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A Theory of Radar Scattering by the Moon
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A theory is described in which the moon is regarded as a
A scattered pulse is then composed of a number of individual returns
each of which is provided by a single scattering area.

radar frequencies.
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quasi-smooth’ scatterer at

In this manner it is possible to account

for all the major features of the pulse, and the evidence in favor of the theory is presented.
From a study of the measured power received at different frequencies, it is shown that the
scattering area nearest to the earth is the source of a specular return, and it is then possible

to obtain information about the material of which the area is composed.

The electromagnetic

constants are derived and their significance discussed.

1. Introduction

Little more than a decade has now elapsed since
radar contact with the moon was first established.
The first reported contact was by the U.S. Signal
Corps in 1946, and this was followed closely by ac-
counts of similar success in Russia. Since then a
considerable amount of effort has been expended in
attempting to determine the scattering properties of
the moon at radar frequencies.

The earlier experiments were limited by the equip-
‘ment which was available at the time and, in conse-
quence, many of the conclusions reached were largely
qualitative. In recent years, however, the use of
high-power transmitters in combination with an-
tennas designed specifically for lunar work has pro-
vided results the accuracy of which is unquestionable,
and these have shown that the scattering properties
of the moon cannot be explained in terms of a
“rough” scattering theory. The increased trans-
mitted power and the improved receiver sensitivity
have also permitted the use of shorter pulse lengths,
and with pulses of only a few microseconds in length
it has become practicable to distinguish between the
returns from different parts of the lunar surface.
This in turn has lead to an accurate determination of
the radar distance to the moon, and the suggestion
has been made that the distance should be used to
obtain a more precise value for the earth’s equatorial
radius.

In many of these experiments a motivating force
has been the possibility of employing the moon as
a link in a communication system between points on
the earth. The successful transmission of cw code
was first reported by Sulzer et al. [1]* in 1952, and
subsequently by Trexler [2] who also transmitted
voice. It is now well established that this type of
link is a practicable proposition and signals can be
communicated without appreciable loss of intelli-
gence.

1 Radiation Laboratory, Department of Electrical Engineering, University of
Michigan, Ann Arbor, Mich.
2 Figures in brackets indicate the literature references on page 228.
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2. Scattering Theories

Optical experiments over many decades have given
a fairly comprehensive picture of the major geo-
graphical features of the moon, and the general
mmpression received is that the moon’s surface is
highly irregular. It is therefore natural to think
of it as a rough scatterer, and since the intensity
of illumination across the disk appears effectively
constant, the moon has been characterized by
astronomers as a ‘rough surface’”” at optical wave-
lengths. By this it is implied that the scattering
properties of the moon can be explained in terms of
a surface having a statistically uniform roughness
whose scale 1s the order of a wavelength.

When radar reflections were first observed, it
seemed reasonable to expect that these results could
also be explained by a rough scattering theory.
Thus, in discussing the U.S. hwnal Corps experi-
ments, DeWitt (m(l Stodola [%I assumed without
question that the moon could be treated as rough,
and their analysis of the shape and intensity of the
echo pulses was then based on a uniformly illuminated
(and reflecting) disk. Similarly, in 1951 Kerr and
Shain [4], using pulses of a millisecond or longer,
concluded from their returns that ‘“‘the moon 1s a
rough reflector at this frequency (20 Mc) and hence
presumably at all higher frequencies.” The same
conclusion was also reached by Browne et al. [5]
in 1956 from a study of the echo at 120 Mec with
30-millisecond (msec) pulses, and it was not until
shorter pulse lengths came into use that the validity
of rough scattering theories was seriously questioned.
It was then found that most of the return at radar
wavelengths comes from only a small portion of
the lunar surface, and in a summary paper published
in 1957 Lovell [ | stated that “recent experiments
have shown the ‘uniformly bright’ conclusion to be
erroneous.”’

From an examination of pulse shapes such as
those obtained by Yaplee et al. [7], the present
authors felt that a scattering process similar to
that for a smooth body would explain the dominant
features of the returns. Thus, in 1958, a scattering
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theory was proposed [8] in which the starting point
was the idea of a body which is essentially smooth
as regards its radar scattering properties, and to
take into account the existence of several scattering
areas, the term ‘“‘quasi-smooth’” was applied to the
lunar surface. In this paper we shall discuss the
theory at some length and, in so doing, attempt
to clarify those steps which, to judge from criticisms
received, would appear to have caused difficulty.
The fact that more experimental data has become
available since the theory was originally propounded
also enables us to place some of the conclusions on
a somewhat firmer basis, while amending others.

3. Fading Phenomena

In radar returns from the moon, two distinct
types of fading are apparent. The more rapid fading
has a period of only a few seconds and was first
observed by DeWitt and Stodola [3], and later by
Kerr and Shain [4] who attributed it to the moon’s
libration. This has since been confirmed by Evans
et al. [9] from a consideration of the diurnal variation
in the fading rate. The second type of fading has
a much longer period (as much as 20 to 30 min) and
is most clearly seen in results of experiments at the
lower frequencies. It has been shown by Murray
and Hargreaves [10] that these fades are consistent
with the Faraday rotation of the plane of polarization
produced by the earth’s ionosphere. This explana-
tion is now well accepted, but in view of the impor-
tance of the longer period fades in connection with
the scattering process at the moon’s surface, it is
necessary to consider them in rather more detail.

3.1. Faraday Rotation

When a linearly polarized electromagnetic wave
passes through an ionized medium in the presence
of a magnetic field its plane of polarization is rotated.
For a linearly polarized signal which is directed
towards the moon, the polarization is first rotated
on passage through the ionosphere and then, after
reflection at the moon with an appropriate phase
change, the polarization is again rotated on returning
through the ionosphere. As the ionosphere changes,
so will the rotation, and this in turn will produce a
variation in the level of the signal received with an
antenna of fixed linear polarization. Given a suffi-
cient period of observation, the signal will pass
through a maximum and this will occur at the same
instant of time as would a minimum in an antenna
of orthogonal polarization. In the extreme circum-
stance in which no depolarization took place at
the moon’s surface, this minimum would be a true
zero and then, in theory at least, all the returned
energy would be received by the first antenna.

