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Impedance Characteristics of a Uniform Current Loop
Having a Spherical Core
Saburo Adachi'’

(November 12, 1959)

The radiation impedance is derived by the electromotive force method in a convenient
form as the sum of the self-radiation impedance of a loop in the free space and an additional
term due to the reaction between the loop and the sphere which is proportional to the well-
known expansion coefficient of a magnetic-type scattered wave from a sphere in an incident,

plane wave.

The first antiresonance frequency has been given in the form of a universal

curve for a very small uniform current loop with core of an arbitrary composition of u, and
€, subject to the condition that the refraction coefficient A\’f\/yses is extremely large. Some
numerical calculations show that high -u core is desirable for a comparatively lower frequency
region, and high -e core is rather desirable in an antiresonance region.

1. Introduction

By use of a sufficiently high refractive index,
large scattering or absorption cross sections may be
obtained from spheres small in terms of wavelength.
For example, it has been shown that the echoing
area can be increased to approximately three-quarters
of a square wavelength for resonance of the electric
or magnetic dipole type, and the required index of
refraction can be given as a function of sphere
size.

In a small loop antenna the ohmic resistance
normally exceeds the radiation resistance. An in-
crease in radiation resistance is highly desirable to
improve the radiation efficiency. It can be expected
that a high induced voltage, and therefore a high-
-adiation resistance, can be obtained by encircling
a small resonant sphere by such a loop. Of course,
it is desired that the radiation reactance be as low
as possible. The ratio of the radiation resistance
to the radiation reactance is also an important
criterion.

Very recently, the most general theoretical analy-
sis for a thin loop with a spherical core has been given
by Herman [1]*> and Cruzan [2]. In these analyses,
however, it is not easy to derive general relationships
between the input impedance and the medium of the
spherical core because of the difficulties of the
numerical computations.

The purpose of the present paper is to correlate
the medium constants of the core with the impedance
characteristics under the assumption of a uniform
current distribution.? In order to derive the radia-
tion impedance, a conventional emf method is applied
to the electromagnetic field solution of a uniform loop
current in the presence of a sphere which has been

1 Antenna Laboratory, Department of Electrical Engineering, The Ohio
State University, Columbus 10; Ohio; while author was on leave of absence from
Tohoku University, Sendai, Japan (invited paper).

2 Figures in brackets indicate the literature references at the end of this paper.

3 The assumption of constancy of current in the loop requires that the loop
be fed at a number of points around the loop. In view of the large magnitude
of Nkoa a localized generator would produce a highly nonuniform current.

treated independently by Tai [3] and Wait [4].
The radiation impedance is given as the sum of the
self-radiation impedance of the air loop and an addi-
tional term due to the reaction between the loop
and the sphere which is proportional to the well-
known expansion coeflicient of the magnetic-type
wave scattered from a sphere in an incident plane
wave.

2. Impedance Characteristics of a Uniform
Current Loop Having a Spherical Core
The general solution for the electromagnetic field

due to a uniform current loop in the presence of a

sphere has been given by C. T. Tai. Geometrical

configurations are illustrated in ficure 1. The radii
of the sphere and the loop are the same and are

P(r,0,4)

Uniform Current Loop

Spherical Core

Figure 1. Uniform current loop having a spherical core.

indicated by a; therefore, the wire of the loop is
partially immersed into the core. Wavenumbers of
the free space and the medium of the sphere are
indicated by k, and by o= Nko(N=n/e.u;), Tespec-
tively. As the time dependence, ¢’“' is used. The
primary fields due to the uniform loop current, 7, are
expressed by the following equations:
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The vector wave functions Meo, and Neon are the
same With 7., and 7ie, defined in the text by
Stratton [5]. The fields reflected to the external
region and the field transmitted into the sphere are,
respectively, given by
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It is very interesting to note that the coeflicient R,
is exactly the same as the coefficient associated with
the magnetic-type wave scattered by a sphere in an
incident plane wave. The coefficients R, and T,
express the effect of the spherical core on the per-
formance of the loop antenna. Neither the electric
field nor the magnetic field (the surface current) are
uniform around the wire cross section. If, however,
the wire is sufficiently thin, it is reasonable to assume

the electric field at the point @ (on the surface of
the sphere, and at a distance b, the radius of the
wire, from the current filament which is located at
the equator of the sphere) as the average value of
the electric field around the wire cross section;
namely,

e i )%
P=—2ra(E{+E}) ", L(H A

:—21ra1*(E§,+E£)§:9”0 (8)
where
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Thus, the radiation impedance obtained from the
emf method is expressed by

