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Expressions obtained earlier [1, 2] 3 for the calculation of diffraction due to conducting
obstacles with smooth cylindrical surfaces, are generalized to oblique incidence and to sur-
faces of conical shape. The derivation is based on a generalized concept of the Green's
function and on the use of corrective factors that take the same place as corrections intro-
duced by other authors into the theory of diffraction by apertures. The final expressions
for conical obstacles and oblique incidence are very similar to those for eylindrical obstacles.
The results are compared with scaie model measurements.

1. Introduction

Kirchhoff’s theory for the solution of diffraction problems can be generalized to be ap-
plicable to the case of scattering by cylindrical obstacles with smooth surfaces. In two recent
publications [1, 2] it has been shown that the predictions of this theory are in good agree-
ment with experiments. In addition, J. R. Wait and A. M. Conda [3] have derived numerical
results from a different theory which are also in agreement with our own experimental and
theoretical conclusions.

An object of the present paper is a further generalization of our investigations to conical
obstacles and oblique incidence. Another object is a more thorough justification of the theo-
retical procedure used previously [1].

2. Basic Theory

In figure 1, 7 represents a transmitter, 7% a receiver, and Z a perfectly conducting ob-
stacle of cylindri "11 shape between the two stations. Green’s theorem (1) can be used to
calculate the field £ at receiver 7.

o _JJ<( Y %f’:)d& (1)

The integration is extended over the entire plane Z separating the two stations, the
normal 7 points inwards, /27 is the radiation at the plane = and G is Green’s function. If
the field £” and Green’s function were rigorously known the field 7 could be rigorously cal-
culated from (1). Neither £’ nor G are known, but approximate values can be obtained by
the following reasoning.

Incident radiation travels directly from 7% to V. In addition, some radiation is reflected
at point S; of the obstacle and reaches point V. The sum of these two radiations is used as
L in eq (1).

Such a procedure obviously involves two approximations: (a) Strictly speaking the
radiation reflected from a curved surface cannot be calculated from geometrical optics. How-
ever, the curvature of the obstacle is assumed to be small enough so that geometrical optics
is a permissible approximation. (b) As 1s typical for Kirchhoff’s theory, the unperturbed
incident field is substituted for the true field in the plane of integration.

! Contribution from Research Laboratories, RCA Victor Company, Ltd., Montreal, Canada.
2 Present address: 59 Fuller Ave., P.O. B()\ 176, Webster, N.Y.
3 Figures in brackets indicate lhc literature references at the end of this paper.
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Turning next to the discussion of Green’s function, we recall that G is the field at 7}
when a unit source of radiation is located at V. When the effect of obstacles is neglected

g4

=", @

where 2, is the distance from V to T,, and k=2z/\ 1s the wave number. This basic form of
Green’s function is used for the solution of many simple diffraction problems.

The correct form of Green’s function must, however, satisfy the boundary conditions at
the obstacle Z [4 to 7]. In the case of plane obstacles the image of V is added as a virtual
source of radiation. In the present case, an approximate form of Green’s function is obtained
by adding to the expression of eq (2), the reflected radiation traveling from V via 8, to 7..
A necessary precondition for such a procedure is that geometrical optics is a sufficiently accurate
approximation for the calculation of the reflected radiation.

Another justification for the use of this approximation follows from the property of Green’s
function to be symmetrical in the coordinates of V and 7,. Placing a unit source of radiation
at T, and calculating its field at V is essentldlly the same problem as calculating the incident
field at V due to a source at 7;. Hence, it is reasonable to use the same method for the deter-
mination of £’ and @, thereby automatically satisfying the reciprocity theorem.

Summarizing the preceding considerations we state that

pﬂm (—jk[l(’;+r]]

= +p Dl\l W (3)
— R, o i Ajk[R;%-TZ]
G="g+» Diva = )

can be CYpocted to be useful zlppIO\lI‘ﬂ&thllS for the field in plane = and for Green’s function.
The meaning of the distances Ry, Ry, 11, . . . can be taken from figure 1. The symbols
Div, and Div, denote divergence factors [8] that take care of the loss of intensity when radia-
tion is reflected by a curved surface. The factor p is different for vertical and horizontal
polarization. 1t will be further discussed at the end of this section and in section 3.2(d).

il

T R}

Ficure 1.  Notation for diffraction by a cylindrical obstacle.

