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An integral equation for the distribution of current along a cylindrical antenna in a
conducting dielectric is derived. It is shown that the boundary conditions for an antenna
in such a medium are formally the same as for an antenna in free space. The equation is
solved for the current I and the driving-point impedance Z by means of a technique that
achieves sufficiently high accuracy in the leading terms of an iteration procedure so that the
higher-order terms do not need to be evaluated. Moreover, these leading terms consist
only of trigonometric functions with complex coefficients. The electromagnetic field in the
infinite dissipative medium may be computed relatively easily since the current in the antenna
is expressed in such simple terms.

A numerical analysis is made to determine the properties of an antenna with an electrical
length of one-half wavelength in the medium with conductivity o and relative dielectric
constant e,. Universal curves are given of I/\‘/e, with o/weje, as the parameter and of Zve,
with o/wepe, as the variable in the range 0 < o/wee, < 0.4. A table of numerical values of
the impedance is given for media such as an isotropic ionosphere, dry salt, dry earth, wet
arth, and lake water.

1. Introduction

A study of the properties of antennas in dissipative media is an interesting theoretical prob-
lem that may have practical significance. For example, it appears to be possible to make
certain diagnostic measurements in the area of fusion reactors that depend on a knowledge of
the impedance of an antenna in an ionized medium. Specifically, it may be possible to deter-
mine ionization densities in high-temperature plasmas in this manner. In one phase of a con-
templated field operation known as “Plowshare,” it is expected that certain information
concerning the operation of a nuclear device buried in a salt mine can be obtained with a
low-frequency radar and a dipole antenna embedded in salt. Such measurements require a
knowledge of the characteristics of antennas immersed in such a medium as well as of signal
attenuation and dispersion.

A knowledge of the shift of impedance of a stub-type missile antenna as it enters an ionized
cloud (such as the ionosphere, the aurora australis or borealis, or one of the Van Allen belts)
makes it possible to determine transmission loss due to antenna mismatch.

Generally speaking, if the distribution of current along an antenna in a dissipative medium
is known the input admittance is also available, and it is a straightforward process, at least in
principle, to calculate the electromagnetic field at any point in the medium. From the field
the signal attenuation in the medium may be determined. This is of importance in telemetry
work, and also in the theory of communications between submerged submarines.

A theory is developed in this paper for a perfectly conducting, symmetrical, center-driven
antenna of finite radius immersed in an infinite medium of moderate attenuation. Attention
is directed specifically to half-wave antennas. For example, the present method of analysis
permits the caleulation of the impedance of this antenna when buried in “poor earth’ for
which the relative dielectric constant is e,=7, and the conduectivity is ¢=10"° mho/m. The
theory also applies to a base-driven quarter-wave radiator oriented at right angles to an infinite
perfectly conducting plane. It is of practical importance that the impedance of a stub-type
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antenna protruding from a missile differs negligibly from the impedance of the same antenna
when mounted on an infinite ground plane, provided that the dimensions of the carrying vehi-
cle are not too small in terms of the wavelength. Note also that the impedance of an antenna
in a homogeneous dissipative medium of finite extent is essentially the same as in an infinite
medium provided the boundary is sufficiently far removed from the antenna that the electro-
magnetic field at the interface is reduced to a small value owing to absorption.

2. Basic Electromagnetic Theory

Maxwell’s equations in a homogeneous dissipative medium are
curl E=—j0B (1)
curl B=jwutE (2)

where E and B are the electric and magnetic vectors, respectively, and w=2=f is the radian
frequency. The constants u=1/v; o; and e are the absolute permeability, conductivity, and
dielectric constant of the medium; and £ is the complex dielectric factor given by

o (1—j 2. 3)

The suppressed time dependence is exp (jwt).
The vector potential A and scalar potential ¢ are defined by

curl A=B 4)
div A=—joutp (5)
—grad ¢=E+juA (6)

where (5) is the Lorentz condition. The elimination of ¢ from (5) and (6) leads to the following
relation for the electric field in terms of the vector potential:

. :
B= ok (grad div A+Ek%A) (7)

where
k*=wut=(B—ja)*. (8)

The numerical evaluation of £ may be expedited by noting that if p=0/we,
k=p—ja=wyre N 1—jp)=wyre f(p)—jg(p)} 9)

where f(p)=cosh (¢ sinh™'p) and g(p)=sink(® sinh™'p). Tables of the functions 7(p) and
g(p) are available in the literature [1].*

When p? < <4, k=B8—ja~wpe—j gy’m. Note that in this case ]):2a/6=i’ B <.