])
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In the above equations, Z, represents the radiation
impedance of a loop without a spherical core, Z;
represents the variation of the radiation impedance
due to the reaction between the spherical core and
the loop, and 7 is the intrinsic impedance of free
space. The imaginary part of series (10) does not
converge rapidly enough when 6, approaches /2,
or the thickness of the wire decreases to zero. By
using the asymptotic expression of Legendre and
Bessel functions, the radiation reactance X, in (10)
can be transformed into the following alternative
equations:

Xo—mx{ln b 4

5 <Z 1 [2n+1
n=1,371-1

P(0)P;, (cos o), (a) ()

—

+1%x{2 o % (n+1)+g sin% (n-+1) }] (12)

The detailed derivation of the above equation is
given in reference [6]. For a small loop, i.e., ak1,
the radiation impedance is approximated by retaining
the term n—=1 only; namely,
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As for the constant £2,, many discussions have been
made relating to the problem of the scattering of
a plane wave by a sphere. These results can be
directly applied to the present problem. For the
lossy spherical core, i.e., the complex values of N,
it is convenient for the computation to transform
eq (11) by using the logarithmic derivative functions
[7] with respect to spherical Bessel functions into the
following form:

2n-+1

Zi=—met 23 0 n(n—+1)

n=1M

P1(0) Py (cos 6o) ju(a) hy? ()

7o(@)— N2 5. (Na)
X £ (14)
M@-N% o (Na)

where p,(a) and o,(a) are the logarithmic derivative
functions with respect to spherical Hankel and
Bessel functions, respectively, i.e.,

palr) =0 Tn 1212 ()]

7ue) =0 I [ ). (15)
dr

The function o,(Na) of any order with complex

arguments Na can be computed by the recurrence

formula of the logarithmic derivative functions.
Consider the maximum value of /2, and its condi-

tion. A discussion has been given for special cases
of pure dielectric (u,=1) or magnetic (e,=1)

materials by E. M. Kennaugh. General cases for
an arbitrary composition of e, and u, can be dis-
cussed in a similar way. When a sphere is sufficiently
small in terms of wavelength, a<1, only the term
R, is significant. It is concluded that the maximum
absolute value of 12, is —1 at the condition of

ijl(f\ a) [amy (@)]" —my (@) [Nejs (Ne)]=0. (16)

For a<1, the above equation is approximately
rewritten in the following transcendental equation:
Na
= —cot Na. 17
NaTp—1 cot Na (17)

This equation is graphically solved with respect to
Nea. Figure 2 shows Na/m as a function of u,.  Since
a is assumed to be very small compared to unity,
N is necessarily very large, i.e., Yu.e.>1. This
value gives the first antiresonance frequency of a
small uniform-current loop with a lossless spherical
core having arbitrary values e, and u,. It should
be noted here that the above discussion can be
applied to the problem of the plane wave scattering

143— - — ———

Na /T

LA

d

3 4 5678910 15 20 30 40 50 70 100 150 200

Hs

Fraure 2. Antiresonance frequency of a uniform current loop
having a sphm ical core wzlh arbitrary constants . and e,

where N a=1/u.es koa = ki

by a small sphere; namely, the curve of figure 2
gives the magnetic-type resonance frequency of the
%pholo and also gives the electric-type resonance
frequency by 101)1:1( g u, by e

The maximum radiation resistance at the anti-
resonance point is given by
R R R 3 - 2~.‘§ 1
1= Ry+ Ry=- ma’n, (« oy (k). (18)