In applying equation (1) use will be made of the inequality

fer>1 ()
so that the derivatives of £’ and @ are
DE,_ . (,—]ARI —jk{R;+71] :
= I cos (Ryn)—jk p Div, —5—— R cos (ry,n) (6)
oG ., ey e~ KB 7ol ,
a_—]k —R, s (Ran)—jk p Div, Riin cos (ry,n). ()
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Substitution of (3), (4), (6), and (7) into (1), yields the sum of four terms, the first one being
exactly the same as when the obstacle is a conducting half plane. This term is called knife
edge term. It is characterized by the path of radiation 77V 7.

The other terms which are called halo terms, can be characterized in a similar manner by
the paths of radiation which are 708,V 1%, T\V S:T,, TS,V S, T,. 1t is seen that the treatment
of the problem is very similar to what is generally known as four-ray-theory [9] of a knife edge
obstacle over plane conducting ground. In that theory the factors p have different values for
parallel and perpendicular polarization. For a perfectly conducting plane earth,

P|= —1 (8)
p1=-1 (9)

Since geometrical optics has been used to calculate the field reflected by the obstacle it
would appear that the same values must be used for p in connection with the present theory.
However, a better approximation can be obtained based on the succeeding arguments.

As mentioned at the beginning of this section, a correct value for /£ would be obtained from
(1) if the correct field values of £ were known in plane Z. Instead the values of the incident
field are substituted for £’. In the analogous case of diffraction by a circular aperture, Braun-
bek [10] could improve the results by addmng, to the incident field, field values near the rim of
the aperture which he derived from Sommerfeld’s [11] electromagnetic theory of the diffraction
field near the straight edge of an infinite half-plane. The same approach has been used by H.
Levine [12] in his treatment of the same problem.

In the present case of scattering by a cylindrical obstacle a similar improvement can be
obtained when electromagnetic theory of scattering by a conducting eylinder is combined with
the observation that the main contributions to the integrals representing the halo terms are
supplied by rays that are almost grazing. [1].

From Fock’s [13] investigations it is known that, in the case of perpendicular polarization,
the electric field at the grazing point is very nearly 1.4 times the incident field, whereas straight
geometrical opties would yield a factor of two in agreement with (9). Hence, it is to be expected
that

p,=0.7 (10)

leads to a better agreement with experimental evidence than p, =1.0.

This reasoning is unsatisfactory only in one respect. It cannot be applied to the case of
parallel polarization because the total field at the surface of a perfect conductor is zero whether
it is calculated by geometrical optics or by electromagnetic theory. Hence, any finite value
could be chosen for pj. The only justification for setting

pH:_l. 0

is that it is the simplest assumption and that it leads to good agreement with experimental
results. However, a slightly smaller value than 1.0 might produce an even better agreement.

Strictly speaking p is not a constant but depends on the location of the point of the surface
where the reflection takes place. Thus, the incident field yielding the knife edge term would
also have to be multiplied by a similar factor p” since the strength of this field is also reduced
very near the top of the obstacle where, for perpendicular polarization, p’=p=0.7. Since the
zone of the plane of integration where p’#1 is narrow compared with the first Fresnel zone
the factor p’ can be set equal to unity for the calculation of the knife edge term. On the other
hand, the first ““Fresnel zone” in the calculation of the halo terms is so small that p can be set
equal to the constant value 0.7. It has been shown [14] that the agreement between theory
and experiment can be slightly improved by calculating the halo terms with a varying p factor.
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3. Detailed Theory

The general theory of the previous section may now be applied to generalize the earlier
results [1, 2] in two directions: (a) The mountain may have a top that is more appropriately
described by a cone. (b) Electromagnetic radiation is incident under an angle that may be
different from 90 degs.

An approximate description of the obstacle would be that of a cone with a fairly small
cone angle, with its axis more or less horizontal, and with its circular base approximately
vertical. The tip of the cone is, in general, far away froni the point where the radiation crosses
the obstacle (fig. 2).