The boundary conditions between the homogeneous dissipative medium, region 1, and the
perfectly conducting cylindrical antenna, region 2, are

€y - E1:_”I1f_772f (10)
ﬁIXEIZO
vy X B =K,, (11)
1l

le X BI =0
4 Figures in brackets indicate the licerature references at the end of this paper.
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since E,=B,=0 in the perfect conductor. 7, is a unit vector directed normally out of region
1, mi;+ 72718 the total surface density of charge on the boundary, and K, is the current density
on the surface of the antenna.

A surface equation of continuity [2] that applies to the thin layer containing the surface
charges and currents may be expressed as follows:

div Ko+ jw(n,+n9) — 1y - o E;=0. (12)
It may be satisfied in two parts. On the perfectly conducting surface,
div Ky, +jon,, =0 (13)
and on the adjacent surface of the dissipative medium,
Jon—ny - cE;=0. (14)

Thus 7., is the surface density of charge associated with the surface density of current K, along
the perfect conductor, and 5, 1s the surface density of charge related to the component of the
volume density of current

Jlf:a[(:l (15)

that leaves the conductor normally to enter the medium in which it is immersed.
The substitution of the value of 7,, from (14) into (10) and (11) brings the boundary con-
ditions into the following symmetrical form:

&y - Exz_'ﬂz,{
(16)
ﬁlXEI:O

viy X B =—K,,

(17)
n, - B,=0.

3. Vector Potential on the Surface of the Antenna

Let the axis of the antenna (fig. 1) coincide with the z-axis of a cylindrical system of coor-
dinates 7, 6, z. Let its ends be at z= 4-A; its cylindrical surface at 7=a. It is assumed that

Ba<kl

(18)
a<h

2a
-
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| z

I je’
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Ficure 1. Half-wave dipole in a conducting medium.
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(where g is defined by (9)). These conditions and an appropriate method of excitation that
generates only a z-component of current in the antenna make it possible to set

K, =:K,.. (19)
The substitution of (4) in (17) with n,=—7, gives
v;ZIXBI:v;chcurl A=prXcurl A:—%ng. (20)
If A,=A,= 1 =0, (20) becomes
yzxo(—a“ —i, @1)
or
), (o) .~ @)

It is well known that the equation satisfied by the z-component of the vector potential in
an infinite homogeneous dissipative medium is

VA, +k*A4,=0. (23)

Its solution may be obtained by applying Green’s theorem in the symmetric form,

f [uv—ov2u)dr’ :f ug ——v——] do’ (24)

with u=A. and »=G, where G is the free space Green’s function that satisfies the auxiliary
equation

VG-I G=—6(Ry). (25)

In (25), R;=|R—R’| is the distance between the point located by the end of the vector R’
where @ is calculated and a point source at the end of the vector R. The Dirac delta function
satisfies the relations

6(R,)=0, R;50 (26)

1 if 7 includes R;=0
f 5(Ra)dr (27)
z 0 if 7 excludes R;=0.

The solution of (25) that vanishes at infinity is

8 —JkRg
“ 4B, )
Equation 24 now becomes
oA o
2 v A 2 2 7 24 U ’
frl:G(v AL RA)— A (VG- k G)]dr - L (654 n)da (20)

where X, is the surface of a great sphere, and Z, is any parallel pair of surfaces within 2, that
enclose surfaces across which the functions G and A, or their normal derivatives are discontin-
uous. In the case at hand the only such surface is the envelope of the perfectly conducting
antenna of radius @, and the only one of the four functions that is discontinuous across it is
0A4.|0n as given in (22). It follows that with (23), (25), and (27) together with (22), (29)

becomes
an(R R')dr'— fKn ')G(la’—{—f (GaA Aﬁ—f)dc’. (30)
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The volume integral reduces to A,=A,(R). Since k is complex with negative imaginary part,
both A, and @ vanish at infinity. Accordingly, the integral over ¥, approaches zero as =,
recedes to infinity. With 7.(2') =27aK,.(z"), (30) becomes