The maximum resistance increases in the order of
a*with the decrease of «. It should be noted that
in an actual one-point-fed loop, unless infinitesimally
small, the frequency of its antiresonance deviates
from that predicted by figure 2 due to the non-
uniform current distribution. This situation is
llustrated in table 1

The diameter of the antenna in terms of a wave-
length in the medium at an antiresonance is found to
vary between 0.159 and 1.43 by the constants of a
medium. The results in figure 2 give the limiting
case of an infinitesimally small loop, i.e., ues—> .
Similarly, the expression for Z in eq (9) is correct only
for an infinitesimally small loop, if it is fed at one
point. The radiation impedance Z has been calcu-
lated for the two cases e,=100, u,=1, and u,=100,
e;=1. For simplicity, the core is assumed to be loss-
less. Figure 3 and 4 show the radiation resistances
and the radiaticn reactances. It must be noted here
also, as mentioned before, that these figures do not
give quantitative results for a one-point-fed loop be-

Tasre 1. Relation between medium of core and dimensions at
antiresonance
Medium of core @ 2a
0 5 ST 0.159\
535 A96M
(1.00~1.43) ________ ~|(1.00~1.43)\
Vs €s

*From ref [1] by Julius Herman, X is the wavelength in the medium of the core.
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Fiaure 3. Radiation resistances of uniform current loops having
air, dielectric, and magnetic cores (N=1, 10; a/b=60).
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F1cure 4. Radiation reactances of uniform current loops having
air, dielectric, and magnetic cores (N=1, 10; a/b=60.)

cause of its nonuniform current. As for the case of
e;s=—100, the antiresonance occurs at a==/10, and
the curves approach asymptotically to those of an
air loop with the decrease of p. The p-core is effective
in order to increase the radiation resistance in the
lower frequency region. The radiation impedance
for an arbitrary composition of u and e ought to show
a behavior intermediate between these two extreme
cases. In figure 5 the ratios of the radiation resist-
ances to the radiation reactances are plotted. From
these figures it can be concluded that high-u core is
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Ficure 5. Ratics of radiation resistances to radiation reac-
tances of uniform current loops having air, dielectric, and
magnetic cores (N=1, 10; a/b=60).

desirable for a comparatively low-frequency region,
and high-e core is rather desirable in order to use it
in a antiresonant frequency region. This can be
said also from the viewpoint of medium losses, that
is, losses of usual magnetic materials increase more
rapidly with the frequency than do the losses of
dielectric materials.

3. Conclusion

The impedance characteristics of a uniform current
loop (see footnote 3) with a spherical core of an
arbitrary composition of u and e have been theoreti-
cally investigated. The radiation impedance is de-
rived by the emf method in a convenient form as the
sum of the self-radiation impedance of an air loop
and an additional term due to the reaction between
the loop and the sphere which is proportional to the
well-known expansion coeflicient of a magnetic-type
scattered wave from a sphere in an incident plane
wave. The first antiresonance frequency has been
given in the form of a universal curve for a very small
uniform current loop with a core of an arbitrary com-
position of u, and e, subject to the condition that the

refraction coefficient N=+/use, is extremely large.
It should be noted that the above results can be
directly applied to the first magnetic-type resonance
frequency of a sphere in an incident plane wave. To
show quantitative impedance characteristics of a
loop with an arbitrary composite core, the radiation
impedances for two cases, namely e,=100, u,=1,
and u;=100, e,=1, have been calculated and com-
pared with an air loop. It is concluded that high-u
core is desirable for a comparatively lower frequency
region, and high-e¢ core is rather desirable in an anti-
resonance frequency region.
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The author thanks E. M. Kennaugh for suggesting
this investigation as well as for guidance in the course
of the work, and also Dr. R. G. Kouyoumjian for his
valuable discussions.
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The effect of multipath distortion on the choice ¢f
operating frequencies for high-frequency communi-
cation circuits, D. K. Bailey, IRE Trans. Ant. Prop.
AP-1, 397 (1959).