The theory will be general enough to cover also another case ol great practical interest
(fig. 3). The base of the cone is essentially horizontal, its axis approximately vertical, and
the radiation is diffracted around the obstacle at two opposite sides. In this case the cone
angle is, in general, fairly large.

It may be mentioned that the picture of “creeping waves” is not commensurate with this
theory. Asis typical for Huygen’s Principle, all the rays from the source reaching the plane
of integration, either directly or after reflection, generate secondary radiation. The sum of
all these secondary wavelets at the receiver is the field /2 of eq (1). Hence, the question for
the path of radiation along the surface of the scatterer is not meaningful in this theory.

" PATHS OF"
RADIATION

TIP OF CONE

"PATH" OF RADIATION

SUMMIT
TIP OF CONE

CONE ANGLE

‘/TRANSMITTER

Fiaure 2. Diffraction by a conical obstacle where
radiation travels around one side of the cone.

/
!
I

TRANSMITTER

Freure 3.  Diffraction by a conical obstacle where
radiation can travel around both sides of the cone.

3.1. Knife Edge Term

The knife edge term corresponds to the “direct’” path of radiation (7,V T) and is obtained
by replacing the obstacle by a conducting half-plane. For the situation of figure 2, the resulting
obstacle is a simple, rectangular knife edge for which the solution is well known. The knife
edge obstacle for the case of figure 3, represents a plane obstacle of triangular shape. The
diffraction of electromagnetic waves by such an obstacle will be dealt with in the sequel.

Figure 4 represents a plane conducting obstacle of triangular shape as seen from the
transmitter 7. The straight line connecting transmitter 7" and receiver 7%, intersects the
obstacle at B. The obstacle is subdivided into five different areas whose effects are calculated
separately and by difterent methods.

Lines b and b’ are drawn, through B, parallel to the edges @ and @’ of the obstacle. They
include the angle ¢. Lines BC' and BC” are perpendicular to @ and a’ respectively. Finally
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Fraure 4. Subdivision of triangular region into five
different areas.

A and B are connected by a straight line. Temporarily it is assumed that 7'7% is perpendicular
to the plane of the obstacle. This simplifying assumption will be dropped later.

If there is no obstacle the total unobstructed field radiated from 7" towards 7% is well
known. The field intercepted by the obstacle can be calculated by means of Kirchhofl’s
formula and subtracted from the total field (Babinet’s Principle). For this purpose the obstacle
is subdivided into: (1) The triangular area, of infinite extent, bounded by b and b"; (2) the
two rectangular areas bounded by «, b, and ]f(, and by a’, b, and BC”; and (3) the two triangles
ABC and ABC".

The contribution of the triangular area bounded by & and b’ is ¢/27 of the total field.
This follows immediately from Kirchhoft’s formula. The total field without obstacle is given
by

k —JA(lm Ry)
Fiot: =y J J R — (cos 0,—cos 6,) p dp do (11)

where: the integration is extended over the entire plane, p, ¢ are cylindrical coordinates with
origin at B. As usual, 2, and R, are the distances from 7' to the element of integration and
from there to 75 6, and 6, are the angles of incidence. When a triangular obstacle bounded
by b and b’ is present, the upper limit of the first integral of eq (11) is (27—¢) instead of 2.
Since the integrand is independent of ¢, eq (12) is obtained.

B= [a()t al™ d) 1 totale (12)

The effect of the rectangular areas can be calculated by exactly the same method used
in the well known treatment of Fresnel diffraction by a hall plane. For normal incidence it
is found that the effect of the rectangular area bounded by the straight lines @, b, and BC,

1s given by
R CHIGEDEED) |
B =e e (G )| (O Vo, )98 (Vi a3)

where ' and S are Fresnel’s cosine and sine integrals, the meaning of ¢ is explained by figure 5,
and that of d,, by eq (18).