The time between successive maximums or mini-
mums 1s the Faraday rotation period and has been
measured by many experimenters. Apart from
some ambiguities 1t leads directly to a value for the
integrated electron density along the propagation
path and has been used for this purpose by, for
example, Browne et al. [5].

3.2. Fading Minimums

The above facts are relevant to the analysis of data
such as that obtained by Blevis and Chapman [11].
Using a cw system operating at a frequency of 488 Me,
the signals scattered back by the moon were received
with two orthogonally polarized antennas, and
samples of their data are displayed?® in figure 1. It will
be observed that when one polarization is at a maxi-
mum, the orthogonal polarization is at a minimum,
and we have seen that this is a natural consequence
of the Faraday rotation. More remarkable, how-
ever, 1s the ratio of the maximum to minimum signal
levels, which 1s found to be approximately
16 db [12]. A ratio as large as this is not
compatible with scattering from a rough surface.
Any rough surface serves to depolarize the incident
field, and for a surface on which bumps are placed
whose magnitude is of order one-half wavelength,
the depolarization effect will be almost complete; the
returns received with two orthogonally polarized
antennas will then differ by only a few decibels
independently of the polarization of the transmitted
field. In view of the large ratio found in the case of
the moon, it can now be concluded that as regards
the major sources of the scattered energy, the scat-
tering 1s akin to that from a smooth surface; and in
particular, the surface cannot possess a large number
of (contributing) irregularities whose magnitude is
comparable with the wavelength.

Although these conclusions have been reached by
a study of the returns in two orthogonally polarized
antennas, the same argument can be applied to the
signal received on one linear polarization alone. If
the maximum signal level is compared with the mini-
mum (received at a later time), and if the interval of
time is the Faraday rotation period, the ratio is again
a measure of the roughness. In this respect at least,
the 1onosphere has a desirable effect in enabling us
to dispense with one of the receiving antennas.

3.3. An Experiment

To emphasize the argument outlined above, an
experiment was carried out in the laboratory using
a sphere possessing bumps. The diameter of the
sphere was 10X and the size of the bumps was of the
order of X. A picture of the sphere is shown in
ficure 2 and some of the results are given in figure 3.
These can be summarized as follows:

Relative scattering cross section in decibels

oyv ovVH
Smooth sphere_ - _ S .0 —a&{l)
“Perturbed’” sphere B = —13

The cross sections for the perturbed sphere were
averaged over 60° in aspect.

3 The authors thank Dr. John Chapman of the Communications Laboratory,
Defence Research Telecommunications Establishment, for allowing figures 1
and 4 to be copied from presently unpublished data of Blevis and himself.

NorE ADDED IN PROOF: Since this paper was written the authors have learned
that Chapman and Blevis have submitted for publication in this journal a paper
containing the data.
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Ficure 1. Faraday rotation record, September 15, 1959.

FiGure 2. Sphere with bumps.

[t is seen that for a sphere without any bumps,
the direct return (transmitter and receiver polariza-
tions the same) exceeds the cross-polarized return by
30 db; whereas when the bumps are present, the
cross-polarized return is increased by 17 db, and the
direct return decreased by 7 db, so that when aver-
aged over a range of 60° 1n aspect, the difference be-
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tween the polarizations is no more than 6 db. The
measured difference decreases with decreasing size of
bumps until the bumps become small compared with
the wavelength. Accordingly, if the moon were a
sphere covered with wavelength bumps, the ratio of
the maximum and minimum signals in the Faraday
rotation period would not exceed (about) 6 db.
This is in marked contrast to the ratio which is
actually observed.

3.4. Double Fades

The question of double fades is not directly con-
nected with the development of our theory, but it
may be of interest to discuss the matter here.

At the XIIth General Assembly of URSI at
Boulder, Colorado (September 1957), Chapman
pointed ‘out that in his moon returns he sometimes
obtained minimums occurring simultaneously in two
orthogonally polarized receiving antennas. These
phenomena were termed ‘““double fades” and can be
observed in the sample records shown in figure 4.
They were discussed in some detail at the Assembly,
and both there and in later meetings were felt to
violate the conservation of energy. This, however,
is not so, and indeed double fades can be reproduced
in the laboratory.

To explain the origin of these fades, we first
employ a statement of the conservation of energy.
For a fixed aspect of target, for a given transmitter
polarization «, and for all receiver polarizations g,
the equation

constant (1)

o(a,8) +o <a,6+g>——

holds, where o(z,y) is the scattering cross section
when the transmitting antenna is polarized in the
direction # and the receiving antenna is polarized in
the direction y. Equation (1) is a direct conse-
quence of conservation of energy and is an identity
for all 8 (see app.). It should be noted that as a
fun(:tion of aspect (which can be varied by rotating
the body with the transmitting and receiving
antennas fixed), this says nothing about whether
two minimums can or cannot occur simultnneously
in two orthogonally polarized receivers. Indeed, 1
is to be e\pc('ted that for a nonsymmetrical bodv
there will be a particular aspect such that the total

backscattered energy is a minimum, and the constant
in_eq (1) is then a function of aspect. If at this
minimum aspect we invoke the theorem represented
by eq (1), we merely find that the total power
received bv two orthogonal antennas is independent
of their polarization. “Both o(a,8) and o (e,84 (7/2))
will then be small for any chosen polarization 8, and
both may well be smaller than they are for neigh-
boring target aspects. In this way a double fade
could occur.* It in no way violates eq (1), nor the
conservation of energy, and is not an unreasonable
thing to occur with a target of asymmetrical shape.

4. Pulse Considerations
4.1. Short Pulses

Further evidence in favor of a quasi-smooth moon
theory 1is provided by the shape of short pulse
returns.  When the transmitted pulse is only a few
microseconds in length, the return appears to be
dominated by a small number of spikes. The onset
of the return is relatively sharp and the time of its
occurrence is consistent with reflection from that
portion of the moon which is nearest to the earth [13].
In many cases at least the spike which is associated
with the leading edge of the pulse represents the peak
power return.

