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Analytical relationships are developed which permit calcul ation of the power in t he load 
impedance of a n electric probe, symmetrically located within an imperfectly conducting 
cylind er of small radius compared to th e wavelength, in terms of t he electric fi eld incid ent 
upon t he cylind er. 

1. Introduction 

The problem is to determine the power in the load 
impedance at the center of a shor t dipole receiving 
antenna that is locrtted within an imperfectly con­
ducting shield of cylindrical sh ape and finite length 
in terms of rt known electric field outside the com­
pletely closed shield. It is assumed that t lle mdius 
of the shicld and length of the probe are small frac­
t ions of the wavelength. The solu tion consists of 
the successive determination of the following : 

(a) The ratio of th e electric field inside tN the neld 
on the outside surface of thc hield . 

(b) Thc ratio of the electric field on the outside 
surfaee of the hollow cylinder to the incident electric 
field. 

(c) The effective length a nd the driving-point 
impedance of the cen ter-Ioaded dipole inside the 
shield. 

(d ) The powcr in the load impedance of th e dipole 
in terms of the elec tric field within the cylindrical 
shi eld. 

2. Ratio of the Electric Field Inside an Im­
perfectly Conducting Shield to the Field 
on the Outside Surface [1] 4 

Figure 1 shows a tube with hemisph erical end 
caps. Its inner radius is ai, i ts outer radius a2, and 
its axial length 2l. The m etal annulus is region 1, 
the spaces outside and inside the tube are regions 
2 and 3, respectively. L et the axis of the cylindrical 
shield coincide with the z axis of a system of cylin­
drical coordinates r, 8, and z. If the length of the 
tube is at least 10 times i ts diameter and a2 < < A, it 
is a satisfactory approximation to assume th e trans­
verse distribution of the axial electric field at rtny 
cross section of the cylinder not too near its ends to 
be independent of its axial distribution. The field 

1 This paper originally appeared as Sandia Corporation T echnical ]\[cmoran­
dum No. 457- 58 (14) dated December 5, 1958. 

' M embcr of the Scientific Stat!' of the Sandi a Corpora tion, Sandi a Base, 
Al buqurrQ uo, New M exico. 

3 Consul tant to thc Sandia Corporation and Gordon M cKay Professor of 
Applied P hysics, IIarvard University. 

• Figures in bracke ts indicate the li terature references at the end of this paper. 

outside th e cylinder is assumed to be directed 
parallel to its axis, i.e., in t he z-directio n. 

The governing wave equation for th e electricneld 
E = zEz in a homogeneous region with conductivity 
;1> > WEo, dielectric constant EI = EO, rt nd permcability 
J.i.ll 

(1) 

A time dependence or the form exp(jwt) is assumed 
where w= 27rf and} is the frequency. 

Owing to rotational symmetry rtnd the assumed 
independence of the transverse a nd axial di tribu· 
tions, the equation for thc transvcrse distribu tion 
of E z is 

02E z(r) +~ oE z(r) +7.2 E (') - 0 
2 r 01' em z 1 - , 

01' 

which h as the general soIl! t ion 

where 

REGION 2 
(AIR) 

k - (1-') /WIY I J.i. 1 
m- J -V 2 ' 

Figu1'e 1. C1'OSS section of hollow conductor. 

(2) 

(3) 

(4) 

REGION I 
(METAL) 
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and J o(x) and No(x) are B essel functions of the first 
and second kind. In region 3 the free space wave 
equation, 

appli es; Jio= 4 7r X lO - 7h/m; fo= 8.85 X I0 - l:tLm. 
The solution of (5) that remains finite at 1'= 0 is 

where 

(5) 

(6) 

(7) 

Now, if (k Sal )2< < 1, J o(Te s1') ""'1, and E z(1' ) ""' Aa= const 
(O ~r~al)' It follows that within the cylindrical 
sh ell 

oEz(r) =0 
or . (8) 

The Maxwell equation 

1 E oEz . B cur 0 = - - =-JW 0 
- or 

(9) 

when combined with (8) leads to th e conclusion that 

B o(r) = 0 (10) 