AR)=- L]z(a )z f o (31)

T

Rs:\/(z— 2’)2-|—<2a sin %)2 (32)

If A>a, as is assumed, an adequate approximation of (31) is

where

1 (* e~
A®)=1 f_hlz(z’) e 33)
where
Ri=+/(z—2")2+a. (34)

The vector potential A, is defined in terms of the surface current /,=2raK,. on the perfect
conductor. This current vanishes at the ends of the antenna if the end surfaces are neglected
or if it is a tube and 7, is the sum of the currents on inner and outer surfaces. That is

I,(+h)=0. (35)

From (13), the surface current satisfies the equation of continuity

(1K-); 00 op
7z Tleny=0, (36)
or when multiplied by 27a,
1, . -
Titieg=0 (37)

where ¢,=2man,, is the surface charge per unit length associated with the current along the
conductor. The axial current is associated with ¢,, and the radial diffusion current in the
medium with 5, in the equation of continuity

jwﬂ}f_(UElr)r=u:0- (38)

Thus, the physical picture is a sheet of current /,=2maK,, on the surface of the perfect con-
ductor that is directed only axially and decreases by charging the surface. A portion of this
charge remains for a part of the period in the axial standing wave, and a portion leaves radially
into the adjacent imperfectly conducting or ionized medium. This is contained in the equation

dl, . .
%—{-quﬁ—]wa—%aaEl,:O (39)
where ¢, =2man,;.
4. Integral Equation for the Current

The integral equation for the current in a perfectly conducting antenna of length 24 and
radius a, center-driven at z=0 by an idealized delta-function generator with electromotive
force V may be derived easily from (23) and (33) with V*=0%/0z%. It is [3]

n — jkR, 7
f_h 1.(2) g—j]?T— (l.2’=—j4?7r { | cos kz+‘§ sin kl:[} (40)
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In this relation I2,=+/(z—z")*+a?, C, is a constant evaluated from the boundary condition (35),

and
R ] e
f“\/s \/o+jwe‘ )

Equation (40) is valid in an infinite homogeneous dissipative medium. In order that the
present analysis may parallel a recent development in the theory of linear antenna arrays
[4], an alternative form of (40) is desired. It is

kR, ,— kR, 7
f L(z '){ N }de’:—jtzr{ ! cos kz+‘§sink;z;+(*} (42)

h

) N o .
y4kj L() S de'=—j AW (43)

where

and
b= (h—2")+d.
When z=h, (42) becomes

() cos kh—l—%— sin kh+U=0 (44)

so that
- 3Vsinkh4-U _
O==\" csih } (45

This value of ('; may be substituted into (42) to obtain

2 iy o NI Pk ST i e T .
[ LRz 2 = A (Y sin BO— )+ U(cos ke—cos )} (46)
where
o e —JjkRy 6—ij;:_ R, 6—-]61’31 —aR, e‘jﬁ[f;, _
Bl s 0= = = T 7

Equation (46) is the integral equation for the current along a symmetrical center-driven an-
tenna immersed in an infinite dissipative medium of arbitrary attenuation. The only restric-
tions that have been imposed are given by (18).

Since a delta-function generator is employed to drive the antenna, the driving point current,
which defines the input admittance, is rigorously infinite because there is included an infinite
admittance across the input terminals given by [5]

1
Y=G+joC=221d T, 7]
© © © { 2 +?
\ J

as z2’——"N"/2 where z’=z—h, h’=2h. 'The conductance and the capacitance are infinite since
the knife edges between the idealized halves of the antenna are separated zero distance and
are in contact with the dissipative medium. However, if (40) or (46) is solved in terms of
continuous functions by the usual method of iteration, the driving point current actually
obtained is essentially that maintained by the delta-function generator minus this infinite gap
current. This is the desired approximate solution for the current in a practical antenna driven
by an actual transmission line if suitable end corrections are provided.
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5. Approximate Solution of the Integral Equation for the Current