In a series of experiments using 2-usec pulses,
Yaplee et al. [7] found that each of these spikes had
a width of from 2 to 4 wsec and were separated in
time by 2 to 4 usec. The close agreement between
the width of the spikes and the transmitted pulse
length suggests that the source of each spike is a
single scattering area. If this is so, the spikes should
possess a high pulse-to-pulse correlation and a narrow
power spectrum. These have been determined by
Yaplee et al. [14], and by measuring the amplitude
of the return as a function of distance from the
leading edge it has been shown that all the first few
spikes have a high correlation. The correlation
decreases with increasing distance from the leading
edge and, ultimately, the amplitudes assume a
It mdom distribution. As a further check the power
spectra were also obtained and, as to be expected,
were relatively narrow for the first few spikes.

4 Since this explanation was proposed we have learned that Dr. Chapman
has been thinking along similar lines.
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Frcure 4.

Lunar signals in two orthogonally polarized receivers, August 21, 1957.

(The gains in the two channels have been adjusted to provide signals of comparable magnitude).
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The above results cannot be explained by a rough
scattering theory, nor by one in which many scatter-
g areas contribute towards every individual spike.
On the other hand, a theory in which each leading
spike is produced by a single scattering area is
entirely in accordance with all the available data.
The picture which now emerges has a small number
of scattering areas distributed over the moon and
these alone are responsible for the major features of
the return. The fact that the pulse-to-pulse correla-
tion decreases with increasing distance from the lead-
g edge of the return is then a natural consequence
of the increasing area of illumination with depth on
the moon, and honce of the increased probability of
two scattoung areas contrlbutmo‘ simultaneously.

If the scattering areas were distributed over the
entire moon’s surface, the return from even a short
pulse could persist for as much as 11.6 msec, with the
last contribution coming from the areas on the limbs.
In the early moon experiments the long pulse lengths
and the low transmitted powers made difficult an
estimate of the amount of elongation, but Kerr and

. Shain [4] reported an observed elongation with even

millisecond pulses. Inrecent years, however, the use
of microsecond pulses has made the actual (‘1()11g<1t10n
apparent, and it is now accepted that the bulk of the
return is produced by only a small portion of the
moon. Thus, Trexler [2] has observed that 50 per-
cent of the power comes from the first 5 miles of
depth or a circle only 105 miles in radius. This is

“almost exactly one tenth the radius of the moon.

The most distant echoes seen were only 100 miles
back. Similarly, Lovell [6] states that the main
scattering takes place within an area whose radius is
about one third that of the moon.

It follows that the scattering areas are not uni-
formly distributed over the moon’s surface but are
concentrated near to the center. The return from
portions of the moon far from its center is relatively
small and, for example, at times subsequent to the
onset of the return corresponding to reflection from
the limbs, the signal (in the rare cases when it has
been seen) is down by 30 to 35 db from that produced
by the main scattering areas. In fact, it is only with
radars such as those at Millstone Hill and Jodrell
Bank that the dynamic range has been sufficient for

< the limb return to be detected.

4.2. Long Pulses

If the length of the transmitted pulse is increased,
the character of the return is changed. Instead of a
few major spikes superimposed upon a rough but
decreasing background, there now exists a progres-
sive buildup in the return. Given the existence of
scattering areas it is to be expected that as the pulse
length increases the maximum level of the return
will also increase due to the simultaneous illumina-
tion of more and more areas. On the other hand,
because of the concentration of these areas near the
center of the moon, the increase cannot continue
indefinitely, and ultimately a pulse length is reached
at which the power return is the same as that ob-
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tained with ew. This behavior is indeed found.
With a long transmitted pulse the leading edge of the
return is still sharp and again corresponds to scatter-
ing from that portion of the moon which is nearest
to the earth, but while this area is still being illumi-
nated the return from the next scattering area comes
in and interferes with the first. As time progresses
more returns appear, and these will interfere to pro-
duce a vmwty of peaks which are superimposed upon
an increasing background level. This will continue
for a time (\qual to the transmitted pulse length,
or until the ew return has been achieved, whichever is
the sooner. With increase of time bovon(l the trans-
mitted pulse length, the level of the return decreases
and disappears into noise after (about) 200 usec. In
a return of this type all the peaks other than the first
must be attributed to interference.

As stated above, an increase in the pulse length is
usually accompanied by an increase in the ])(“ll\
power return.  Conversely, a decrease in the pulse
length is generally reflected by a decrease in the re-

turn, and this leads to the concept of modulation
loss. The modulation loss was first introduced by

Trexler [2] and is essentially a measure of the reduc-
tion in the peak power return when using finite pulse
lengths, as compared with the level of the ew return.
Based upon many experiments at different fre-
quencies using a variety of pulse lengths, Trexler has
determined values for the loss. These have been
communicated by Youmans [15] and show a modu-
lation loss that increases from 1 db for a pulse length
of 200 usec, through 8.5 db at 30 wsec, and 17 db at
10 wsee, to 22-+2 db at 2 usec. The number of points
1s not enough to describe the precise variation at
small pulse lonollls but it would appear that the loss
is effectively constant for pulse lengths less than ap-
proximately 5 usec. With pulses of this duration, the
contribution from the first scattering area is isolated
from the rest. In contrast, pulses of 300 usec are
sufficient to realize the pe: alk cw return.

4 3. Scattering Areas

In order to estimate the number of major scattering
arcas two different methods are available. The first
of these consists of merely counting the larger peaks
in a short pulse return.  With this approach the num-
ber obtained lies somewhere between 20 and 30, but
inaccuracies do arise because of interference between
signals from scattering areas in the same annular
regions of the moon. 111 other words, a one-to-one
correspondence between peaks and sc attering areas
may not exist for all portions of a returned ])ulso

The second method is based upon the modulation
loss and involves a detailed examination of the power
levels used. To begin with we remark that the
measured values for the modulation loss were found
by restricting the times of observation to ones at
which an appreciable signal is received. Such a
statement has many ramifications and not only im-
plies good propagation conditions, but a straight
average over time. Thus, the cw level which is em-
ploy ed as a reference is an aver age over time for those



periods at which a large return appears. This level
exceeds the one corresponding to random excitation
of the various scattering areas.

