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Analytical relationships are developed which permit calculation of the power in the load
impedance of an electric probe, symmetrically located within an imperfectly conducting
cylinder of small radius compared to the wavelength, in terms of the electric field incident

upon the cylinder.

1. Introduction

The problem is to determine the power in the load
impedance at the center of a short dipole receiving
antenna that is located within an imperfectly con-
ducting shield of eylindrical shape and finite length
in terms of a known electric field outside the com-
pletely closed shield. It is assumed that the radius
of the shield and length of the probe are small frac-
tions of the wavelength. The solution consists of
the successive determination of the following:

(a) The ratio of the electric field inside to the field
on the outside surface of the shield.

(b) The ratio of the electric field on the outside
surface of the hollow cylinder to the incident electric
field.

(¢) The effective length and the driving-point
impedance of the center-loaded dipole inside the
shield.

(d) The power in the load impedance of the dipole
in terms of the electric field within the cylindrical
shield.

2. Ratio of the Electric Field Inside an Im-
perfectly Conducting Shield to the Field
on the QOutside Surface [1]*

Figure 1 shows a tube with hemispherical end
caps. Its inner radius is a,, its outer radius a,, and
its axial length 2/. The metal annulus is region 1,
the spaces outside and inside the tube are regions
2 and 3, respectively. Let the axis of the cylindrical
shield coincide with the z axis of a system of cylin-
drical coordinates », 6, and z. If the length of the
tube is at least 10 times its diameter and a,< <X, it
is a satisfactory approximation to assume the trans-
verse distribution of the axial electric field at any
cross section of the cylinder not too near its ends to
be independent of its axial distribution. The field
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4 Figures in brackets indicate the literature references at the end of this paper.

outside the ecylinder is assumed to be directed
parallel to its axis, i.e., in the z-direction.

The governing wave equation for the electric field
E= zE, in a homogeneous region with conductivity
7> > wey, dielectric constant e =e¢, and permeability
M1 1S

VQ{’L‘*ijlp.llg:O. (1)

A time dependence of the form exp(jot) is assumed
where w=2xf and f is the frequency.

Owing to rotational symmetry and the assumed
independence of the transverse and axial distribu-
tions, the equation for the transverse distribution
of I, 1s

O’ F.(r)
2
or

+kl2lllgl(,):()7 (2)

10K, (r
+1 2(r)

or
which has the general solution
I(Jz("):A'llJO(kml')WLI;IZV()(]CM") (LIS]'SQ‘J; (3)

where

b= (1—j) \/f‘g’i'; 4)

REGION |
(METAL)

REGION 2
(AIR)

Figure 1. Cross section of hollow conductor.
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and Jy(xz) and Ny(z) are Bessel functions of the first
and second kind. In region 3 the free space wave

equation,
V2E4 o?uee =0, (%)
applies; uy=4 7 X107"h/m; ¢,=8.85X 10~ *f/m.
The solution of (5) that remains finite at 7=0 is
E,(r)=AsJy(kr) 0<r<a, (6)
where
=y oeo. (7)

Now, if (ka,)?*<<1, Jo(k) =1, and E,(r) = A= const,

(0<r<a,;). It follows that within the cylindrical
shell
OF,(r)
The Maxwell equation
OF, .
curly BE:—— > =—jwBy 9)

when combined with (8) leads to the conclusion that

By(r)=0  (0<r<ai). (10)

Since the B-vector satisfies the boundary condition

woBos(ay) = i By (ay) (11)
at r=a,, it follows with (8), (9), and (11) that
ijM(al):l:%Ql]:O r=a,. (12)

With (12), the constant B; may be evaluated in terms
of A, from (3). The result is

Jl(kmal)

Bl:—;il N (kmal)

(13)

The substitution of (13) in (3) and its evaluation
successively at 7 and r=a, leads directly to

E.(r) _ Jolkur) N, (kpa)) —No(kr) J (nttr)
E.(as)  Jo(km@z) N (kenty) —Noknaz) J; (knay)
a,<r<a, (14)
Finally, when r=a,
E.(a,) ::Jo (k1) Ny (fem@1) — No (k) oJ (k1) , (15)
E,(ay)  Jo(kmas) Ny (km@) — No(kns) J, (kna)

which is the desired complex ratio of the field inside
the imperfectly conducting hollow cylinder to the
field on its outside surface.

In the important special case of large arguments
defined by °
@y wpo; > 10, (16)

it is possible to use the well known asymptotic forms
of the Bessel functions to simplify (15). The result is

\/ {LOS [k (a2 —ay)] }

With (4) and standard formulas for the cosine with
a complex argument, (17) becomes

E@‘J{

and its magnitude is

i
i \/ {\COS 2 v-sinh? 7}
v=(a;—ay) \/waéﬂl'

Note that (18) and (19) are valid only when (16) is
satisfied.