Since th e B -vec tor satisfies the boundary condition 

(11 ) 

at r = al, i t follows with (8), (9), and (11 ) that 

. B ( )_[ OEZl(r) ] _ o JW 01 a l - or - (12) 

With (12), th e constant Bl may be evaluated in terms 
of Al from (3) . The r esult is 

(13) 

The substitution of (13 ) in (3) and its evaluation 
successively a t rand r= az leads directly to 

J o(k",1')NI (kmal) -No (km1') J l (kmal) 
J o(kma2)N l (kmal) - No (lema2) J l (lemal) 

Finally, when r = al 

J o (lemal) Nl (lemal) - No (kmal) J l (Temal) 
J o (kma2) Nl (lemal) - No (lemaz) J l (kmal) , 

(15) 

which is th e desired complex ratio of the field inside 
the imperfectly conducting hollow cylinder to th e 
field on its outside surface. 

In th e important sp ecial case of large arguments 
defined by 5 

(16) 

it is possible to use the well known asymptotic for~s 
cf the B essel functions to simplify (15). The result IS 

(17) 

With (4) and standard formulas for the cosine with 
a complex argument, (17) b ecomes 

and its magnitude is 

where 

IE z(a l ) I 
IE z (a2) I (19) 

(20) 

Note that (18) and (19) are valid only when (1 6) is 
satisfied. 

3. Relation Between the Field Incident Upon 
an Imperfectly Conducting Hollow Cylin­
der and the Field on its Outside Surface 

The volume density of curren t iz(r) in th e conduct­
ing tube (al ~r ~a2) is r elated to th e electric field 
E z(r ) by the constitu tive relation 

(21) 

It follows th at 

(22) 

The total axial current 1 (0) at the center (z= O) of 
the cylinder is given by the formula 

(23) 

wher e i z(r) is th e transverse distribution of the cur­
rent density across the cen ter of th e cylinder. The 
substitution of (22) with (14) in (23) and the subse­
quent integration gives the following expression for 

, At 15 k c an aluminum cylinder must be at least 0.447 em in radius; an iron 
shield could be sma ller. 
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the current density near the outer surface in terms of 
the total current: 

The corresponding asymptotic formula for a1 ,,!WjJ.l(Jl 

2:: lOis 

(25) 

so that with (2 1) at r = a2 

(26) 

This expression relates the el~ctric fiel~ on the out­
side surface of the hollow cylmder haHw-ay between 
its ends to the total current 1 (0) traversing this 
cross section of the tube. 

The axial distribution l (z) of the current in the 
cylinder, in particular, its value .1(0) at the. cen~er, 
is known from antenna theory SInce the cyhndncal 
shield is, in effect, a receiving ant~nna with~ut ~oad 
(refer to fig. 2). The current at ItS center lS gIven 
by [2] 

1 (0) _ Voc_ 2leE~ 
- Z in - Z in ' 

(27) 

where Voc is the open-circuit voltage given b:f the 
product of the effective length 2!e of ~he cyhnder 
multiplied by the i?cident t.aI?gentH~lly .dlrected elec­
tric field E i. Z -n IS the dnvmg-poll1t Impedance of 
a symmetrical ~enter-driven an~enna with dim~n­
sions identical to those of the shlCld. The effectIve 
length 2lc of an electrically short antenna (ksl~ 0 .5) 
is given approximately by [3] 

(28) 

where l is the half-length of the shield and k s= 27rI '/I.. 
The impedance of a perfectly conducting short 

antenna [3] for which k sl~0.5 is given by the formula 
[4] 

Zr • TJ 
o~-J 27rksl 

{ ( . (k ,l) 3 ) } I 
X (Q-2-21n2) 1- J 3(Q- 2- 21n2) olms, (29) 

where 

TJ =~=1207r' (30) 
EO 

and 

Q=2ln(!~} (3 1) 

E 

Figure 2. Electric probe symmetrically oriented along the axis of 
an imperfectly conducting cylinder. 