Let a solution of (46) besought specifically for the half-wave dipole defined by gh=m/2. The
procedure followed is described in the literature [4]. In brief, it involves the separation of the
total current along the antenna and the vector potential on its surface into several parts and
the proper association of these to permit the introduction of several expansion functions that
are sensibly constant along the antenna. Each of these functions is defined as the ratio of a
particular component of the vector potential to its associated current. Several integral equa-
tions are obtained in this way which may be iterated independently of one another. It has
been found that the sum of only the leading trigonometric terms of these component currents
with suitably defined complex coefficients yields the total current and the driving point imped-
ance with satisfactory accuracy.

The solution of (46) is begun by studying the variation with respect to z of the functions [6]

B, (2)— J sin Z(h— |2 Vo 2 20 )2, (49)
and /]
= ] e o (50)
o D
sin k(h—|2[)=cos 8z cosh {ah(l_‘;)} —j sin f|2| sinh {ah (1 “/,')} (51)
and

cos kz—cos kh=cos Bz cosh {ah-z} —1 I:Sillll ah—sin Bz Bz sinh {alz-;}:l (52))

when gh==/2. These quantities do not differ significantly in general form from those with
a=0, and the additional terms (which vanish when a=0) are not sufficiently great to dominate
provided the condition ek <1 is imposed. Actually, when a=g, ah=1.57. The slightly more
severe condition,

(ah)*<<2 or ah<0.3 (53)
permits the following approximations:
cosh ah=1, smh=ah, ¢ **=1—all. (54)
It follows that
sin k(h—|2|) ~Bz—jah (1_,"}%‘ sin 82| (55)
and
cos kz—cos kh=cos Bz—jah <1~% sin 52)- (56)
If the approximations
< ~%) sin B|z| =cos Bz-+sin Blz|—1 (57)
and
1—% sin Bz ~cos Bz (58)
are made, it follows that
sin k(h—|z|) = (1—jah) cos Bz+jah(1—sin B|z|) (59)
and
cos kz—cos kh=~(1—{jah) cos gz. (60)
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The approximations (57) and (58) are used throughout the analysis of the half-wave dipole
antenna in a dissipative medium. They may be shown to be very good when gh=m/2 by
direct graphical comparison. Since e"*F1=1—aR,, K;(z,z'), as defined by (47), may be written

Kz, 2')=Ky(z, 2" )—aK,(z, 2') (61)
where
e~ BRy —JBR R
Ky(z, &')="5— 7, Th (62)
and
K,(z, 2')=e¢ BE1— g#En, (63)

With (59) to (61), inclusive, (49) becomes
h

@L.(z)z(l—jah)f cos Bz{Ky(z, 2/)—aK,(z, ') }dz’
h

-i—jahj: (1—sin B|z)) {K,(z, 2')—aK,(z, 2') }dz’

(- 74){ (32)-77)- ﬂ[ (1+5)= ]]COSB‘}
GRG0 D)

Terms of order o’i/8 and o’h* have been neglected. The particular values of the general
functions (', £, and S,° required in this application are given later. In a similar manner
(50) becomes

) (4)~(1—_/ah){f cos Bz K, (z ,~’)(12’—~afh

x(l— i 2){( Ga)—( G 2)-% [g (1+ j):l e 52}- (65)

It is known [4] that C,(N/4, z) —C,\/4, N\/4) varies approximately as cos 8z in both its real and
imaginary parts. It follows that ®,(z) does also. Accordingly

cos Bz’ K, (z, z’)ds’}

®,(z) =d,(0) cos Bz (66)

2, =2,0)=(1—ja 2){ a(po)-a(3py)-s[5 00—} (67)

A comparison of (64) and (65) shows that

¢v(z)z¢u(2)+®w(z) (68)

@w(s):ja%{Ea G )—E( ) <—, 4>+s,l A %)} (69)

h h
5 These functions Ca(h, z) and S,(k, 2) and E.(h, z) are defined as follows (see ref. [3], Sec. 19): Ca(h, 2) =f L cos Bz'd?’, Sa(h, z)=f L
0 0

where

where

sin B2/dz, Ea(h, 2)= Ld ’, where L={ ("**YR) +( ™Ry }, Ri= /(z—2)2+,@, Ry= +/(z+2)*+a?. They may be expressed in terms of

tabulated functions.
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Since it is readily verified that ®,(z) varies like (1—sin g|z]) in both its real and imaginary
parts, it follows that
®,(z) =®,(0) cos Bz+P,(0)(1—sin B|z]). (70)