(17)

cos v cosh v—7 sin v sinh v (18)
5 - )
cos?® y-sinh? y

(19)

where

(20)

3. Relation Between the Field Incident Upon
an Imperfectly Conducting Hollow Cylin-
der and the Field on its Outside Surface

The volume density of current 7,(») in the conduct-
ing tube (@, <r<a,)is related to the electric field
I.(r) by the constitutive relation

() =0, E,(r). (21)
It follows that
i) _E.0) o
7'2(“2) Ez(“?)
The total axial current 7(0) at the center (2=0) of
the cylinder is given by the formula
1(0) — J i () 2rrdr, (23)
1

where 4,(r) 1s the transverse distribution of the cur-
rent density across the center of the cylinder. The
substitution of (22) with (14) in (23) and the subse-
quent integration gives the following expression for

5 At 15 ke an aluminum cylinder must be at least 0.447 ¢cm in radius; an iron
shield could be smaller.
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the current density near the outer surface in terms of
the total current:

ina) =0F (£57)
JU (kma/2) Nl (kmal) T NO (kma2) Jl (kmal) (24)
Jl (kma2) Nl (kmal) = NI (kma2) Jl (kmal)

The corresponding asymptotic formula for a, N
>10 1s

0 km

isla) =20 (B22) cot lhnla—anl, (@9
so that with (21) at r=a,
, 1(0) (e

B =20 (B cot [fn(e—a)).  26)

This expression relates the electric field on the out-
side surface of the hollow cylinder halfway between
its ends to the total current 7(0) traversing this
cross section of the tube.

The axial distribution 7(z) of the current in the
cylinder, in particular, its value 7(0) at the center,
is known from antenna theory since the cyhndncal
shield is, in effect, a receiving antenna without load
(refer to fig. 2). The current at its center is given

by (2]
10) :‘// QZZE : @7)

where V,.is the open-circuit voltage given by the
product of the effective length 2/, of the cylinder
multiplied by the incident tmngcntmlly directed elec-
tric field £ Z,;, is the driving-point impedance of
a Symmctrlcdl center-driven antenna with dimen-
sions identical to those of the shield. The effective
length 27, of an electrically short antenna (£ <0.5)
is given approximutcly by [3]
2l,~1, (28)

where [ is the half-length of the shield and k=2mx/\.
The impedance of a perfectly conducting short
antenna [3] for which £/ <0.5 is given by the formula

(4]

r A1
Z0~ =1 30
X< (Q—2— 21n2)< — e (kl)® ) ohms, (29)
3(2—2—2In2) o
where
- \/@21201r, (30)
€
and
2 :
Q—2ln (E) 31)

=l |F7 BeEg

. Electric probe symmetrically oriented along the axis of
an imperfectly conducting cylinder.

Figure 2

The input impedance of the imperfectly conducting

short dipole is approximately.

Zin=2Z{+Rs, (32)
where R} is the ohmic loss resistance referred to the
input terminals.

R{ may be evaluated by noting that the current
distribution along an electrically short antenna is
approximately triangular in shu,po Hence, the aver-
agec urrent along the structure is /7, :1512(0) The
ohmic resistance of the tube of len(rth 2/ has been
given by King [5]. It is

Rl cosh 2y cos Z—y) ( >
f om0, (\/COSh 2v—-cos 2y ¥—vet (33)

where

tan ¥,=—tanh v tan (34)
and
N — tanh (35)
tan y,= e 5
provided (l1wwu161>10 v is defined by (20). The
power lost in heating the antenna is
2
Py—I2(0) R’=<¥)> R (36)



Hence,
= (37)
Accordingly,

_ N
Zin~—Jg 17

X{ Q—2— 21112)(1 ]3(9(1\4 l)321n‘>)>} +E (38)

The substitution of (27) in (26) gives

20.E: (kna,
WZindla’g 2

E,(a,)=

) cot [kn(@—a)].  (39)

Thus, if the incident field £ in the vicinity of the
cylinder is known, (39) may be used to find the field
F.(a,) on the outside surface. The field within the
cylinder may then be calculated from (18).

4. Effective Height and Driving-Point Im-
pedance of a Short Electric Dipole in an
Imperfectly Conducting Cylinder

To determine the behavior of a center-loaded
electric dipole of half-length A and radius @ symmet-
rically located along the axis of an imperfectly con-
ducting cylinder requires not only a knowledge of
the electric field inside the cylinder in terms of the
incident electric field but also the effective length
and driving-point impedance of the probe.

The effective length of a probe encased within an
imperfectly conducting cylinder is the same as its
effective length when isolated. The effective length
is defined in terms of the field maintained along the
probe by all currents other than those in the probe
itself. This is precisely the field £.(a;) maintained
in the cylinder by the distant signal source and the
current in the imperfectly conducting shield. (It is
to be remembered that the field in the interior of the
tube is uniform.) The only approximation involved
is the assumption that the current in the probe does
not react on currents in the shield to change them
significantly. The required effective length 2k, may
be calculated from (28) (or the formula in footnote 3)
provided £ is written for / throughout (A is the half-
length of the electric probe).