The input impedance of the imperfectly conducting 
short dipole is approximately. 

(32) 

where Rl is the ohmic loss resistance referred to the 
input terminals. . 

Rl may be evaluated by notll1g that the curre~t 
distribution along an electrically short antenna IS 
approximately triangular in shape. Hence, the aver­
agec urrent along the structure is l ;v=iJ2(O). The 
olmlic resistance of the tube of length 2l has been 
given by King [5]. It is 

Rt= lkm ( /cosh 2'Y+ cos 21') cos (fr- fc+ ~)' (33) 
7l'a'2(J 1 -y cosh 21'- cos 21' 4 

where 

and 

tan fr= - tanh I' tan I' 

tftnh I' 
tanfc=-t-­-an I' 

(34) 

(35) 

provided al " fW/-Ll(JI2::10. I' is defin?d by (20). The 
power lost in heating the antenna IS 
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Hence, 

(37) 

Accordingly, 

Z . T/ 
in""-J~k -Z 

~7r s 

X { (Q-2-21n2) (l -j 3(Q~~~2In2))} + ~t. (38) 

The substitution of (27) in (26) gives 

(39) 

Thus, if the incident field E; in the vicinity of the 
cylinder is known, (39) may be used to find the field 
E z(a2) on the outside surface. The field within the 
cylinder may then be calculated from (18). 

4. Effective Height and Driving-Point Im­
pedance of a Short Electric Dipole in an 
Imperfectly Conducting Cylinder 

To determine the behavior of a center-loaded 
electric dipole of half-length h and radius a symmet­
rically located along the axis of an imperfectly con­
ducting cylinder requires not only a knowledge of 
the electric field inside the cylinder in terms of the 
incident electric field but also the effective length 
and driving-point impedance of the probe. 

The effective length of a probe encased within an 
imperfectly conducting cylinder is the same as its 
effective length when isolated. The effective length 
is defined in terms of the field maintained along the 
probe by all currents other than those in the probe 
itself. This is precisely the field E Z(a2) maintained 
in the cylinder by the distant signal source and the 
current in the imperfectly conducting shield. (It is 
to be remembered that the field in the interior of the 
tube is uniform.) The only approximation involved 
is the assumption that the current in the probe does 
not react on currents in the shield to change them 
significantly. The required effective length 2h. may 
be calculated from (28) (or the formula in footnote 3) 
provided h is written for Z throughout (h is the half­
length of the electric probe). 

The driving-point impedance of the electric probe 
encased in the imperfectly conducting cylinder lies 
between the impedance of an identical unshielded 
probe and the impedance of two imperfectly con­
ducting sections of coaxial transmission-line in series. 
These sections are open-circuited, and have a length 
equal to the half-length h of the probe. Capacitive 
end effects may be determined but are probably 
small enough to neglect. In terms of the electro­
magnetic field that would be set up by the probe 
antenna if it. were used for transmission, three situa­
tions must be considered: 

(a) When the probe is isolated, i.e., is outside the 
metal cylinder, the distant field is due entirely to 
the currents in the antenna. 

(b) When the probe is in a perfectly conducting 
cylinder, the field maintained at outside points by 
the currents in the antenna is exactly cancelled by 
the field set up by the currents in the shield. 

(c) When the probe is in an imperfectly conducting 
cylinder, currents are induced in the shield which 
maintain a field that partially cancels the field of the 
probe, but this cancellation is not complete. 

Thus the current in the probe can be separated into 
two parts. One part, h, is equal and opposite to 
the current in the shield; it is a transmission-line cur­
rent. The other part, lA, is the true antenna current. 
The total current It in the unloaded probe is 

(40) 

The voltage driving the probe is 

Vo= ItZo= IAZ,t+ ILZL= It { ZL-t (ZL-ZA) } , 

(41) 

where Zo is the impedance of the probe when encased 
in the imperfectly conducting cylinder; ZL is the im­
pedance of two perfectly conducting open-circuited 
sections of coaxial line that are of equal length and 
connected in series. ZL may be computed from the 
formula 

where h is the half-length of the probe and a is its 
radius; and ZA is the self-impedance of the probe­
when isolated . It is given by (32) or by (29) when 
losses are negligible. 