To obtain the “knife edge” term of the scattered field it is necessary to subtract, from the
right-hand side of eq (12), the expression (13), with a corresponding one for the other rectangular
area and expressions for the effect of the two finite triangular areas ABC and ABC’. Triangle
ABC may be treated as example. The angles of incidence can be considered constant when
the dimensions ¢ and s of the triangle (fig. 5) are small compared to the distance d; and d. of
the stations from point B. For perpendicular incidence, 6,=6,—7=0. The (negative) con-
tribution of the triangle is

E— gk j'[e,jk(l\eﬁz@)({d (14)

27['(/1({2|
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Ficure 5. Notation for evaluating contribution of
area A B C.
c
B

where,
(la:% dy dx. (15)
Making the substitution:
Rt R=d+- (14977e) (16)
with d=do=ds: (17)
2/d,,=1/d,+1/d, (18)

and integrating with respect to z, we obtain:

o ikd [ (h/ I: —jk dc—) <l+y2/62)].
— —_— —¢ m 1
By 2mde JO 149%/¢ s (19)

The integral splits up into the difference of two integrals. The second one is evaluated by the
stationary phase method yielding

— jkd ) (2 ) P— :
Ea=t" [cw_\‘m/,,z/zke (»2) (O(y2k]rd,, »e)—jS(\‘Qk/m’,,L.e)}] (20)

" 2mde

Minor changes take place when the plane of the obstacle is not perpendicular to the straight
connection 77T, For the succeeding derivations it is assumed that the decisive contribution
to the integrals in question are made by surface elements do whose distance p from B is small
compared to d; and d, so that the angle of incidence ¢ can be considered constant for the inte-
gration, { being the angle between 7’7, and the perpendicular of the plane of the obstacle.
With this assumption, the integrand of eq (11) can be written

o~ k(B +Ry)

f) R 3
2—pm, ¢ ¢do. (21)

The product cos ¢ de can be replaced by do’ where do’ is the surface element obtained by
projection of dg onto a plane perpendicular to 7'7%.

Figure 6 represents a plane through the stations 7, 7%, and through the element of inte-
gration de. The distance of do from B is p. Depending on the location of ds in the plane of

the obstacle, angle @ assumes a value between 7/2—¢ and 7/2+¢.  An elementary caleulation
vields

R+ R,=d,+d,+ (p?/d,,) sin® Q.
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Fiaure 6. Plane through station TT’ for calculation
of effect of oblique incidence on triangular obstacle.

Denoting the distance of d¢’ from B by p’=p sin @ we can replace (21) by

— jkd
9 ¢

—— ¢~ ike"?ldpdg’ 22
dyd, ’ (22)
This expression establishes the rule that a plane oblique obstacle must be projected onto a
perpendicular plane and that the diffraction field must be calculated as if the projection were
the obstacle.

3.2. Halo Terms

The halo terms represent the additional radiation due to the smooth surface of the obstacles
ather than the sharp edges of their plane substitutes. The following derivations will be
based more on the situation of figure 2, rather than figure 3, although the theory applies to
both cases.

If a. is the radius of curvature, it will be assumed that ke, >">1. This would exclude the
area near the tip of the cone which may be important in the case of figure 3. The halo terms
obtained for the cylindrical mountain in the earlier publications [1, 2 Jtend towards zero with
vanishing @, in agreement with experiment. Since this theory will lead to a similar result we
feel certain that it can be applied to any part of the cone, be it near its tip or far away from it,
although ka,> > 1 is a basis of its derivation.

Experimental evidence does not indicate the existence of a special contribution of the tip
of the cone of any appreciable amount. This is in agreement with the general experience that a
point singularity does not contribute appreciably to the far field.

It is understandable that the mathematical expression will be more involved for oblique
imncidence on a conical mountain than for normal incidence on a eylindrical mountain, the latter
being a special case of the former. The more important difference, however, is that the integral
over the mathematical plane which is typical of Huygen’s principle, reduces immediately to a
simple integral in the cylindrical case whereas the double integral must be treated much more
-arefully in the conical case.

The reason is that the situation of the point of stationary phase for the integration parallel
to the cylinder axis is self evident. For the conical obstacle and oblique incidence, the point of
stationary phase must be determined by a rather laborious calculation. This will be described
in several steps.

a. Geometrical Freliminaries

Following notations will be used: Point 0 is the tip of the cone; cone angle is 27; and trans-
mitter and receiver are located at points 7 and 7}, respectively.

