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The rigorous application of the magneto-ionic theory to the calculation of reflection
coefficients for a sharply bounded ionosphere model is carried out. The paper is illustrated
with computations applicable to the D-region or the E-region of the ionosphere. The quasi-
longitudinal approximation is derived from this theory and the range of validity of this
approximation is illustrated. The restrictions imposed by the use of a sharply bounded
model ionosphere are discussed.

1. Introduction

The classical magneto-ionic theory introduced by Appleton [1],* Hartree [2,3], and Booker
[4] describes the propagation of waves in a homogeneous, anisotropic ionosphere. Various
methods have been proposed by Bremmer [5], Yabroff [6], and Budden [7] to calculate iono-
sphere reflection coefficients. The ‘“quasi-longitudinal” (Q-1.) approximation [7] provides
considerable simplification of the calculation. Wait et al. [8] calculated vIf reflection coeffi-
cients with the aid of this mathematical approximation.

In this paper, the rigorous theory based on Maxwell’s equations for a model ionosphere
in which the electron density and collision frequency increase abruptly to a finite value at a
particular altitude and so remain uniformly for all greater altitudes, is reduced to computa-
tional form. In this paper such a model is called a ‘“‘sharply-bounded’” model and represents
a “first approximation” of the actual electron density-altitude, collision frequency-altitude
profiles. The sharply-bounded ionosphere model is a physical approximation at low frequencies;
the quality of the approximation decreasing with increasing frequency. The closeness of the
approximation is also dependent upon the form of the ionosphere electron density-altitude
profile near the assumed sharp boundary. The theory is illustrated by the calculation of
certain reflection coefficients applicable to the D-region or the F-region of the ionosphere.
Calculations are also presented to illustrate the range of validity of the Q-L approximation.

2. Theory

The zy-plane, figure 1, describes the boundary of the model ionosphere. The vertical
direction, z describes the normal to the boundary. The region above the zy-plane (z>0) is
characterized by a uniform electron density /N and collision frequency v. The region below the
xy-plane (2<0) is a vacuum. A plane wave is incident on the boundary such that the normal
to the wave front assumes an angle ¢; (angle of incidence) with the vertical z, and the plane of
incidence, which can contain either electric 7 or magnetic 7 vector, is oriented at a magnetic
azimuth ¢, 1.e., the earth’s magnetic field vector I, is contained in the yz-plane, figure 1, with
a magnetic inclination or dip /. The local coordinate system for the wave is described by
2, y’, 2’ such that the coordinates z, ¥, z and «’, ¥/, 2’ coincide when the angle of incidence
¢; and the magnetic azimuth angle ¢, vanish (¢,=0, ¢,=0). An incident plane wave field %,
which varies harmonically in time ¢ at a {requency f=w/27 is incident upon the zy-plane,?

‘Jz-:|[7]il exp{il:wt—-f; (@ Sin ¢; SIn ¢+ SIn ¢; COS P, 2 cos d>£|}- (1)

1 Figures in brackets indicate the literature references at the end of this paper.
2 ¢c=speed of light, ¢~2.998 (108) m/sec.
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Ficure 1. Coordinate systems.

A resultant wave transmitted into the ionosphere model (2>>0) is then assumed to have the
form,

E,:|E’,| exp{i I:wt—-;—o (z sin ¢; sin ¢,y sin ¢; cos qba—}—zg‘)]}; 2)

where ¢ is, in general, a complex number. Such a wave is described by an electric £ and a
magnetic H intensity vector in Maxwell’s classical equations,?

oH

VXE+”0 Wzoy (3)
T H—T—e¢; %:0, (4)

where the permeability and dielectric constant of space are represented by uand e, respectively,
and where the electron convection currents are represented by the vector J=NeV for N
electrons per cubic centimeter in which each electron has a charge ¢ and travels at a vector
velocity V; and the equation of motion of an electron,

m %Jf”“‘_” poe (VX H,) +eE=0, (5)

where m is the mass of the electron and F,, is the earth’s magnetic field intensity vector, describe
the propagation in the ionosphere model. The simultaneous solution of these eqs (3), (4),

—

(5) for a wave transmitted into the ionesphere E, (2) upon elimination of the vectors H and V'
can be expressed as the matrix * equation,

4, 4, 4, E;
B, B, B, E, [=0. (6)
. G C, E,

A=l—d—— s (7)

3 See for examble, H. Bremmer [5] pp. 278 to 280.
4 See for example, Yabroff [6].
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A=ayar—i ® Bty (12)
A —aTs“th hr Ry 5 9) Cr=ari—1 g;%?: (13)
B,=ayar+i L T (10) Cy=ari+ (thzz) (14)
A 5(2 hhT) (11) C,—1—a>— S(SS_};;) (15)

where,® defining the critical frequency squared w,”=Ne?/km and the gyrofrequency w,=mu k1, /m,