From (41), it follows that 

Zo= i: = ZL- ~: (ZL-ZA)· (43) 

The current I A is the current in the probe required to 
maintain the field E Z(a2) just outside the shield, if 
the shield were absent. It is the current required 
to maintain the field E;(a t ) just inside the shield. 
Since the thickness of the shield is small compared 
with any radial distance over which Ez could vary 
significantly in amplitude, it follows that 

I A · E z (a2) 
It '" E; (a l )· 

(44) 

This complex ratio isappr oximately EZ(al) /E;, ob­
tained when (39) is combined with (17). The sub­
stitution of (44) in (43) gives 

ZO= ZL- E z, (a2) {ZL- ZA }· 
E~ (a l ) 

(45) 
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This is the final formula for the driving-point im­
pedance of an electric probe symmetrically situated 
within an imperfectly conducting cylinder. 

It is important to observe that the ratio E ,(az)/ 
E ;(at ) in (45 ) is small, since when the probe is driven 
E , (a2), the field on the ou tside of the shield is small, 
while the field on the inside of the shield, E ;(a t ), is 
large. On the other hand in the r eceiving case 
E ; is large and E ,(a,) is small, thus 

{ E Z (a2 ) } = { E ,(a, ) } . 
E ,(at ) E , (a2) 

(46) 

Driven Probe Receiving Probe 

Since the ratio E ,(az) /E ;(a, ) is smn]l when the dipole 
is driv en and the cylind er is a modera tely good con­
du ctor, it follows that 

(47) 

On the other hand when the ratio E ,(az) /E ;(at ) 
-71, as when the cyli ndrical shield is nonexisten t, 

(48) 

These relations for limiting values serve as checks 
on (45) . 

The equivalent receiving circuit of the probe con­
sists of a generator with an emf equal to 2heE ,(aJ ) 
driving a circuit consisting of Zo in series with the 
load impedance. The power in the load is r eadily 
calcula ted in terms of the fi eld E ,(aJ )' Thus 

2heE ,(at) 
(49) 

The irn pedance of a n electric probe is essen tially 
a capacitive r eactance since the r esistive component 
is only a fraction of an ohm. Maximum power is 
obtained in a given load when the probe is tun ed to 
resonance by m eans of series inductors. If this is 
done, the full open-circuit, V oc appears across the 
load, if all losses are neglected. In this case Zo 
does not appear in the equivalent circuit of the probe, 
and (45) is not needed. 

5. Conclusion 

A method has been presented for calculating the 
power in the load of an electric probe encased in a 
partially conducting cylindrical shield. Th e analysis 
has been carried out for sinusoidal signals . If the 
signal source emits r epetitive pulses, it is necessary 
to make a Fourier analysis of the incoming wave and 

solve the problem for the fundamental and several 
harmonic frequencies . The total power in the load 
impedance is then the sum of the powers absorbed at 
each frequency considered. Again it is assumed 
that the circuit dimensions are small in terms of th e 
shortest wavelength of the signal component that 
contribu tes significantly to the power in the load. 

The field incident upon the cylindrical shield need 
not be linearly polarized, as assumed in the analysis. 
An elliptically polarized electric field may be decom­
posed into two components which are fixed in space 
and which differ in phase, magnitude, and direction . 
In particular, the field may b e r esolved into two 
mutually perpendicular components which r emain 
stationary in space. One of th ese components may 
be chosen parallel to the cylindrical shield, and the 
other p erpendicular to it. Both vary periodically 
in time, but the latter contributes nothing to the 
induced voltage; its m agnitude and phasc are of no 
significance, and it may b e ignored . Accordingly, 
maximum power is delivered to the load impedance 
of the probe when the hollow cylinder is oriented in 
space so that the m ajor axis of the ellip tical contour 
or the electric field is directed parallel to the axis of 
the cylindrical shield . 
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