as the present “data of Bowles suggests
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Ficure 4. Plots of the cumulative probability that the instan-
taneous signal exceeds a prescribed level for various values of
the parameter e which determines the distribution of initial
pulse heights for individual meteors.
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that the departure from Rayleigh is not as marked
as that predicted in eq (3.9), this would seem to
indicate that values of e near 0.2 may give better
agreement. On the other hand, the data sample
now available is certainly too limited to pronounce
final judgment.

The first two objections raised above also deserve
further attention in a careful comparison of the
theory with experiment. The approximate descrip-
tions developed by Manning and Eshelman (see
footnote 3) for overdense echoes were examined
briefly, but unfortunately the split (p) integrations
were not found to be tractable analytically.

Valuable discussions of the problem with V. R.
Eshelman and T. A. Magness are acknowledged.
K. L. Bowles kindly made his experimental data
available prior to publication. B. A. Troesch and
L. Stohler computed the numerical results displayed
in figures 3 and 4.
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