) _
S:ww i [] _ ;vjl, (16) hp=h cos I, (17b)
% a,=sin ¢; cos ¢, (18)
h::f;’, (17) Ap=sin ¢; sin ¢,, (19)
a=sin ¢, (20)

hy=—hsin I, (17a)

Rearrangement of the matrix eq (6) in powers of ¢ results in a quartic equation in ¢ with com-
plex coeflicients,®

a4§4+@3f3+a2§2+01§+00:0, (21)
where,

- . §— azh’ —1 .
ao=(ein 6= 12 [ 1= [ 6int 6= ) S+ i i s [ @2
=2 QL(L:"ZL_LC}L;F (sin? ¢,—1), (23)
a. l: ]+ (sin® ¢;— + haai + - + (24)

2= h hz) ' s(s2—h%) T —RpE s a
ay=2 e —a 500" 4 (25)

2

a4:1—8(82—_}‘;‘2)- (26)

3. Determination of the Roots of the Quartic

The four complex roots of the quartic (21) were found by the Muller [9] iterative method
applicable to 7 roots of the nth degree equation,

F‘(§—>:afz§-n+an~1§‘n_l+ oo ‘|‘ll():0, (27)

where a,, @,_1, . . . a,are, in general, complex numbers and @, 0. This method does not re-
quire the calculation of derivatives and necessitates only one value of the function per iteration.

5 wer2=3.18 ]09) N.

wr=1.76 (ll) ) Hm, where H ,=TH,| which by convention in geophysical data is called the earth’s magnetic intensity in gauss (symbol: T') or
the earth’s magnetic intensity in gammas (symbol v) where Hpm=105 v.=T\.

k=1/¢* mo=eo.

6 This equation is equivalent to equations given by Bremmer [5] eq (18), p. 291 and Yabroff [6] p. 751.
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Each iteration in the process of finding one root is obtained from a calculation of the nearer
root of the quadratic equation which passes through the last three points of the function,
F(¢). This quadratic equation is, in general, complex, i.e., it possesses complex coefficients and
complex roots. A LaGrange interpolation formula was employed in the process of finding the
root. The function, f(¢), in the LaGrange interpolation formulas,

f(?):An§n+An—1§-n—l+ ... +A07 (28)

is an nth degree equation with the same ordinates as /'({) for n+1 distinet abscissas [10] as
Cny Cnet -« + $o- The LaGrange interpolation formula through the three points; ¢, F(¢ios);

City F(Cim1); and &y, F(5) of F(§) is,
J@) =4+ Aif+ A, (29)

where 4,, 4;, and A4, are evaluated from the requirement:
F(§ia) =F(§i2), f(Gim)=F(¢imr), and f($)=F($).

Upon solving for A,, A;, A, and using the quantities B=¢—{i, Bi=i— ity Bici=(i1— Civs,
N=R8/B:, \i=0:/Bi-1, and §,=1+N\;, the LaGrange interpolation formula, eq (29), becomes a
quadratic in \:

SO =N F (G- N— F(Fi-)Ndi+F(F )]
FNTF (i) N—F ()8 +HF () Nt8)]+F(C0). (30)

¢iv1 1s found for the condition, f(¢) =0, solving for X and employing the relationship,

ot 2

Rationalizing the numerator of the standard quadratic formula, and solving for X, 4,

—2F(¢,) 6,
gii\"/g%“‘lﬁj(fi) SN [F(§o—2) Ni— L ($i—1) 6+ 1(50) ]

(32)

W=

where,

=F (i) N—F(§i-1) 81+ F(50) Nit-8). (33)

The sign choice in the denominator of X;;; (32) is resolved by selecting the value for the larger
denominator. This choice of N,y gives {;,; the root of the LaGrange interpolation formula
(29) which is nearer ¢;. The initial values of ¢ and /({) can be taken as follows: {=—1,
F(¢)=ar—a,+a, =1, F({)=a+a+ay =0, and F({;)=a, The iterative process is
terminated with ¢;, the derived root when,

\g-z g‘z 1|
& <l
where e is a predetermined number.

Upon determination of a root, the degree of the polynomial can be reduced by dividing

F(¢) by the root. The new coefficients can be found by,
ai=§u0i-1+a;,1=0,1,2 . .

with @”;=0, where a; replaces a; and ¢, is the root already calculated.

Two pairs of roots, ¢, where each root represents either an “ordinary” or an “extraordinary’’
wave propagated in the ionosphere, can be identified as upgoing (4-z direction, fig. 1, usually a
fourth quadrant 7 ¢) and downgoing (—z direction, fig. 1, usually a second quadrant ) waves.
The upgoing pair determine the reflection coefficient for waves incident on the ionosphere from
the region below the zy-plane (2<0).