Harmful multipath distortion on high-frequency facsimile
services and telegraphic services operating at high speeds
occurs when the received signal is composed of two or more
components arriving by different modes over the same great-
circle path with comparable intensities, but having travel
times which differ by an amount equal to an appreciable frac-
tion of the duration of a signal element. The dependence of
multipath distortion on the relationship of the operating fre-
quency to the MUF is discussed and a new term, the multi-
path reduction factor (MRF), is introduced which permits
calculation in terms of the MUF of the lowest frequency
which can be used to provide a specified measure of protection
against multipath distortion. The MRF has a marked path-
length dependence and is calculated as a function of path
length for representative values of the other parameters
involved by making use of an ionospheric model. It is then
shown how the MRF can be used in connection with world-
wide MUF prediction material to determine the minimum
number of frequencies which must be assigned to a high-fre-
quency communication service of continuous availability
operating at high speed. Some comparisons with observa-
tions are discussed, and finally conclusions are drawn con-
cerning manner of operation and choice of operating fre-
quencies to reduce or to eliminate harmful multipath distor-
tion.

Reception of space diversity transmitters—Observa-
tions over long-distance path to evaluate the useful-
ness of the system, J. W. Koch, Wireless World 65,
512 (1959).

The British Broadcasting Corporation recently provided a
series of transmissions to test the effectiveness of transmitter
space-diversity on reception at distant points. Both very
widely-spaced and relatively closely-spaced transmitters
were used in the tests. The transmissions were at a fre-
quency of 9,510 ke/s, directed towards the east coast of the
United States. Transmitting conditions were switched at
intervals of approximately fifteen minutes during the testing
period each day.

Observations of the received signals were made at the National
Bureau of Standards Laboratories in Boulder, Colorado, from
November 3, 1958 to November 14, 1958. The recordings
obtained during these observations have been analyzed for
fading characteristics and intelligibility, and the results of
the analysis are given in this article.

Mismatch errors in cascade-connected variable
attenuators, GG. E. Shafer and A. Y. Rumfelt, /RE
Trans. Microw. Theory Tech. MMT-9, /7 (1959).

The treatment of mismatch errors is extended to cover
variable attenuators cascade-connected in a system which is
not free from reflections. The method of analysis is applica-
ble to any number of cascaded attenuators, but only the
analysis of two and three variable attenuators in cascade is
presented. Graphs are given to aid in estimating the limits
of mismateh error.

In an example, which is considered representative of rigid
rectangular waveguide systems, the limits of error are: for
two attenuators in cascade, 0.19 db in a 3-db measurement,
and 0.17 db in a 40-db measurement; and for three attenuators
in cascade, 0.25 db in a 40-db measurement, and 0.23 db in
a 75-db measurement.

Use of Chebychev polynomials in thin film computa-
tions, K. D. Mielenz, J. Research NBS 63A, No. 3,
297 (1959).

From Herpin’s expression for the mth power of a multilayer
matrix, very simple closed formulas are derived for the
matrices and optical constants of any multilayer with a
periodic structure.

According to Epstein’s theorem, any symmetrical multilayer
is equivalent to a fictitious monolayer. A simple expression
for the equivalent index and thickness of this monolayer is
deduced for the case of a periodic and symmetrical sequence
of equally thick films.

As compared to any other method of numerical computation,
the suggested formulation provides a considerable saving of
time and work. In a numerical example, this saving amounts
to about 80 percent.

Recent experimental evidence favouring the pK,(p)
correlation function for describing the turbulence
of refractivity in the troposphere and stratosphere,
K. A. Norton, J. Atmospheric and Terrest. Phys.,
15, 206 (1959).

Experimental evidence of three different kinds is given which
shows that the variations of the refractive index in space at a
fixed time may be described with a useful degree of accuracy
by the correlation function pK;(p) where K; is the modified
Bessel funetion of the second kind and p=rlyis a normalized
distance between two points in the atmosphere. The three
kinds of evidence are (a) direct measurements of the varia-
tions of » with time at a fixed location as made with a re-
fractometer, (b) measurements of the variations with time of
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