Two tangential planes, one through 7' and another one through 7%, touch the cone in the
generatrices OU, and OU, where the exact location of points U/; and U, along the generatrices
will be determined later. The two tangential planes 770U, and 7,0U, intersect in a straight
line ON. The plane through the cone axis and through ON will be used as plane = of inte-
gration in the sense of Huygen’s principle. A third tangential plane is perpendicular to £ and
is used as base plane.
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Figure 7 shows a ground plan of stations and conical obstacle. This figure is obtained by
projection onto the base plane. The projections of points onto the base plane are marked by
brackets added to the notation of the corresponding points. The straight connection of points
(7)) and (7},) intersects the plane of integration in A so that OA is the generatrix that lies in the
base plane. The acute angle between (7,)A and the perpendicular to OA is called “angle of
incidence ¢ The lengths of 7, (7)) and 7,(T5,) are denoted h; and A, (fig. 8). They are taken
positive for points under the base plane.

A plane through A and perpendicular to the cone axis intersects the cone in a circle whose
center is M and whose radius is a. Points U/}, U,, and N are located in this plane.

[t is assumed that the distance d;=(T,)A and d,=(T,)A are large compared to a,

d,>>a; dy>>a. (23)

A right-handed rectangular coordinate system with origin in 0 is used. The positive z-axis
is 0A, the z-axis lies in the base plane, the y-axis in the plane of integration, OMAN.
Figure 8 shows an intersection with the plane MU, AU, which is perpendicular to the cone
axis.  We set
LAMU,= LAMU,=v, (24)

Another point on the circumference of the circle is denoted S; and,
LU MS,=V. (25)

A ray transmitted from 7' and incident at S; is reflected by the cone so that it intersects
the plane of integration, z=0, in V. Ray S,V seems to come from the image 77 of point 7.
Points 7 and T are symmetrical to the tangential plane through generatrix 0S,. (In general,
none of the points 7, 71, V lies in the plane of fig. 8.)

Any other ray transmitted from 7' and incident at one of the points of generatrix OS;, is
reflected as if it comes from 771 and intersects the plane of integration in a point of the straight
line OV

Generatrix OA will be called summit of the mountain. The radius of curvature of the
mountain at point A is obtained by putting a plane perpendicular to the summit through A,
which intersects the cone axis in the center of the osculating circle M’. Hence, the radius of
curvature in this cross section is 2z, tan r=a/cos 7. The radius of curvature in the cross section
of a plane through 7' AT, (which contains also M’) is

a,=a/(cos T cos {). (26)
=P
L = O
oFk
a -
o Z
<f7(T2) -
_ o easepme (@
\\
.
\ h,
\\\
\\
T2

|

Frcure 7.  Plan view of stations and conical
obstacle. Fiaure 8. View in plane perpendicular to cone axis.
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The angles of incidence occurring in eqs (6) and (7) can be approximated by ¢ or =+,
respectively. Substituting (3), (4), (6), and (7) into (1), we obtain

0
E:ijr {eotper+pea+ P2€12} (27)
where e, ¢, ¢, €15 are integrals characterized by the paths of radiation 7\V7Ty, T\S,\V' Ty, TV VS, T,

1.8, VS, T,. Being slowly varying functions the distances Ry, R+, Ry, Ry-+r, in the denomi-
nators of (3), (4), (6), and (7) can be approximated by d; and d,, respectively.

Hence,
(‘)'”:27:1)1%£ ffe—JklR1+R2] 1S (28)
6122((1’1%- fj'e*ik[1€{+r1+le?] S (287)
(/12:2:['17?2{ ffe‘f'“’*f*’l*”ﬁ*’ﬂ ds. (28"7)

The expression for ¢, is obtained from (287) by an exchange of subscripts 17 and “2”".
A g I
b. Determination of the point of stationary phase

In this subsection a series of calculations will be briefly deseribed which are required for
the evaluation of the integrals (28) and (28’7).  The integral for ¢, will be considered in partic-
ular.