7 It is also possible to find roots in the 3d quadrant under certain conditions. See for example, Booker [4].
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The quartic (21) is satisfied by the classical Appleton-Hartree formula,

2
= »"(1_—> (34)

= 4 2 ?
2 (l —_ sm? v+ \/h sin* 1[/+4h (1 ——> cos® Y
where,
{P=n?—sin? ¢, (35)
and,
cOs Y= —% sin I+% sin ¢; cos ¢, cos 1, (36)
sin xp:% [7?— ¢? sin? T—sin ¢; cos ¢,(sin ¢; cos ¢, cos® I—2¢ sin I cos 1)]"V2, (37)

Although the Appleton-Hartree formula (34) provides a solution of the quartic for the up-
going waves (the dual sign in the denominator (34) represents ordinary and extraordinary
waves), it is also necessary to satisfy the auxiliary eqs (35) to (37). But the iterative selution
(27) to (33) is identical with such a process (34) to (37).

4. Determination of the Reflection Coefficients

The reflection coefficients are determined by five boundary conditions which express the
principle of continuity of the tangential 7 and 77 ﬁ(\l(l% and the normal 77 field ? at the boundary
(zy-plane, fig. 1) of the model ionosphere. The £, field, figure 1, immediately above and im-
mcdmtcly below the boundary can be equated,

Eyi cos ¢,4Ey; cos ¢; sin ¢+ E,, cos ¢p,—E,, cos ¢; sin ¢p,=Q E,,+Q.E,.; (38a)
also the %, field,

— i 8in ¢+, ; cos ¢; cos po— E i, sin pg—Eyr, c0s ¢y €08 po=F,y+E,; (38b)
the H, field,
Eicos¢;sing,—E,; cos po—E,r, cos ¢;sin po—E,r, 08 o= (arPo— o) Eyot (AP e— ) Eye;

(38¢)
the /1, field,

E,; cos ¢, cos ¢+ Ey; sin g,— i, cos ¢y cos ¢+, sin ¢,

= (g‘oQo_aTPo)Eyo—*_ (g‘eQe_aTPc) I'Jye; (38(1)
and the 7, field,

—EZ'L Sln ¢)1. z’r Sln d)z (aT aLQo yo+ (aT aLQe)Ifue; (380)

where ' (see fig. 1) £/, is the electric field vector normal to the plane of incidence of the incident
wave, £, is the electric field vector in the plane of incidence of the incident wave, ,,, is the
electric field vector normal to the plane of incidence for the reflected wave, £2,/, is ‘the electric
field vector in the plane of incidence for the reflected wave, also,

8 See for example, H. Bremmer [5], p. 282, eq (8). The direction ¢ is complex and double-valued (¢,, ¢.) as a result of the two roots, ¢, and
¢e. The authors do not concur with a certain previous interpretation of the Appleton-Hartree formula, op. cit. [6], p. 751. It can be shown that
the classical Appleton-Hartree formula, eqs (34) to (37), after considerable ado reduces precisely to the quartic, eq (21), the coefficients of which
have been described, eqs (22) to (26); the latter of which are by definition valid for both zero (»=0) and finite (»>>0) collision frequency. The
authors must therefore conclude that the classical Appleton-Hartree formula is valid for finite collision frequency »>0).

9 See for example, Stratton [11], p.483. The fifth boundary condition (38e) expresses the continuity of the normal H field. As a consequence
of this condition (38e) it can be shown that (see eqs (41a-h)),

—Tmm—[(ar—aL Qo) Umot(ar—aL Qe) Umd/sin ¢i—1=0.

The fifth condition (38¢) must be satisfied automatically by the previous four conditions (38a-d), and hence the above expression (derived from
38e) can be employed as an independent partial check on the entire computation.
10 The subscripts o and e refer somewhat arbitrarily to the two roots of ¢ corresponding to ““ordinary’” and ‘“extraordinarv”’ waves.
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E, ’ /8y,
Q=E, (39) P=E. (40)

Four reflection coefficients and four “transmission” coefficients can now be defined,"

N _Ey
Tee__E—”,—iy (41&) er——Ey’ii (416)
= @h) U (41f)
yli 2!
1, =L, @) =g, (1g)
2! y'i
b E,
T"”":Ez;i’ (41d) UmezE:’i’ (41h)

where, 7',, refers to the plane wave ionosphere reflection coefficients with electric, £, vector in
the plane of incidence of the incident wave and the electric, /£, vector in the plane of incidence
for the reflected wave; 7', refers to the same incident wave but the magnetic component
(abnormal component) is in the plane of incidence for the reflected wave. Similar normal
(electric) and abnormal (magnetic) components arise in the reflected wave resulting from an
incident wave with magnetic component in the plane of incidence which components are de-
scribed by the coefficients, 7',, and T,,,, respectively. The quantities, U,,, U0, U,., and U,
define the nature of an ordinary wave (second subscript o) and an extraordinary wave (second
subscript ¢) excited in the model ionosphere by an incident wave with the electric vector in
the plane of incidence (first subscript ¢) or magnetic vector in the plane of incidence (first
subscript m) of the incident wave.