N[ A\ A DA ;
By By (0) = j Z{Ea <Z’ 0>—E(, (E’ Z)-—Sa <Z’ 0>+ba (Z’ 4>} (71)

From (68) or (70),

In (70),

b, ~P,+ D, (72)

This completes the investigation of the functions ®,(z) and ®,(z).
With (59) to (61), and the approximation cos kh=jah, (46) may be expressed as follows:

h h h
f_hln(z'){Kd(z,z')—am(z,z')}dz'+f_h1w(z'){Kd(.z,z/)ﬂK‘,(z,z')}(/zf+j41,,<z/>{K,c;,z')

—aK,(z,2) }de =2TE—]) { BVH,T]U_]M] cos Bz+j%Vah(1 e m;p} (73)

wpah
where 7,(z") has been replaced by
[,(2")=1,(2")+1,(z")+1,(2"). (74)

The integrals in (73) may be written as follows:

*h 3\
J , [rvl (2,) {Kd(zyz,)_aKt’ (‘275’) }([2,:¢1'111'1 (2)_1)11 (2)

[ La(2) K (2,2 ) —aK, (2,2") }d2' =4hal n(2)— D (2) > -
[ 1) ) =ak () de =0 L D-D) |
where
‘h:ﬁlh P G (76)
and
D= [ =12 9u(220) (K 2,2 a2, -

where the subseript 7 stands for vy, v,, or u.

An inspection of (73) and the ®(z) functions previously studied, shows that a proper association
of the components of the vector potential and the current is achieved if the following choice of
distribution functions is made:

,. cos Bz’
grl(zle):gu(zyz ): cOS 52
and w . (78)
" _~]7~sin Blz’]|
{]rz(ZW )_ 1—sin Blzi
Then, with (76),
N
P,
t//““Pu—l_jah
and g (79)
@,
¢1'2 ];h
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This pairing of vector potentials and currents insures that to a high degree of approximation.
Yu~Ay (5) /Il‘1<2)) %ZNAL@(Z)/L@(Z), and ‘pu“"Au(Z) /Iu(z) Avl(z)y ‘402(2): and AZ,(Z) are compo-
nents of the vector potential calculated from the currents 7,,(2), 1,,(2), and 7,(z) respectively.
It follows that all difference integrals, defined by (77), are small.

The substitution of (75) 1nt0 (73) gives

47 (B—ja)
( )‘I/L1+IZZ( ¢U’+I ( )‘l/u ,uah {(2V+l >(1_jah COS B~

Since ¥, =y, and the components of the vector potential contributed by 7, (z) and 1,(z)
vary as cos Bz, (80) may be separated into two parts and these iterated separately. Thus

T(2) +1(2) = 4”<th“> SV )1 jah) cos - }+-A{D,1<z )4 D2 >} (81)

e ‘lei—%if‘—) Ly b Dio(2 >}- (82)

The leading terms may be substituted into the difference integrals to obtain first order correc-
tions to the currents, if desired.
The total current is

o (B— ) u 1 .
1 (2)== Wfoiah}:u {<1+ v (1—jah) cos Bz+jah(1—sin Biz])‘f—ﬂir o } (83)

The ratio 2U/V may be determined from (43) with the substitution of 7.(z) as given by (83),
1e.,

U=—j ot I( ") ]Bth—ae_jB”‘h dz’
dr(B—ja)) - Ry,

/ v (h)\ﬁu
—J 9&h¢u{<1+1 )(1 —jah ) (h)+ joh == } (84)

h —JBR /
4= cos = {e . “Laewm}fzzf =G5 ) (85)

Ys(h)= J (1—sin B|z’ ){

~iBR
M—-a(fjﬁk”b}dz' =Y <2y2>—$a <2’ 2)-*‘_/ %' (86)
The solution of (84) for 2U/V yields