As regards the pulse returns, the power level used
is the average over pulses of the maximum for each.
With very short pulses (2 to 5 usec, say), this average
is merely the return from the first scattering area.
As the pulse length inereases more areas are illumi-
nated, but with short pulses at least the average peak
level is almost that appropriate to in-phase addition
of the individual returns. Naturally, the amount by
which it falls below the in-phase level increases with
increasing pulse length, but because the scattering
areas are not large in number, this difference never
becomes more than (about) 7 db. In consequence,
the average peak level remains considerably above
the level corresponding to random excitation. The
ficure 7 db was obtained from results at 201 and 915
Me using millisecond pulses [16] and represents the
difference between the largest signal observed and the
mean level in the sense deseribed above. It is natural
to imagine that this large return occurred when the
individual signals were precisely in-phase, and the
assumption that this was so provides an estimate for
the number of major scattering areas. For this pur-
pose we assume that each scattering area gives rise
to a signal of the same magnitude and, in addition,
that the peak return from a 2-usec pulse comes from
a single area. All the areas together then produce a
peak (or in-phase) return which is 22-+7=29 db
larger than that from one, indicating that there are
28 areas in toto. The result is in good agreement
with that obtained by direct counting of spikes, and
this 1s in spite of the inaccuracies inherent in both
methods. A more detailed discussion of the subject 1s
out of place here, but the above arguments are the
basis for our present belief that the number of major
scattering areas is between 20 and 30.

No statement has yet been made about the physi-
cal nature of the scattering areas. Although much
work remains to be done in this connection, some
information can be obtained by an extension of the
above analysis. If the modulation loss curve is
modified in such a way as to give results appropriate
to in-phase addition, it is possible to estimate the
variation in the total number of scattering areas in
an annular region for which the slope of the mean
lunar surface changes by a fixed amount (for ex-
ample, 1°) from the tangent plane at the nose. It is
found that the number of areas per degree of slope
decreases uniformly with increase of slope beyond
about 2°  This occurs in spite of the increasing
area of these regions and suggests that whereas the
specular areas nearest the center of the moon are
portions of spherical surfaces, the areas further back
are possibly craterlike. As the depth increases the
decreasing probability of finding surfaces suitably
alined is the reason why the level of a short pulse
return falls below its peak by 30 or more decibels
after 600 usec (approx) from the onset of the return.
In effect, therefore, all the scattering areas are
located within 300 wsec of the center of the moon,
corresponding to a depth of 30 miles.

4.4. Pulse Elongation

A direct consequence of the existence of many
scattering areas is the elongation of any pulse re-
turned from the moon. We have seen that this can
be as much as 600 wpsec and, indeed, if a short pulse
return is examined, the general impression received
is of a few major spikes superimposed on a rough
but decreasing background. This background will
be called a “tail” and its general features are the
same for pulses of any length. The peaks have
already been discussed in some detail, and we shall
now consider possible mechanisms which could pro-
duce other pulse distortion and, in particular, gener-
ate a tail.

It is first remarked that for a smooth sphere of

radius @ the return from an incident pulse has a tail
which is a function of both the pulse length and the
wavelength. If, for example, the pulse length is of
order @ and, in addition, 27a/\ has a value near to
unity, the analysis given in [19] shows that a tail
will persist with appreciable amplitude for a con-
siderable length of time.
many scattering areas it is to be expected that the
relevant dimension is the size of the scattering areas,
and if this is now comparable with the wavelength,
each individual return may well possess a tail. The
precise amount of tail will depend upon the type of
scattering object, but since the dimensions of the
major scattering areas on the surface of the moon

are almost certainly measured in tens (or hundreds) ’

of wave-lengths, this effect is unlikely to be significant.

In practice, there are many other effects which are
almost certainly more important. Any roughness of
the lunar surface will produce a residual signal and,
in addition, pulse degradation will be caused by
differential action on the frequency components by
the propagation medium (for example, the Faraday
rotation is frequency dependent). Finally, there 1s
the limited receiver bandwidth to be considered.
In most of the experiments the bandwidth has been
less than the optimum for the pulse length, and,
mathematically at least, this could be the source of
a large amount of the tail. Taking, for example,
the experiments carried out by Yaplee et al. [7] using
2 wsec pulses, a straightforward calculation shows

that the bandwidth of 350 ke could generate a tail -

which only decays to 6 percent of the peak after

16.7 wsec. Under these circumstances, a detailed
discussion of the tail contributions is somewhat
academic.

5. The Measured Power Return

In the last few years many measurements have
been made of the transmission loss in radar scattering
by the moon, and from these results the scattering
cross section can be obtained. The quantity of data
is now increasing rapidly, and the results which are
available at this time are listed in table 1. The cross
sections are there expressed as fractions of 7a? with
a=1.74>10° m. It will be recognized that ma® is
the cross section of a perfectly conducting sphere
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TasrLe 1

|
Wavelength a/ma? | Probable error
| (where known)
‘ m | b
(i) 0.10 4 X104
(ii) | .14 3X10+ +4o0rd
(iii) .33 9X10-2 +3
(iv) ol 3X102 +3
(v) | 73 7X1072 | +3
(vi) | .75 1X10-! +3
(vii) 1.00 (5~9) X102 +4
(viii) 1.49 7X10-2 +3
(ix) 1. 50 (6~10) X10-2 +4
(x) 1. 99 5X10-2
(xi) 2.5 1XX10-! +3
(xii) 3.0 1X10-! +3

whose radius is that of the moon. In interpreting
the data an essential factor is the pulse length.
Whereas the measurements at 3,000 Me were carried
out with pulse lengths of 5 and 2 usec, all the others
were based on an analysis of ¢ew (or very long pulse)
returns, and this accounts for the significantly lower
values in (1) and (i1).