The matrix solution of the boundary conditions (38a, b, ¢, d) for an incident wave with the
electric, £, vector in plane of incidence,

ay @y s I o

bl b:! b3 b4 Tcm boe
ot

¢ Cy C3 G4 D €o Coe

dy dy ds dy U.. e

and the matrix solution for an incident wave with the magnetic, /4, vector in the plane of
incidence,

@ a, a; as e Wom
by by by b /- (0
1 02 03 04 + = (43)
Ci C C3 C4 Umo Com
(ll (12 ([3 d4 (]me dom

completely define the four reflection coefficients: 7., Tony Tomy The; the “transmission” co-

efficients: U,,, U,e, Uy, Une, although of secondary interest, are a byproduct of the solution,
where,

W ye=COS Py SIN Py, (44a) b om=—sIn ¢,, (44d)
@y =COS Py, (44Db) Coe=—COS Pg, (44e)
b,e=c0s ¢; cOs ¢, (44c¢) Com="C08 ¢; SIN ¢, (44f)

11 Bremmer’s textbook notation for the reflection coefficient, 7', is followed in this paper [5] pp. 286 to 295. Budden [7] and Wait [8] have em-
ployed for _the reflection coefficients (41a, b, ¢, d) the notation jRj, Ry, LR, 1Ry, respectively. However, for application to multihop geo-
metric-optics (Bremmer [5] p. 194 et seq.) the ““ 7"’ notation can be more readily discerned in the complicated formulas containing both ionosphere
and ground reflection coefficients, in which the symbol R, has already been used for the latter.
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d,e=SIN ¢, (442) by=—1, (44p)

d ym =08 p; COS Py, (44h) €= —C0S ¢; Sin ¢, (44q)
A, =CoS ¢, (441) C;= —COS ¢y, (44r)
ay=—C0S ¢; SN ¢y, (44)) ={o—arl,, (44s)
a=—Q,, (44k) C=Co—ar P, (44t)
a=—0~Q,, (441) d,=—c0S ¢; COS Py, (44u)
b= —sin ¢,, (44m) dy=sIn ¢y, (44v)
b,=—cos ¢, cos ¢, (44n) dy=arP,—{,0Q,, (44w)
by=—1, (440) dy=arP —§ Q. (44x)

The solution of the matrices (42 and 43) was obtained by an application of Crout’s [12]
modified Gaussian method. Although it is quite possible to solve the matrix analytically and
there are several numerical methods for the solution of matrices, the Crout method was em-
ployed because of its adaptability to electronic data processing and the requirement that the
method chosen must be readily applicable to the solution of matrices with complex coeflicients
of the variables. The Crout method is applicable to n linear equations in #» unknowns with
either real or complex variables. The matrices (42) and (43) are of the form,

AT+t . . . 02 =C
A 2102t . . . T AT =0Co
alzlwl+arz2372+ ... +a'mz:cn; (45>

where the n? coefficients a;; and the n right-hand numbers ¢, are given (44a-x). Since it is neces-
sary to know the position of each element in the matrix to develop the method of solution,
each element has a double subseript, that is, element a,; is the element in the 2th row and jth
column.

The augmented or given matrix, ||a;|| for the system (45) is formed by adjoining the
right-hand numbers (the ¢’s) to the matrix formed by the coefficients of the unknowns. This
maftrix can be expressed in rectangular array,

andye . . . Q|0
H(linE(Lg[(lgg o« o« o QoylCa. (46)
Apilpz « « « App|Cp

First the elements of the auxiliary matrix, ||aj,|| are determined,

’ ’ 7 ’

Az . . . A1p|Cy
llai||=anas . . . asle. (47)

L ’ ’ | ’

Ap1pg « . . annlcn

From this matrix a final column matrix, [[z,/], with the elements for the required variables
Z . . ., T, can be obtained,
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Iy

||| | =2.. (48)

Ly
Each element in both the auxiliary and final matrix is evaluated from previously calculated
data by a sequential operation.