¥s(h), J
o e e )
Ztlf/ _ Yoo ( ah>' . (87)

vt (142,

where

and

The substitution of (87) into (83) gives the following final expression for the leading terms of

the current:
27r(ﬁ 2r(B—ja) V- }
L(2)=— o, { <4> cos Bz (88)

The corresponding driving point impedance is
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Z(k):L ) 7 (89)

ro~ 2o { 7(5)-1}

R ORI
Vst

The use of approximte forms of the €,, S,, and I, functions [6], leads to the following formulas.
The final numerical results in (91) apply to a half-wave dipole with &/a=75 or a/x=1/300.

In (88) and (89),

(90)

$u—=2 sinh~! g—z.:a.aF_j 0.633—5 (L5714 0.571) (91a)
N - 2PN N
=7.663—2 ().().H—E (1.571+47 0.571 for = il (91b)
Ny R e oo )
Y,»=4 sinh }1_2 sinh (17—1.14/—.7 0.384 (92a)
Q I~ = 0Q 9 ll Lo 44 3
—6.885—j0.384  for =75 (92h)
%,=0.709—j 1.219+4j ’_;g (93)
. 2h . h . .«
—2 sinh~! 2*—2 sinh~! “—1.219—j 0.7094j & 94a
¥ sinh u 2 sinh " 1.219—7 0.709+7 3 (94a)
=0.167—40.709+j 2 for h_zs (94h)
=0.167—50.709+j 3 =15 ¢

6. Distribution of Current

The current as given in (88) involves the parameter 8/wu= (1/¢0) v'e,/u, [(p) and the dimen-
sionless ratio p=2«/B=0c/we that characterize the properties of the medium in which the
antenna is immersed. If attention is restricted to nonmagnetic materials and values of p <0.5,
it follows that f(p) =~ 1°so that B/ou=1+/e,/o. In this case the two relevant quantities are /e,
and o/wee,. 1t follows that a normalized current may be defined that is a function of 2a/8 or
of o/wee, alone insofar as the properties of the medium are concerned. That is,

—j27r<1—j§> . o 1

- — T(—) cos Bz—+sin Blz|—1 95
L/v\rer Sovoe 4 ( )>

\

where o= 4 u/eo~ 1207 ohms and it is assumed that o/wee <0.5. With the current expressed
in the form I,=1+jI,=1.e"t the family of curves shown in figure 2 has been evaluated from
(95) for the distribution of the real and imaginary parts of the normalized current along a
half-wave dipole. The parameter is o/wee,. The corresponding curves of the amplitude and
phase are shown in figure 3.  Note that these curves apply to an antenna for which A /a=75 and
Bh=m/2 with B=w+ ue the phase constant appropriate to the dielectric medium. The actual

6 When p=0.5, f(p)=1.029 which differs from unity by less than 3 percent.
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0 — I5 l 10 Am;)/Volt
11,1 /V Ver
- 0 5 101073 Ficure 3. Current i 2 in th ) I, =T,ei
N s I Ve AmbiVolt 1GURE 3. Current in figure 2 in the form 1,=T,ei’T.

Frcure 2. Current 1,=1,+jl, in normalized form for
a half-wave dipole in a medium with conductivity o and
dielectric constant e=ee,; 1, is in phase with the
driving voltage V.

currents per input volt are obtained from these figures by multiplying the normalized values
with y/e,. The curves indicate that when an antenna is immersed in a medium of given di-
electric constant, the amplitude of the current diminishes with increasing conductivity of the
medium if the same driving voltage is applied. The inductive lag of the input current also
decreases as o is made greater, but there is a rise in the relative phase change outward along
the antenna. That is, the current near the end of the antenna lags behind the current at the
driving point by an angle that increases with o.