Of the above values of o, the first was obtained
by Hey and Hughes [17] of the Royal Radar Estab-
lishment at a frequency of 3,000 Mec using 5-usec
pulses.  The second is due to Yaplee et al. [7] of the
U.S. Naval Research Laboratory, and is for 2,860
Me with 2-usec pulses.  The third and eighth were
found by Aarons et al. [16] of the Air Force Cam-
bridge Research Center using millisecond pulses at
frequencies of 915 and 201 Me, respectively. The
fourth measurement® was made by Blevis and
Chapman [11] of the Defence Research Telecom-
munications Establishment at a frequency of 488
Me using a cw system, and the fifth is also a cw
result obtained by Fricker et al. [18] of Lincoln
Laboratory with a frequency of 413 Me.

The sixth and twelfth values were found by
Leadabrand [19] of the Stanford Research Institute
using millisecond pulses at frequencies of 400 and
100 Me, respectively. The seventh is due to Trexler
[2] of the U.S. Naval Research Laboratory and has
been deduced from his statement that the cw trans-
mission loss is 258 db when calculated on the basis
of isotropic transmitting and receiving antennas.
The two values given for ¢ in (vii) and (ix) are for
a moon at perigee and apogee, respectively. The
ninth result is the average obtained from many
cw measvrements made at or near a frequency of
200 Me, and has been stated by Trexler [2] as a
transmission loss of 254 db. The tenth measure-
ment was made by Webb [20] of the University of
Illinois at a frequency of 151 Me using a cw system.
The eleventh result was obtained by Evans [21] of
Jodrell Bank with a pulse length of 30 msec at a
frequency of 120 Me, and is a refinement of that
originally measured by Browne et al. [5].

In addition to the above there is a “‘summary
measurement’” which indicates the general depend-
ence of the cross section on wavelength. IFrom a
review of the data available to him, Trexler [2]

5 NoTE ADDED IN PrOOF: We have been informed by Dr. Chapman that a
more detailed study of their data has increased their value for the cross section
of the moon to 5X10-2 a2,
ment between theory and experiment (see fig. 5).

states that for frequencies between 20 and 3,000
Me the average ew transmission loss increases at a
rate of 6 db per octave, passing through the value
258 db at 300 Mec. Reference to the radar equation
shows that this implies a cross section which is
wavelength independent.

A meaningful comparison of all the available data
can only be carried out if the cross sections can be
reduced to those which are appropriate to a com-
mon pulse length. It will be observed that most of
the values for ¢ were obtained from either ew or
long pulse experiments, and as such they represent
the power contributed by many scattering areas.
To discuss the properties of a single scattering area,
it 1s necessary to know the power associated with
one area alone, and this is only the peak return in
the case of very short pulses. It would clearly be
desirable to confine the analysis to data which was
actually obtained with pulses of this length, but
since the number of these experiments is still very
small, we are forced to make use of all available
data. To do this, “correction factors” are applied
to the scattering cross sections to reduce them to
the values for microsecond pulses. Using Trexler’s
ficure for the modulation loss associated with a
pulse of duration 5 wsec or less, the modified data
is then as follows:

This has the effect of making still better the agree- |

(i) AN=0.10m, o=4X10"* 7a?
(ii) A= .14m, o¢=3X107* 7a?
(iii) A= .33 m, ¢=54X10"* wa?
(iv) A= .61m, o=1.9X10"* 7ra?
v) A= .73m, o0c=4.3X10"* ra?
(vi) N\ 75 m, ¢=6.3xX10"* ra?
(vii) N=1.00 m, o0=4.7X10"* a2

(viii) N=149m, ¢=4.2X10"* 7a?
(ix) AN=150m, ¢=53X10"* ra?

(x) AN=199m, ¢=3.0X10"* 7a?
(xi) A=2.5 m, 06=6.3X10"* 7ra?
(xii) A=3.0 m, .3 X 10~ mwa?

These results are interpreted as the scattering
cross section of the first scattering area, and are
plotted in figure 5. Unfortunately it is difficult to
estimate their accuracy. Kven with the original
data the probable error is not always known, but
where 1t is it has been noted in table 1. It is seen
that a typical error is +3 db. In addition to these
inaccuracies there are those which are inherent in
trying to deduce the results of a short pulse experi-
ment from a long pulse or ew measurement. In the
absence of more definite information, we have there-
fore associated an uncertainty of 43 db with all the
modified data, and have denoted these limits by
arrows in figure 5. It would seem likely that this is
an underestimate, but nevertheless the consistency
of the results gives added faith in both the original
data and in Trexler’s measurement of the modula-
tion loss.

6. Theoretical Considerations

To obtain a theoretical expression for the cross
section of the first scattering area, it is necessary to
know the physical shape of the scatterer and also
the material of which it is composed. In the original
exposition of the quasi-smooth moon theory [8], it was
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Ficure 5.  Comparison between theory and experiment.

assumed that the return from this area is a specular
contribution, but the suggestion has been made that
facets, or even conelike projections, should also be
considered as sources of return. To allow for this
possibility, a formula for the cross section will now
be derived of sufficient generality to embrace sev-
eral types of scatterer.

6.1. Basic Formulas

Let us consider first a perfectly conducting body
of arbitrary convex shape on which a plane wave 1is
incident. Tt will be assumed that the receiver is in
the far field of the body regarded as a scatterer.

Since the body is perfectly conducting, the reflec-
tion coeflicient is unity, and the leading term in the
asymptotic expansion of the cross section for small
wavelengths is given by geometrical opties. If the
body has no corners or facets perpendicular to
Poynting’s vector, the geometrical optics cross sec-
tion is wavelength independent and is simply

o=1 R R,, (2)
where 22, and R, are the principal radii of curvature
of the specular region. For backsecattering, the
center of the specular region is that point on the
body which is nearest to the receiver. In the partic-
ular case in which R=R.=a, eq (2) reduces to

o=7a?, (3)
which will be recognized as the cross section of a
perfectly conducting sphere of radius a.