The following equations were used to calculate the elements a;; from the elements a,; of
the given matrix:

=1l ’ o e
a§j=a“—§ @ixyy (12> ]) (49)
’ 1 =l ro . .
aii:(’LT [aii—_"; GixQy; | (@<]) (50)
;1
e 2 amak,], (508)
a/iz

where any summation whose lower limit exceeds the upper is zero. Since each a;;in the auxiliary
matrix, except those in the first row and first column, depends upon the value of previously
calculated elements in the same matrix, the elements must be found in a certain order. The
elements of the first column are found (49) as follows:

’ ’ 7 5 ’
a/n:an, a21:0/21, (L31:(L31, and Q41 —yy.
The remaining elements of the first row are (50),

r gy a]3 r g C1
4112:7 y 3= Ayy=——7 7 ﬂnd Cl— T
yy an yy (5%

With the aid of these values, the remaining elements can be found (49) or (50). a;; can be made
available for the solution of the matrix \lai;|| by the following sequential calculation: The n
elements of the first column, the remaining n of the n+1 elements of the first row, the re-
maining n—1 elements of the second column and second row, the remaining n—2 elements
?f tl(lle third column and third row, continuing in this sequence until the elements are calcu-
ated [9].

The values of & are found from z, to x; from the elements of the auxiliary matrix,

n
— > G (51)

E=TF1

It is evident (51) that z,=¢,. The remaining solutions z,_;, ,—» . . . , I, 2, can be found (51)
with the aid of z,. The computations presented in this paper were checked by substitution of
%y, &y, . . . &, 10 each of the original equations. An inductive-type proof of the Crout method
has also been given by Crout [12] and Hildebrand [10].

The analytical expressions for the complex numbers P,, P,, Q,, Q. can be derived {from the
definitions (39) and (40) with the aid of the matrix (6) resulting from the simultaneous solution
of Maxwell’s eqs (3), (4), and the equation of motion of an electron (5) with the following

result:
o —[%§+ hﬁzﬁ][bﬂﬁ—f2 M]+[Wﬂr M][w@ J
(1o | et e et Lot 5

Q:“[l_“z = ][“L“T h2]+[“”“+“ hf] Lo+ th%
= e ey
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where the subscripts o and ¢ for P,, P,, Q,, Q., refer to the two roots of ¢ which represent
upgoing waves in the model ionosphere.

5. The Q-L Approximation

Budden [7] and Wait [8] have evaluated reflection coefficients for the sharply bounded
model ionosphere employing the mathematical Q-L approximation. This approximation has
been employed to interpret experimental measurements of skywaves propagated at vlf between
the surface of the earth and the ionosphere in the northern hemisphere.

Such an approximation can be derived from the rigorous formulation presented in this
paper. The model ionosphere reflection coefficients can be written analytically from the rigor-
ous matrix eqs (42) and (43),

__BA,—AB, : I:ﬁ_'_:l I: ]
Teﬁf,——h B B (54) As=Ar? T (60)
_5311‘13’_‘4‘11];3 = oe 0e due
Tem_z’i;[fg—];;zllg’ (O5> BI*AI [a,4 ] Az |: ([4 (61)
. DA—CB, . - [Ca;, b, a, d, o
Yme 1 B, __];341) (')6) I;'.)_Al 04—F —Az [(1_.1_(74 (6"')
D A—C\ By - o [a, :I ] .
Tmm*;lzlgg— Igzil.'{’ (’)7) 133_A1 | a, b |: (l4 (6'5)
A _A-1 qqr_@(: _A-1 %_(ﬁ Q) Y om om - Com
‘lI_AI [(14 04 A2 ay 04]? (e)8) (lfAl ] Az L(l_l ¢s ]! (64)
A 2L T gl___ = _A-1 aom___bom —A-l (l“ﬂ (]l)”[] 4
S @4 ] I: ]’ (59) Di=ai I: ay by :I 4 I:(h d, (65)
where,
A=t bs (66) At 58, (67) ng=2_ds, (68)
“a, b, Ta, ey ay d,
The Q-1 approximations are as follows
$.=0, (69) )
: e (72)
__* ? 7, COS 0,
2 cos 6, ) )
; SIn ¢; .
. P=————"y (73)
=0 1, COS 0,
Qe COS 08’ (71)
or,
Qog‘a:i’ (74) —Q'"L:-—-Q',’ (75)
No Ne

which ((74) and (75)) is approximately true for vlf skywaves reflected in northern hemisphere.
After considerable ado, the Q-L reflection coefficients with the aid of the approximations (69)
to (75) and Snell’s law,'?