The driving-point impedance of the electric probe
encased in the imperfectly conducting cylinder lies
between the impedance of an identical unshielded
probe and the impedance of two imperfectly con-
ducting sections of coaxial transmission-line in series.
These sections are open-circuited, and have a length
equal to the half-length % of the probe. Capacitive
end effects may be determined but are probably
small enough to neglect. In terms of the electro-
magnetic field that would be set up by the probe
antenna if it were used for transmission, three situa-
tions must be considered:

(a) When the probe is isolated, i.e., is outside the
metal cylinder, the distant field is due entirely to
the currents in the antenna.

(b) When the probe is in a perfectly conducting
cylinder, the field maintained at outside points by
the currents in the antenna is exactly cancelled by
the field set up by the currents in the shield.

(¢) When the probe is in an imperfectly conducting
cylinder, currents are induced m the shield which
maintain a field that partially cancels the field of the
probe, but this cancellation 1s not complete.

Thus the current in the probe can be separated into
two parts. One part, [, is equal and opposite to
the current in the shield; it is a transmission-line cur-
rent. The other part, /4, is the true antenna current.
The total current 7, in the unloaded probe is

Li=1,+1. (40)
The voltage driving the probe is
Vo=1,2v=1,Z,+1.7,=1, {ZL §4 (ZL_ZA) }’
t
(41)

where Z, is the impedance of the probe when encased
in the imperfectly conducting cylinder; Z is the im-
pedance of two perfectly conducting open-circuited
sections of coaxial line that are of equal length and
connected in series. 7, may be computed from the
formula

Zp=—7 276 log,, (%)cot keshs (42)

where A is the half-length of the probe and « is its
radius; and Z, is the self-impedance of the probe-
when isolated. It is given by (32) or by (29) when
losses are negligible.

From (41), it follows that

Ve

Z():T
l

:ZL—% (ZumZ.0)- (43)

The current 7, is the current in the probe required to
maintain the field ,(a,) just outside the shield, if
the shield were absent. [, is the current required
to maintain the field £i(a;) just inside the shield.
Since the thickness of the shield is small compared
with any radial distance over which %, could vary
significantly in amplitude, it follows that

Ia E (az)
1, Ei(a)

(44)

This complex ratio isappr oximately F.(a;)/E?, ob-

tained when (39) is combined with (17). The sub-
stitution of (44) in (43) gives
27— (“2) L (2= Za)- (45)
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This is the final formula for the driving-point im-
pedance of an electric probe symmetrically situated
within an imperfectly conducting cylinder.

It is important to observe that the ratio 7.(a,)/
Ei(a,) in (45) is small, since when the probe is driven
E .(as), the field on the outside of the shield is small,
while the field on the inside of the shield, /i(a,), is
large. On the other hand in the receiving case
Fiis large and £,(a,) is small, thus

Ei(a) \ _ [ Eila)\
E.(a) S \E.(a)

Driven Probe

(46)
Receiving Probe

Since the ratio £,(a,)/Ei(a,) is small when the dipole

is driven and the cylinder is a moderately good con-

ductor, it follows that
ZUzZL. (47)

On the other hand when the ratio £.(a,)/Ei(a,)

—1, as when the cylindrical shield is nonexistent,

Zy=2Zy. (48)
These relations for limiting values serve as checks
on (45).

The equivalent receiving circuit of the probe con-
sists of a generator with an emf equal to 24.K.(a,)
driving a circuit consisting of Z; in series with the
load impedance. The power in the load is readily
calculated in terms of the field #.(a;). Thus

Z) I 2 o . 2/‘/(’Ez(al)
P=IBO Bz IO = oy i (X T X0

(49)

The impedance of an electric probe is essentially
a capacitive reactance since the resistive component
is only a fraction of an ohm. Maximum power is
obtained in a given load when the probe is tuned to
resonance by means of series inductors. If this is
done, the full open-circuit, V,, appears across the
load, if all losses are neglected. In this case %,
does not appear in the equivalent circuit of the probe,
and (45) 1s not needed.

5. Conclusion

A method has been presented for calculating the
power in the load of an electric probe encased in a
partially conducting cylindrical shield. The analysis
has been carried cut for sinusoidal signals. If the
signal source emits repetitive pulses, it is necessary
to make a Fourier analysis of the incoming wave and

solve the problem for the fundamental and several
harmonic frequencies. The total power in the load
impedance is then the sum of the powers absorbed at
each frequency considered. Again it is assumed
that the circuit dimensions are small in terms of the
shortest wavelength of the signal component that
contributes significantly to the power in the load.

The field incident upon the cylindrical shield need
not be linearly polarized, as assumed in the analysis.
An elliptically polarized electric field may be decom-
posed into two components which are fixed in space
and which differ in phase, magnitude, and direction.
In particular, the field may be resolved into two
mutually perpendicular components which remain
stationary in space. One of these components may
be chosen parallel to the cylindrical shield, and the
other perpendicular to it. Both vary periodically
in time, but the latter contributes nothing to the
induced voltage; its magnitude and phase are of no
significance, and it may be ignored. Accordingly,
maximum power is delivered to the load impedance
of the probe when the hollow cylinder is oriented in
space so that the major axis of the elliptical contour
of the electric field is directed parallel to the axis of
the cylindrical shield.
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