7. Admittance and Impedance

The admittance, Y=G+7B, and the impedance, Z= R+ .X, are most conveniently expressed
in the normalized forms, Y/, and Zye,. The former is obtained directly from (95) with
z=0; evidently, Z+\e,=1/(Yye,). The normalized quantities, G/ye, —B/ye and Ry,
X ¢ are shown graphically in figure 4. In the range (o/wee) <0.5 a single curve is obtained
for each of these quantities for all values of ¢ and ¢,. It is seen that when an antenna is im-
mersed in a medium with a given dielectric constant for which 2h=»\/2 in the medium, its input
resistance increases almost linearly with inereasing conductivity of the medium while its re-
actance first decreases to a shallow minimum, then increases slightly. The actual admittance
of a half-wave antenna when immersed in a medium with a given dielectric constant is obtained
from figure 4 by multiplying the normalized conductance and susceptance by 4'e,. Similarly,
the impedance is obtained from the normalized resistance and reactance when divided by
Ve. Numerical values of actual resistances and reactances for a range of dielectric constants
and conductivities are listed in the table 1.

[t is important to bear in mind that the data contained in figure 4 and table 1 always apply
to an antenna that is exactly a half wavelength long in the medium with the specified dielectric
constant and conductivity. That is, the electrical half-length 1s gh==/2. Note, however,
that if an antenna has the half-length A=NX/4 referred to the wavelength in the medium, its
half-length referred to free space is h=»Xo/4+e,. In other words, the electrical length gk in
free space corresponding to an electrical length gh==/2 in the medium is Boh=pBh/e, when
w=uo. If an antenna that is adjusted in length so that Bh==/2 in a medium with constants
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Impedance and admittance of a half-wave

dipole when tmmersed in a medium with conductivity
a and dielectric constant e= €€, ;3= wy ue=2r/\.

OHMS
1000

TapLe 1.
rmmers

I'mpedances of antennas for which gh==/2 when
ed in a dissipative medium ; h/a=75, f=6 Mec

Z(k) in ohms Medium ‘ o In mho/m o/weoer ah
S P - ‘ I
e=0.1 ‘
263. 34-j126. 6 | 0 0 |
263. 3+j126. 3 4.9X10-8 | 0. 00146
265. 74j125. 6 1. 510+ | 00448
294.6-+4-j118. 3 10-6 . 0298
310. 54-j114. 2 | 1.5x10-6 L0448
&=0.665 | |
102. 05+549. 01 i 0 0
102. 084748 99 Tonosphere 3.26X10-7 0. 00146
103 4 +j48.7 10-6 | . 00448
120.4 +j44.3 103 | . 0448
235.6 +j35.1 8X10-5 . 358 0.274
|
«=1.0 |
83.24740.0 Free space 0 0 1
93.14)37. 4 | 10- 0.0298 |
132. 6+4529. 8 5X10-3 149 |
178. 5+j28.0 10—+ | 298 ; . 230
_e=6.6 [
32.44j15.6 0 (-} {
32.84-j15. 4 10-3 | 0. 00452 |
40. 34713. 4 Dry salt 13410~ | 066 |
65. 84-j10. 7 6X10~4 | . 272 ‘ . 205
|
&=17.0
78.5+j11.7 Dry carth 10-3 . 426 . 322
e=10.0
26. 34j12. 6 0 0
29.44-j11. 8 10— 0. 0298
41. 9+59. 44 5X10-+ . 149
55. 9+458. 72 Wet earth 16-3 208 | . 230
e=280. 0
9. 3044 47 0 0
9. 404-j4. 44 Distilled water 104 0.00373
10.7 4+j4. 11 Lake water 103 L0373 |
21.9 +j3.24 Lake water 102 .373 : . 285

e, and o is removed to free space, its impedance changes both because the parameters that

characterize the medium are different and because its electrical length is changed.

This 1s

illustrated in figure 5 which gives £ and X for an antenna that has been removed to free space
from a medium with relative dielectric constant €, in which its electrical length was 7/2.
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8. Special Cases

A number of special cases are of interest. The following data apply to an antenna for
which Bh==/2 in the specified medium and h/a=75.
Case I. Antenna in free space. =1, =0, so that «a=0 and B=B,=27/\.

Z(By) =832 40.0 ohms. (96a)

The King-Middleton second order theory gives [7]
Z(By)=86.5+4741.7 ohms. (96b)

It is noteworthy that the new approach to the analysis of eylindrical antennas [4] yields results
that agree so closely with those of a complicated, twice-iterated solution (that is known to be
in good agreement with experiment when proper account is taken of transmission-line end and
coupling effects [8]), since only the leading trigonometric terms in the current distribution are
used in obtaining (96a). This is a consequence of properly choosing the trigonometric functions
and carefully adjusting their relative complex values.