Sin ¢;=mn,,, SN 0, ,, (76)

12 The validity of Snell’s law for complex directions, 6, and 6,,i s alsoimplied by egs (36) and (37).
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reduce as follows:
Teoe=A" (n,+n.) (cos? ¢p,—cos 6, cos 0,)+ (n,n.—1) (cos 6,+cos 6,) cos ¢}, (77)
Ten=2:{2 1 cos ¢; (1, cos 6,—n, cos 0,)}, (78)
Te=2;{2 7 cos ¢; (n, cos 6,—n, cos 6,)}, (79)
Trm=2:{(no+1n.) (cos? ¢;—cos 6, cos 6,)—(nm.—1) (cos 8,4cos 8,) cos ¢}, (80)

where,
A= (n,Fn.) (cos? ¢;4-cos 6, cos 6,)+ (nm,+1) (cos 6,-+cos 6,) cos ¢, (81)

which formulas agree with those independently derived by Budden [7]. The indexes of
refraction of the model ionosphere, 5, and 7,, corresponding to upgoing ‘“‘ordinary’” and “ex-
traordinary” waves can be calculated rigorously as the roots of the quartic in ¢ (21). However,
as a result of the matrix asymmetry introduced by the Q-L approximation (74) and (75) an
interchange of the roots of the quartic (3, and 5,) results in an ambiguity, 4+, in the argument
or phase of the abnormal components, arg 7., and arg T,,. (78) and (79). At very low fre-
quencies, the indexes of refraction 5, and 5, are chosen such that arg 7', and arg 7),, are close
to m. The values n can also be calculated from the Appleton-Hartree formula (34). Budden
[7] and Wait [8] employ additional approximations to this formula,®

mhe=1—1 = exp [+ig], (82)

in which the plus (4) sign before ¢, refers to 7, and the minus (—) sign refers to 7, and
where,

2
@r Wer

tan ¢1=“’7L, (83) s AN, . (84)

@ oV tel
6. Computations and Discussion

The results of a calculation ™ of model ionosphere reflection coefficients which can, under
certain conditions, represent the reflection of waves from the D-region or the Z-region of the
ionosphere are illustrated, figures 3 to 32. These data have been presented as a function
of frequency, for various angles of incidence on the ionosphere, ¢,. The application of these
reflection coefficients to the geometric-optical theory is quite simple,'® however, the relation
between angle of incidence, ¢;, distance of observer on the surface of the earth from the source
on the surface of the earth, d/7 (j=order of hop or time-mode, i.e., =1, 2, 3 . . .), and the
altitude of the boundary of the model ionesphere have been presented for the convenience
of the reader, figure 2. The results of a rigorous calculation of the reflection coefficients of
the model ionosphere are compared with the results of the Q-L approximation, figures 29 to 32.
Thus, for magnetic inclinations near 60°, the Q-L approximation is quite satisfactory at fre-
quencies less than 8 ke for the normal components, 7',, and 7,,,. The most serious discrepancy
occurs in the prediction of the abnormal components, |7,,| (fig. 29, for example). At higher
vlf frequencies (>> 8 ke) and at If, the Q-L theory fails except in certain special cases (|7,
fig. 32, for example).

The effects of magnetic azimuth ¢,, figures 19, 20 (compare with figs. 3, 4) magnetic
inclination or dip /, figures 21 to 24, magnetic intensity /7, figures 25 to 28, and distance or
angle of incidence ¢;, figures 3 to 18, on the reflection coefficients are illustrated. It is of interest
to note that an increase in the earth’s magnetic intensity H,, increases the abnormal components
Ten, The, figures 27, 28. It is also of interest to note that the reciprocity theorem does not

13 The validity of these approximations has been discussed by Budden [7].
14 The calculations were performed on the IBM-650 electronic data processing machine.
15 See for example, H. Bremmer [5] p. 153 et seq.
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Fiaure 4. Model ionosphere reflection coefficients;
&1 ="75.08°, sin ¢;=0.966356, N=870, v—/4(105),
Hn=0.5, ¢.=0, 1=60° (for example, fig. 2,
d/j=3829 miles, h=656 km).
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Ficure 6. Model donosphere reflection coefficients;
¢:=380.39°, sin ¢;=0.985948, N=870, v=/4(10%),
Hn=0.5, ¢$,=0, 1=60° (for example, fig. 2,
d/j=621 miles, h=65 km).
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Fraure 3. Model donosphere reflection coefficients;
¢i="756.08°, sin ¢;=0.966356, N=870, v=/4(10),
Hn,=0.5, ¢.=0, 1=60° (for example, fig. 2,
d/j=3829 miles, h=65 km).
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Fraure 5. Model donosphere reflection coeflicients;
¢:=380.39°, sin ¢;=0.986948, N=870, v=/4(10°),
Hn=0.5, ¢.=0, 1=60° (for example, fig. 2,
d/j=621 miles, h=65 km).
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Fraure 7. Model ionosphere reflection coeflicients;
$:=81.79°, sin ¢;—0.989758, N=870, v—4(10%),
Hw=0.4, ¢.=0, 1=60° (for example, fig. 2,
d/j=1000 miles, h=65 km).
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Ficure 8. Model ionosphere reflection coefficients;
¢:i=381.79°, sin $;=0.9897653, N=870, v=4(10%),
H,.=0.5, ¢.=0, 1=60° (for example, fig. 2,
d/j=1000 miles, h=65 km).
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Ficure 10. Model ionosphere reflection coefficients;
@i=43.25°, sin ¢;=0.685204, N=1200, v= 105,
Hynw=0.5, ¢3=0, 1=60° (for example, fig. 2,
d/j=100 miles, h=_385 km).
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Ficure 12. Model ionosphere reflection coefficients;
$:i=71.13°, sin ¢;=0.946258, N=1200, v=105,
H,,=0.5, ¢.,=0, 1=60° (for example, fig. 2,
d/j =329 miles, h=85 km).
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Ficure 9. Model ionosphere reflection coefficients;
¢i=43.25°, sin $;=0.685204, N=1200, v=105,
H,=0.5, ¢,=0, 1=60° (for example, fig. 2,
d/j=100 miles, h=_85 km).
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Ficure 11. Model ionosphere reflection coeflicients;
¢i=71.13°, sin ¢;=0.946258, N=1200, v=105,
Hn=0.5, ¢,=0, 1=60° (for example, fig. 2,
d/j =329 miles, h=85 km).
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Ficure 13. Model ionosphere reflection coefficients;
i =78.17°, sin ¢;=0.978751, N=1200, v=10,
Hn=0.5, ¢.=0, 1=60° (for example, fig. 2,
d/j=621 miles, h=_85 km).
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Ficure 14. Model ionosphere reflection” coeflicients;