If the body is not smooth and convex, but is still
perfectly (on(lu(tmg, other portions md_\' contribute
towards the scattering cross section, and while small
scale irregularities will not be considered, any large

scale perturbation must be taken into account. Fall-
ing into this category is a corner reflector or large
flat area, the cross section of which is

A

N

4)

where A is proportional to the square of the area.
For positions of the receiver in the direction of peak
return, A is essentially wavelength independent.
The equivalent structure on the surface of the moon
could be a smooth mountain face taken either by
itself (to give a flat area) or in combination with the
level lunar surface (to produce a corner reflector).
Because of the narrow beamwidth, it seems unlikely
that such a scatterer could provide a significant
contribution to the actual moon’s return over any
range of aspects, but in the interests of generality the
possibility will not be excluded.

A second type of structure is a conelike projection
of small included angle (the lunar equivalent might
be a mountain peak), and the cross section of this is

(5)

If both
the total

o=\,

where (7is independent of the wavelength.
types of scatterer are present on the body,
cross section can be written in the form

a=%+ IBE= R (6)

with A, B, (">0. In this expression, /5 represents
the geometrical optics cross section of the unper-
turbed body.

It will be appreciated that in writing down eq (6)
we have neglected interference between the indi-
vidual scatterers. 1Inits application to the moon, the
equation is only required in the analysis of the lead-
ing part of the pulse, and to contribute towards this
part all the relevant scatterers must lie in the same
general area. The interference which then exists will
show up as a fluctuation in the power level of indi-
vidual pulses as a function of aspect. Since no fluc-
tuation appears which can be attributed to this effect,
it seems likely that one type of scatterer and, more-
over, only one scatterer of that type, is responsible for
the major contribution towards the leading part of the
pulse. Accordingly, if the cross section in eq (6)
is compared with the experimental data, we should
expect to find that one of A, B, and (' dominates
the other two.

Unfortunately, eq (6) is not immediately appli-
cable to the analysis of the data. In the first place,
the moon is not perfectly conducting nor is it likely
to be homogeneous. In addition, many of the ex-
periments have been carried out using beamwidths
which do not always illuminate the w hole moon and,
finally, there is the near-zone effect. As pointed out
in reference [8] the distance between the earth and
the moon is substantially less than 4mwa?/\, where a is
the moon’s radius, so that any receiver on the earth
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will necessarily be within the near zone of the moon
regarded as a scatterer. The effect, if any, of these
conditions upon the scattering cross section will now
be considered.

6.2. Near-Zone Effect

After it was appreciated that the earth is in the
near zone of the moon at all frequencies which will
penetrate the ionosphere, Dr. V. H. Weston of this
laboratory obtained the leading term in the small
wavelength expansion for the cross section of a
perfectly conducting sphere with transmitter and
receiver located arbitrarily.

Taking the transmitter to be a point source at a
distance 7 from the nearest point on the surface of
the sphere and the receiver at a distance 5 from the

same point and in the same direction, Weston’s
analysis [22] yields a cross section
Ar < drrs > (7)
o=4r( —— . i
a(ri+ry)+2rrs,

where a is the radius of the sphere. There are now
two distincet cases that can be treated. If the trans-
mitter and the receiver are at the same position so
that 7,=ry(=r, say), eq (7) becomes

-7 ((lr(—l%}’I)z'

2
o=7r,

(8)

When a >

'>,'7

which is therefore the cross section of a sphere for a
transmitter and receiver near to the surface and also
the cross section of an infinite flat plate for a trans-
mitter and receiver anywhere, and when ¢<C eq
(8) gives

<r,
9
o=ma".

A second set of results can be deduced from eq (7)
when the incident field is a plane wave. By taking

the limit of (7) as r,—>o (it is sufficient that », > >
a, ), we have
“ary O\’
U—47T< - 7) (9
a—+2r, )
and for a > >r,
o=A4xr},

which differs
result for spherical wave illumination.
when 7, > > a, eq (9) reduces to

by a factor 4 from the corresponding
Of course,

o —T0

in agreement with eq (3).

The above analysis shows that for cw illumination
the leading term in the expansion for the cross section
of a s])h(‘w 1s wa® for both plane and spherical waves,
and is independent of the position of the receiver
providing its

pared with the radius. In reference [22] it is also

distance from the sphere is large com- |

shown that the same formula gives the scattering
cross section which would be obtained with pulses of
any length.

These results have an obvious interpretation in
terms of the cross section of the specular area, and in
order to realize the full cross section it is only neces-
sary for the incident field to cover this particular
area. In consequence, the beam width can be appre-
ciably less than the mgl(‘ subtended by the sphere
without dﬂ'u(tinw the peak return. Moreover, be-
cause the moon’s return is given by a finite number of

scattering areas, we need only illuminate these to
obtain the total power return, and since the areas are
confined to a region about 500 miles in extent, a
beamwidth of approximately 8 min of arc should be
sufficient to realize all the available power.

6.3. Reflection Coefficient

The formulas which have been obtained so far only
apply to perfectly conducting bodies, and we shall
now consider the effect of taking into account the
material constants of the body.

FFor a body which is not perfectly conducting but is
composed of a homogeneous isotropic material, the
leading term in the small wavelength expansion
differs from the optics cross section by a factor which
depends upon the electromagnetic constants of the
surface and is, in fact, the power reflection coefficient
[R%. In the case of backscattering from a flat plate
or specular area, the maximum return occurs at nor-
mal incidence, and since the dimensions of the scat-
terer are large compared with the wavelength, the
reflection coefficient is the same as for an infinite slab
of the material.

If a plane electromagnetic wave is incident nor-
mally on such a slab,

()
—— (10)

(see, for example, reference [23]), where €, u, and s are
the permittivity, permeability, and conductivity, re-
spectively, of the material. The subscript “o” de-
notes the same quantities for free space and wis the
frequency. Rationalized mks units are employed
with a time dependence exp(—iwf).

If the material is primarily dielectric in behavior
at the relevant frequencies (as seems probable for
the moon), then

s< < we
and
1l —{p—ln”
)/\/77,, .
[‘"*1+b+m'
where o -
Mo b ann
] ; ], /
= \/,U-f'l wd b oc\ e
giving
IR0 b
— (1+8) 457
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In the denominator the second term is certainly small
compared with the first, and hence

iW~<1+l)> +(1+b

Since w=2mwe¢/\, this equation can be written as

| R |*o2d+N*d! (11)
with
= (1 +b (12)
and
, (b sy .
: _<1+b zmz)' (13)

It seems reasonable to assume that d will not be
identically zero.