Case II. Split missile sounding rocket. According to Nicolet [9] at an altitude of 100 m
(where the temperature is 210° K) the maximum collision frequency »7=1.1 >10° sec ~'. At this
same altitude, DiTaranto and Lamb [10] anticipate an electron density N=1.5X10" electrons
m?.  The standard relations for the dielectric constant and conductivity of the ionosphere,
neglecting the earth’s magnetic field are

Ne?
éfén{l_e&mé—)} (97&)
and
Ne?y .
07~m7 (9lb>
where ¢==8.85107" f/m, ¢ is the charge of the electron (¢=—1.60<10"" coulomb), and m is

the mass of the electron (m=9.11<10"*" kg). With the above values for NV and », a frequency
of 6 Me, e=0.6649¢) and ¢=3.26 1077 mho/m, the attenuation constant of the medium is
a="7.534 107" nepers/m and the phase constant is §=0.1025 radians/m. The impedance of
the center-driven half-wave dipole in this medium is

Z(k)=102.1+749.0 ohms. (98)

In air the electrical half-length of this antenna is Boh=1.926, its actual half length A=15.3m,
and its impedance is Z(8)) =2004-7203 ohms. On comparing Z(k) with Z(B), it is clear that
the electron density of the normal wonosphere can easily be determined with a half-wave dipole
antenna used as a probe at 6 Mec.

Case III. Antenna in a Plasma. If the electron density is 4.05><10" electrons/m?® and
the collision frequency is »=6.15>10% sec™ it follows that e=0.1e, ¢=4.9>X10"* mho/m,
B8=0.040 radians/m, «=2.92><107* nepers/m, and the impedance of the half-wave dipole is

Z(k)=263.3+7126.3 ohms. (99)

The half-length of the antenna at f=6 Mc is h==/28=39.3 m.

Case [V. Antenna Buried in Salt. The measured properties of the salt at 6 Mec are
6="06.6 and c=1.34 X107* mho/m. It follows that 8=0.323 radians/m, «=9.85>x107% nepers/
m, and the impedance of the half-wave dipole is

Z(k)=40.3-+713.5 ohms. (100)

7 » should not be confused with »=1/u. »isretained as the symbol for collision frequency in order to agree with standard notation.
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Since

L ___4.86 m.

™ m
Bh=% h=55=50323

Case V. Antenna in “poor earth” for which =7 and ¢=10"% mho/m. At 6 Mec, 8=0.34
radians/m, and «=0.0697 nepers/m, and

Z(k)=178.47+711.66 ohms. (101)

It should be mentioned that in this case ah=ar/28=0.322. This value of «k is near the limit of
validity of the approximations introduced in the analysis and contained in the condition
ah <0.3.

Case VI. Antenna in a highly conducting medium. If the antenna is immersed in a
highly conducting medium, the formula (88) for the distribution of current does not apply
owing to the restriction ah <0.3. However, irrespective of the precise form of the distribution
of current along the antenna, the formula (89) for the impedance should approach the correct
limit, Z(k)—0, as o—>. When o/we is large compared with unity

p—iam (=) %% (102)

as ¢, f=a—>», but a/f=1. An examination of the ¥,, ¥, ¥., and ¢, functions shows that
they remain finite. Since f—ja appears in the denominator of (89), and all other functions
are well behaved, Z(k)—0 as ¢—w.

9. Conclusion

Although the present analysis has been applied specifically to an antenna that is a half
wavelength long when immersed in a conducting dielectrie, and the conductivity of the dielec-
tric has been limited to moderate values by the condition ah <0.3, the method is applicable to
other lengths and higher conductivities. A study of antennas for which o/ <0.3 but gh=7is in
progress. The electrically short antenna defined by gh<C1 is also under investigation.

Since the properties of a two-wire line immersed in a conducting dielectric are understood,
the extension of the present study to the folded dipole is readily accomplished with the method
of symmetrical components. Details are reserved for a subsequent paper.
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