Point V has been obtained by reflection ol radiation at point S, another point V” is obtained
by reflection at a slightly different point whose corresponding angle is ¢-dy instead of .

The double integral for the summation of the contribution of all the wavelets is carried
out in two steps, first a simple integral over a narrow triangular strip VOV’ which extends to
infinity beyond V and V7, followed by another simple integral over the different strips from
¢=0 up.

The integration over one strip is done by the stationary phase method. The point of
stationary phase is obtained by putting a plane through OV and 7, and folding it up by tilting
it about OV until it coincides with plane OVT;. By this operation point 7} is brought to 77.
The straight line 7 77 intersects OV at the point of stationary phase and the length of 77 77
determines the phase of the radiation arriving from 74 at 7% after reflection from the cone and
reradiation.

The details of the calculations shall not given here.*  They are simplified by the assumption
ol small scattering angles so that powers of higher than first order in ¥, are neglected. From
the corresponding calculations [1] for normal incidence on cylindrical mountains it is concluded
that powers up to the third in ¢ must be carried. Mixed terms in ¥, ¥* have been disregarded
as the numerical calculations for the cylinder [1] have shown that their effect on the result is
negligible.

c. Evaluation of the Integrals

The substitution (29) can be made in the exponent of eq (287),

Ri4ri+Ry=Dist (T, T3)+8 Dist (T, T5). (29)
It can be shown that *
nal
2 +r,+ Ry=Dist (T;T;k)+“:%? 522, (30)

4 For details, see: RCA Victor Research Rept. No. 7-100, 4.
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When corresponding substitutions are made in (28) and (28”/) the eqs (31), (32), and (33) are
obtained.
(’0 ¢
ffexp [-]k { Dist (VT }]ds (31)
"OS { f f Div (S)) exp |__J/c { ist (TlT*)+“°S Cs }]ds (32)

(os cos §

en=2 S5 f f DS DS ey [~]k {Dlst (TIT’*H—COS $ }]dS (33)

The integration of the factor of (32) that depends on &
where:

i

2k
i,
is achieved by the stationary phase method.

(I cosr 562 der [T XD (—j/4)
f \/chosg“ p( dm('OSSQBE)dEm k cos? ¢

Substituting this expression into (32) together with some added manipulations,

I =l 9550 1Y) [ T4, exp (g Dist (T{T1)lix en
where:
Dist (T11%)=d+2(ac/cos §)X*+5(a./cos §) ¥y X7, (35)
and

x= (cos { cos 7)¢.

Comparison of (34) and (35) with eqs (13b) and (14) through (17) of [1] yields immediately
the result that the first halo term is exactly the same in both cases if @ is replaced by a./cos¢
and ¥ by ¥

The third halo term represented by e, is calculated in a corresponding manner. As has
been pointed out [1] the angles ¢ on the two sides of the plane of integration are not, in general,
equal in magnitude. However, a mean value for ¢ is assumed to be sufficiently accurate.

It can be found that

Dist (T'173*)=d-+4(a./ cos O)X*--7 (a,] cos )X (36)

Again a comparison with eqs (21) and (22) of [1] shows that the third halo term is the same
if @ is replaced by a./cos¢ and ¢, by Y.
A more accurate calculation yields an additional term to the expression (36) for Dist
(T\Ty%),
[3 a;c)/<dm COS2§)] wsc X3-

d. Correction Factors

A last remark shall be made with respect to the correction factors pj and p, which were
discussed at the end of section 2. It has still to be shown that p,=-0.7 also for oblique
incidence.
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A convenient way makes use of formulas published by J. R. Wait [15, 16]. Wait studies
oblique incidence of a plane wave on a cylinder by means of a series expansion. Since he con-
siders the case of parallel polarization, the easiest way of using his equations is to consider the
perpendicular component of the magnetic vector Z75 for a cylinder of infinite permeability
which behaves like the electric vector for infinite conductivity. With Wait’s notations, from
Maxwell’s equations,

—kj n Hy—0E0(p$)—dE3/0Z.