e $:=78.17°, sin ¢;=0.978751, N=1200, v»=10%,
Hyn=0.5, ¢.=0, 1=60° (for example, fig. 2,
d/j=621 miles, h=85 km).
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Fiaure 16.  Model ionosphere reflection coeflicients;
$:i="79.64°, sin ¢;=0.983688, N=1200, v=10°,
Hn=0.5, ¢,=0, 1=60° (for example, fig. 2
d/i.=800 miles, h=_85 km).
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Fraure 18. Model ionosphere reflection coefficients;
¢i=80.40°, sin ¢;=0.985987, N =1200, v=105,
H,w=0.5, ¢.=0, 1=60° (for example, fig. 2,
d/j=1000 miles, h=385 km).
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Figure 15. Model ionosphere reflection coefficients;
¢i=79.64°, sin ¢;=0.983688, N=1200, v=10°
Hw=0.5, ¢.=0, 1=60° (for example, fig. 2,
d/j=800 miles, h=_85 km).
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Fiaure 17. Model ionosphere reflection coeflicients;
¢ =380.40°, sin ¢;=0.986987, N=1200, v=10°
H,=0.5, ¢.=0, 1=60° (for example, fig. 2,
d/j=1000 miles, h=_85 km).
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Ficure 19. Model ionosphere reflection coeflicients,
illustrating the effect of magnetic azimuth, ¢a
(compare with fig. 3); ¢;=75.08°, sin ¢;=0.966356,
N=870, v=4(10°, Hn=0.5, ¢.=180°, 1=60°
(for example, fig. 2, d/j=329 miles, h=65 km).
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Ficure 20. Model ionosphere reflection coefficients,
illustrating the effect of magnetic azimuth, ¢,
(compare with fig. 4); ¢i="75.08°, sin ¢;=0.966356,
N=870, v=4(10%, H,=0.5, ¢,=180°, I1=60°
(for example, fig. 2, d/j=329 miles, h==65 km).
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Fracure 22. Model ionosphere reflection coefficients,
illustrating the eflect of magnetic inclination or dip,
I (compare with figs. 4, 24); ¢:=756.08° sin

$i=0.966356, N=870, v=4(10%, H,=0.5,
¢a=0, I=0.
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Frcure 24. Model ionosphere reflection coeflicients,
illustrating the effect of magnetic inclination or dip,
I (compare with figs. 4, 22); ¢:=75.08° sin
¢i=0.966356, N.=870, v=4(10°, H,=0.5,
¢a=0, I=90°. +°©
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Ficure 21.  Model ionosphere reflection coefficients,
illustrating the effect of magnetic inclination or dip,
(compare with figs. 3, 23); ¢;="75.08°, sin ¢;=
0.966856, N=870, v—=4(10°), Hwn=0.5, ¢.—=0,
I=0.
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Ficure 23. Model ionosphere reflection coefficients,