For a flat plate or specular area the cross section
for infinite conductivity must be multiplied by the
reflection coefficient [2]?, and while the values of d
and d’ may be different for each individual scatterer,
no confusion should arise if distinguishing marks are
omitted.

In the case of scattering by a conelike projection,
the reflection coefficient cannot be obtained from a
consideration of normal incidence on an infinite slab,
but from a study of the complete optics solution for
a cone of imperfect conductivity, the corresponding
expression for |2|? is found to have the same wave-
length dependence as appears in eq (11).  Although
the coefficients are no longer given by eqs (12) and
(13), a detailed derivation is unnecessary in view of
the conclusions reached in section 7.1. If the same
symbols d and d” are used to denote these coefficients,
the combined cross section of the various types of
scatterers can be written in the following general
form:

11(]

-5 +(A(Z’+B(Z)+(B(Z’+(*d) N Cd N (14)

In order to apply this result to the analysis of the
data, it is necessary to assume that d and d’ are
independent of wavelength. For the material of
which the moon’s surface i1s composed it seems
reasonable to assume that ¢ u, and s do not vary
rapidly as a function of frequency, and the expression
for [R|* can then be used providing the material of
the first specular area can be regarded as homo-
geneous. In particular, there is no requirement that
the whole moon should be effectively homogeneous.

7. Comparison With the Data

The experimental data for the scattering cross
section of the first specular area will now be used
to determine the most probable values for the
constants which appear in eq (14). In this way
it is possible not only to determine the dominant
type of scatterer which is responsible for the return,
but also to obtain information about the material
of which the scattering area is composed.

7.1. Least Squares Analysis

Over the range of wavelengths for which the
data is available, the variation in the cross section
is relatively small, and this suggests that the
dominant term in eq (14) is wavelength independent.
This is confirmed by a least squares analysis in
which the above expression for ¢ is compared with
the measured data. The values obtained for the
terms are

Ad=—8.94 X 107" X ra* m*,
Ad' 4 Bd=4.45X10"* X ra* m?,
(Bd'+ Cd)=—1.03 X 107° X wa? dimensionless,
(Cd")=3.71 X107 X ra* m~2,

where a=1.74>10° m. In the range of X\ for which
we have experimental values we find that the second
term exceeds all others and for the smaller wave-
length experimental points the second term exceeds
all others by at least an order of magnitude. In
particular, Ad is both small and negative, and can
therefore be neglected. Since d#0, it follows that
A can be taken zero, and this rules out the possibility
of facets making a major contribution towards the
measured values of ¢. In addition, Cd’ is extremely
small, and although this does not determine that
O itself 1s negligible, it does enable us to remove
a further wavelength dependence from the formula
for o.

By repeating the least squares analysis using
only the A\ and \? terms, it is found that

Bd=4.04X10"*X ra® m? (15)

(Bd’+Cd)=2.37X107>X 7a* dimensionless. (16)

The specular area still provides the dominant
contribution and since neither Bd’ nor Cd can be
negative, the effect of any conelike projection is
smaller by at least a factor of 17 for A<1 m. On
the other hand, no argument of this type can dis-
tinguish between the return from such a projection
and the conductivity effect of the first specular
area. As previously remarked, a variation in
amplitude in the leading part of pulses could indicate
the existence of more than one scatterer, but the
fact that no variation exists only precludes the possi-
bility of two or more scatterers giving comparable
returns. In the present case we have already seen
that the specular area easily outweighs all the
other scatterers, and on the ground that a single
scattering object provides the most attractive picture,
the assumption will be made that (' can be neglected.
It should be noted that the presence (or absence) of
any conelike contribution in no way affects the
value of Bd.

The above assumption implies that the leading
part of a pulse comes from a single specular area,
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and since the scattering cross section is then

s=7mR\R, |R[? (17)
where 12, and R, are the radii of curvature, the lack
of any appreciable pulse-to-pulse variation now
suggests that the magnitudes of R, and R, are the
same for every specular area which is responsible
for the return. The only radius which appears to
have an a priori probability of occurring is the moon’s
radius itself. It is therefore assumed that both
radii of curvature are equal to the mean lunar
radius, and while this must remain a possible source
of error, an alternative choice of radii is discussed
in section 7.3.

Replacing R; and R,
becomes

by a, the cross section

o=ma* R|?
in agreement with that used in reference [8]. From
eqs (15) and (16) we then have

o=(d+22 &) ra?

m~2 and the

)

with d=4.04>X10"* and d'=2.37X107°
corresponding curve is plotted in figure 5

7.2. Electromagnetic Constants

The electromagnetic constants of the material of
which the specular area is composed can be calculated
from the above values of d and d’. If these are
inserted into eqs (12) and (13), it is found that

€/u="6.5x10"% mhos?,

§/u=2.4 <10 mhos/henry,
or

e/u="7.6X10"° mhos?,

§/u=2.7>X10* mhos/henry.

The two sets appear because of the ambiguity in
sign in taking the square root of d. Aesthetically at
least, it is more pleasing to select that set for which
the ratio e/u exceeds its value for free space, and this
is the second of those given above. We note in pass-
ing that only a preliminary version of the first based
on seven experimental points was given in references
[8] and [24].

From a power measurement alone, e and s cannot
be obtained explicitly, but if it is assumed that
L= o, then

€=9.6X107'2 farads /m(=1.1¢)

§=3.4X10~* mhos/m.

Both of these values are smaller than expected and
few (if any) naturally occurring substances on earth,
apart from liquids or gases, have a relative permit-
tivity as low as 1.1.  Although this is no reason for
ruling out the possibility of an appropriate lunar
substance, it may be of interest to observe that if

w is increased by a factor a, €, and s are increased
by the same amount. Taking « to be, for example,
1.4, we now have

u=1.4u,,
e=1.5¢,
§=4.8X10"* mhos/m,

and these are not inconsistent with soils such as
magnetite.