Substituting from his eqs (3) and (6) for £ and Ej and setting ¢=n/2, p=a,

S RAON
== 2 7o)

H,? ) exp (—jkz cos 0+ jpt)

where o/, and H'? are the Bessel and Hankel functions in the usual notations, and his » is,
with our notations,

v=ka sin {
It follows that,
‘ol E,| Jn(v) ) l
I,.s‘j_,,_‘)‘ L1 H®(p) |-
! Ip‘ m,iz [I,,(')I(I‘) II, (1)’
Fock [13] has investigated the case {==/2 and ka>">1. He found a numerical value for

1 778 v . .. o g e 5 > Sy G
||/ Ey which is independent of . Hence, |[I13|/E;, is independent of » and, consequently, it is
also independent of ¢ when /2.

4. Experiment
4.1. Apparatus and Technique

Experimental measurements of power diffracted by smooth half-conical mountains have
been performed in the A-band frequency range using model techniques. The details of the
experimental arrangement have been discussed previously [1].

Two overlapping, perfectly conducting, conical mountains of 15° half-angle were used in
the investigations. The first was connected to a knife edge obstruction with a transition into
a 15° cone which extended to a ka of about 200. The second was a complete half-cone and
covered the range of ka=0to 400. The knife edge cone transition was used in order to provide
an automatic normalization of the received power as a function of effective radius of the cone
to the power diffracted by a knife-edge (ka=0) obstacle. Thus a continuous plot of diffracted
power for different ka values ranging from 0 to 330 was possible by moving the cones perpendicu-
lar to the plane joining a fixed transmitter-receiver location before end effect s became of conse-
quence. In all measurements the surface of the cone (and the knife edge) was either parallel
or perpendicular to the incident electric vector so that cross-polarization effects w ould not be
present.

4.2. Diffraction by Conical Mountains

The power behind a conducting conical mountain as function of ka.(k=2m/\, a,— effective
radius of the cone in the vertical plane containing both transmitter and receiver) for normally
incident ({=0) electromagnetic waves at the grazing angle is shown in ficure 9. A large
difference between the two polarizations exists with the vertically polarized field which increases
with radius of curvature being much stronger than the horizontally polarized field which de-
creases with radius of curvature (ka.). The measurements agree well with the expression for
power at grazing incidence derived earlier.

A complete family of measurements of power variation with £a,when the electromagnetic
energy is normally incident on a conical mountain for different receiver positions (i.e., different
scattering angles) is shown in figure 10a, for vertical polarization, and in figure 10b for hori-
zontal polarization.

The variation of power diffracted by a conical obstacle with scattering angle is shown in
figure 11.  As for a eylindrical mountain, the received power for vertical polarization increases
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Ficure 9. Variation of power behind a conical mountain al grazing incidence with radius of curvature of the
obstacle in the vertical plane containing the transmitting and receiving terminals. (d;==150\, do=113\, ¢ ,—0°,

A=1.252 cm.)
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POWER RELATIVE TO KNIFE EDGE , db

I
@®

|
N}

A
>

|
N
o

=24

—98

vertical plane containing the transmitling and receiving terminals.

a, vertical polarization and b, horizontal polarization.

— — VERTICAL POLARIZATION
Kag =0
\ —=-— HORIZONTAL POLARIZATION

3 Freure 11.  Variation of power behind a conical moun-
tain with scattering angle as a function of radius of
curvature. (d;==150\, dy=113\, ¢ .~y COS 7 COS{;
g a—ajcos T cos {; T =15°, =0°.)

Theoretical points are for ka .=239.

0 4 8 12 16 20
SCATTERING ANGLE 25 DEGREES

24

328



with ka, while the reverse is true for horizontal polarization. In addition, the slope of the
power variation with scattering (diffraction) angle becomes steeper with increasing curvature
for horizontal polarization and remains essentially the same as for a knife edge in the case
of vertical polarization. The agreement with theory appears satisfactory.

The power distribution behind a conical mountain for /ka,=327 is shown in figure 12.
These should be compared to the power variation behind a knife edge obstacle [1].  Calculations
of{the power for grazing incidence are shown and agree well with the measurements.
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Ficure 12.  Power distribution behind a conical mountain.
(k a,~=327, d;=150\, A=1.252 cm.)
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