illustrating the effect of magnetic inclination or dip,
I (compare with figs. 3, 21); ¢:=75.08° sin
¢i=0.966356, N=870, v=4(10°%, Hn=0.5,
ba=0, I=90°.
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Ficure 25. Model ionosphere reflection coeflicients,
lustrating the effect of the intensity, Hy, of the
earth’s magnetic field vector, H,, (compare with figs.
3, 27); ¢:=75.08°, sin b;=0.966356, N==870,
y=4(10°), Hu=0.2, $o=0, 1=60°.
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Fraure 26. Model ionosphere reflection coefficients,
llustrating the effect of the inlensity, Hw, of the
earth’s magnetic field vector, H,, (compare with
figs. 4, 28); i=75.08°, sin ¢;=0.966356, N=870,
y=4(10%, Hp=0.2, ¢.=0, I=60°.
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Ficure 28. Model ionosphere reflection g_}eﬂicients,
dlustrating the effect of the intensity, Hu, of the
earth’s magnetic field vector, H,, (compare with
figs. 4, 25) $i="75.08° sin ¢;i=0.966356, N =870,
v=410%, Hn=1, ¢.=0, I=60°.
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Fraure 30. Comparison of reflection coefficients
calculated by the rigorous method for the model
ionosphere with the Q—L approximation; ¢;=50.8/°,
sin ¢;=0.775853, N=870, »v=14(10°), Hn=0.5,
pa=0, 1=60° (¢ and 1 do not apply to the Q—L
method; also note: fig. 2, d/j =100 miles, h==65 km).
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Ficure 27.  Model ionosphere reflection coeflicients,
illustrating the effect of the intensity, H,, of the
earth’s  magnetic field vector, H,, (compare with
figs. 3, 24); ¢:="75.08°, sin ¢, =0.966356, N =870,
v=14(10%, Hh=1, ¢.=0, I=60°.
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Ficure 29. Comparison of reflection coefficients
calculated by the rigorous method for the model
tonosphere with the Q—L approvimation; ¢;=50.8/°,
sin ¢;=0.775353, N=870, v=4(10°), Hn=0.5,
$a=0, 1=60° (o and 1 do not apply to Q-L
;Gn(et)hod; also mote: fig. 2, d/j=100 miles, h=65
m).
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Fiaure 31.  Comparison of reflection coeflicients
calculated by the rigorous method for the model
ionosphere with the Q—L approximation; ¢i=81.37°,
sin ¢;=0.988681, N=870, v=/4(10%, Hn=0.5,
$a=0, 1=60° (¢, and 1 do not apply to the Q—L
]r;ze()hod; also note: fig. 2, d/j=800 miles, h=65

m).
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Ficure 32. Comparison of reflection coefficients
calculated by the rigorous method for the model
ionosphere with the Q—L approximation; ¢;=81.37°,
sin ¢ =0.988681, N=870, v=4(10%, Hn.=0.5,
$a=0, I=60° (¢ and 1 do not apply to the Q—L
;bnet)hod; also note: fig. 2, d/j=800 miles, h=65
tm) .

hold, i.e., south-north propagation, ¢,=0, figures 3, 4, is not precisely equivalent to north-south
propagation, ¢,=180°, figures 19, 20. It is important to note that the magnetic dip 7, figures
21 to 24, and the magnetic azimuth ¢,, figures 19 to 20, i.e., the direction of the earth’s magnetic
field vector F, is a very significant consideration, not only at lf but also at vlf.

Since the actual ionosphere electron '® density versus altitude profile is quite variable,
considerable caution is necessary in the application of this model to the interpretation of
experimental data. It can, in general, be stated that the model is valid when the boundary
of the ionosphere is sufficiently sharp (relative to a wavelength) at the frequency of the incident
wave under consideration. The precision with which this model represents the actual
ionosphere can be considered a first approximation at low frequencies, the degree of approxima-
tion decreasing with increasing frequency.

7. Conclusions

The reflection coefficients for the sharply bounded model ionosphere can be readily
evaluated with the aid of electronic data processing techniques for the solution of the quartic
equation and the tensor matrix, thus eliminating the necessity for the Q-L approximation.
The Q-L theory is a crude mathematical approximation taking account of the intensity butneglect-
ing completely the direction (magnetic azimuth and dip) of the earth’s magnetic field vector and
if used must be applied with considerable caution not only at If but also at vIf frequencies.
The complete and rigorous magneto-ionic solution for the assumed model ionosphere not only
eliminates the necessity for such an approximation but also illustrates the application of
modern numerical analysis techniques which can in many cases obviate such mathematical
approximations, leaving only the physical approximations implied by the assumed model.

The model ionosphere presented in this paper represents a first approximation of the
electron density-altitude profile, the degree of approximation decreasing with increasing
frequency and the validity of the model dependent upon the sharpness of the actual ionosphere
boundary relative to a wavelength. The results of this paper suggest a refinement of the
theory which would take into account a “less sharply bounded’” model ionosphere.

: 16 Values of electron density, IV, and collision frequency, », employed in this paper were estimated from recent data, see for example, Waynick
3.
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