7.3. Discussion

Over the range of wavelengths from 0.1 to 2.5 m
the variation in the measured cross section is rela-

tively small but is accurately reproduced by the
wavelength dependence of the formula for |22, In

the authors’ opinion, this variation is significant and
implies a small (but nonzero) conduc uvlty for the
material of which the specular area is composed. On
the other hand, Purcell [25] has pointed out that
a cross section which is wavelength independent can
be chosen to fit the data to within +3 db. A cross
section of this type would be represented by a line
parallel to the abscissa in figure 5 and would imply
either a material of zero conductivity or one whose
conductivity varied inversely as the wavelength.
For this frequency range at least, the cross section
would be approximately 3.5>X10° m?.

Purcell has also suggested that in eq (17) the radii
of curvature should be about a tenth of the lunar
radius, thereby increasing [R[* by a factor of (ap-
proximately) 10%.  This now agrees with the reflec-
tion coefficient of certain dry “sands on es arth, and
even with p=p, the resulting permittivity is in-
creased to 1.5¢.

Unfortunately, the decreased radius of curvature
has several unpleasant consequences. In a short
pulse return from the moon, the second major peak
1s similar to the first in all important respects. To
a somewhat lesser extent, this is also true of the
third and fourth peaks and, in particular, the power
levels do not differ appreciably. Purcell’s picture
then requires that each peak be produced by a region
whose radii of curvature are less than that of the
lunoid. Instead of a single bump in the center of the
moon, we are now forced to postulate a series of
undulations of amplitude @/10, and these have to
extend over a considerable portion of the lunar
surface. It seems unlikely that such a system of
(smooth) undulations would have escaped detection
i lunar photographs.

1f, on the other hand, the radii of curvature are
equal to the radius of the moon, the low permittivity
may have to be accepted, though the possibility that
w exceeds o should still be borne in mind. However,
the authors are not as yet convinced that a relative
permittivity as low as 1.1 is necessarily inconsistent
with a solid material in the environment of the moon,
and feel that selected powders might conceivably
fit the bill.
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8. Conclusions

The theory of a quasi-smooth moon was arrived
at from a study of many sets of experimental data,
and it is felt that the pulse shapes and power returns
can be satisfactorily explained on this basis. It is
found that the major scattering areas are concen-
trated near to the center of the moon, and their total
number appears to be approximately 25.  An indi-
cation of their distribution can also be obtained, but
no attempt has been made to associate these areas
with individual features on the moon. There is
clearly scope for further work in this connection.

The area nearest to the earth provides a specular
return, and if pulses of short duration are employed,
this return shows up as a peak which can be distin-
guished from the remainder of the pulse. Only a
scattering process of this type could produce the
high pulse-to-pulse correlation and the lack of wave-
length dependence observed in the leading peak. It
seems probable that the adjacent scattering areas are
also specular in character, but no statement is vet
possible about the areas as a whole.

The power level of the leading peak now deter-
mines the scattering cross section of the area nearest
to the earth, and this in turn specifies the electro-
magnetic constants for the material of which the
area is composed. Using the measured power returns
at a variety of different wavelengths the ratios of
permittivity to permeability and conductivity to
permeability for the surface have been found. The
ralues are smaller than expected, but are not neces-
sarily inconsistent with certain powdered materials
in the environment of the moon. In this connection,
laboratory experiments under vacuum conditions
will be carried out in the near future to determine the
constants for several substances whose occurrence on
the moon has been postulated.

The analysis reported in this paper and, indeed,
the development of the theory itself, were only pos-
sible because of the experimental data made avail-
able to us. We therefore express our gratitude to
the many experimenters who freely communicated
their results to us even prior to publication elsewhere.
We are also indebted to members of the Radiation
Laboratory, among whom should be mentioned R. E.
Hiatt, who performed the experiment described in
section 3.3, and W. E. Fensler, who provided assist-
ance with this manuseript. The work desecribed
herein was carried out for the National Aeronautics
and Space Administration under Grant NaG-—4-59.
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10. Appendix: A Radar Cross Section
Theorem

Consider a body on which is incident a field whose
direction and polarization are fixed in space. The
scattered field 1s received with two orthogonally
polarized antennas which are located at a fixed point
in space, but whose polarization is variable. To be-
oin with, it will be assumed that these antennas are
in the far field of the body.

At any point in space the scattered field can be
written as

E*=L'7+M'0+N'g,
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where 7, 8, ¢ are unit vectors for a system of spherical
polar coordinates whose origin is in the neighborhood
of the body. L', M’, N” are functions of the incident
field (in direction and polarization), the body (in
shape and aspect), and the position of the receiving
point. If this point is in the far field of the body,
then

lim L/=0(1/r?)

r—>

oikT
lim ;\1/:’7 M+0 (1/r?)

r—>®

pikT
lim N’:(’T N+O (1/r2)

r->w

where M and N are independent of 7, a time de-

pendence ¢ " having been assumed. Hence
ikr
N
i'~—F
=

with
F=Mo¢+ N¢
For a receiving antenna which is polarized in the

direction x, where z makes an angle 8 with some
fixed direction, the cross section which is measured is

2

U(a,ﬁ):41r“_“~.;'

and this can be written in the form

o(a,B)=4r

M cos @+ N sin Q|

229

where @ is the angle between the projection of z in
the (8, ¢) plane and the vector ¢. Similarly, for the
receiving antenna which is orthogonally polarized,
the cross section is

o (a, B—I—?)r- =47|M sin Q— N cos Q|*

and hence

M|*+ |N

ola, )+ (@ B+ )—dr ). (A

For a fixed transmitted field and for a fixed location
of the receiving antennas, the right-hand side of this
equation is at most a function of the aspect of the
body (which can be changed by rotating the body
keeping the antennas fixed). In particular, it is
independent of @ (and therefore 8), and in conse-
quence 1t holds for all receiver polarizations.

If the receiving antennas are not in the far field,
only a trivial modification of this proof is required.
The field component L’ must now be retained, and
the equation corresponding to (A.1) is then

o(a, B)+o (a, ﬂ+g :12]1 drr? (|1’ |2+

M2+ N']).

To the first order in  this is identical to eq (A.1).

Bourper, CoLo. (Paper 64D3-51)
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