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A self-contained trea tment of the waveg uide mode t heory of t he p ropaga tion of very
low-frequ ency radio waves is presented . The model of a flat eart h wi t h a sharply bounded 
a nd h omogeneo us ionosphere is t reated for both vert ical and horizontal dipole exci tation. 
The propert ies of t he modes are discussed in considerable detail. 

The influence of eart h curvat ure is a lso cons idered by reformu lat ing the problem using 
spheri cal wave fun ctions of complex order. The m odes in such a curved guide a re investi
gated and d~s pi tc t he init ial complexity of t he ge nera l solu t ion, ma ny in teres ting and 
limi ting ca es may be t reated in simple fashion to y ield useful and convenient formulas for 
calculation . 

Othcr factors considered a re t he inftuence of t he ea rth 's mag netic field, an t ipodal effects, 
resonator ty pe oscillations, a nd t he influen ce of stratifi cation at t ile lower edge of t he 
ionosphere. 

1. Introduction 

The concept that radio waves ar e channeled between the earth and the ionosphere as in 
a waveguide has proved to be very nseful a t very low frequ encies «30 kc). In 1919, G. N . 
'Watson [1 ] l employed this approach when he considered, at least in a form al way, the propaga
t ion of elec tromagn etic wa ves between an idealized homogeneous spherical ear th and a concen tric 
reflectin g layer. Because of the extremely poor convergence of tb e exact series solutions, 
Watson devised a techniq ue to conver t this to a more rapidly converging series using function
theoretic means. The new representa tion corresponds to the sum of residues at poles in the 
complex plane and hence the name "residue series ." The waves associa ted wi th these poles 
arc the waveguid e modes. Watson studi ed the numerical proper ties of these modes for the 
case of long waves or low frequencies and on assump tion of a very highly condncting shell . 
This par ticular aspect of his investigation was promp ted by the recen t discoveries of Marconi 
that radio waves decay mu ch more slowly wi th distance than predicted on the basis of classical 
diffraction theory in the absence of a r eflecting shell. Watson found tha t the modes of low 
a t tenuation behaved like 

__ 1_----,- e-'"/~ d 

(sin d/a) ~ 

where d is the great circle distance,} is the frequency, IT is the conducLivity of the reiieating 
ionosphere, a is the radius of the earth, and a is a constant. For frequ encies in the range from 
about 20 to 40 kc, obser ved field strengths behaved more or less in tills fashion if the effective 
ionospheric condu ctivity was tak en to be about 10- 4 mhos/m or a conductivity of th e same order 
as " tap water " . Actually for frequencies in this range some 10 to 30 modes would be excited 
and if the complete mode sum ,yere considered, the calculated field strength versus distance 
curve using such a mod el would show many rapid and violent undulations. Such a b ehavior 
is not observed under normal conditions and this fact alone is suffi cient cause to r ejec t t his 
model even from a phenomenological viewpoint . The same model with cer tain refinements 
has been discussed more recen tly by Rydbeck [2] in a monograph , Bremmer [3] in his book, 
Schumann [4 to 6] in a series of papers, and most recently by Kad en [7]. From the frequ ency 
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analysis of atmospheric wave forms [8, 9], it is known that the attenuation rate does not vary 
like {j except possibly at frequencies near 1 kc. Actually, the attenuation rate decreases 
with increasing frequency in the range from about 2 to 18 kc and thereafter increases. A 
behavior of this kind is highly suggestive of a Brewster angle effect. Such a proposal was 
first made by Namba [10] as far as this writer can ascertain. It thus appears than the iono
sphere at vlf is behaving more like a magnetic wall (tangential H near zero) rather than an 
electric wall (tangential E near zero) as postulated by Watson, Bremmer, and Schumann. 

Contributions to the waveguide mode concept have also been made by Budden [11 to 13 
incl.] who unlike the early workers did not assume a highly conducting reflective layer at the 
outset. His model was a vertical electric dipole source in the space between the surface of a 
flat perfectly conducting ground and a sharply bounded homogeneous ionosphere. Various 
extensions and generalizations have been made by Al'pert [14, 15], Lieberman [16], Wait 
[17 to 22 incl.], Howe [23], and Friedman [24]. Their work is referred to from time to time in 
the text. It is the purpose of the present paper to present a unified treatment of the mode 
theory of vlf propagation. The results include much of the above work as special cases. In 
fact, in some instances, the analysis follows the work of Budden, Bremmer, and Rydbeck rather 
closely, although many new results are derived. While no attempt is made to present numerical 
results, limiting cases and simplified forms of the general solutions are discussed in some detail. 
An extensive bibliography is included in this paper for the convenience of those who are more 
interested in related numerical results and experimental data. It is intended that this paper 
will serve as a theoretical basis for subsequent papers by A. G. Jean, ",V. L. Taylor, A. D. Watt, 
and the author. 

2 . Basic Concepts 

To introduce the subject a very simple model is chosen. The earth and the ionosphere 
are represented by perfectly conducting planes. In terms of a cylindrical coordinate system 
(p, c/>, z) the ground surface is the plane z= o and the lower boundary of the ionosphere is the 
plane z= h. The source is now considered to be a vertical electric dipole located on the ground. 
The electric field observed at some other point on the ground plane has only a vertical compo
nent and can be deduced by considering the images of the source dipole. These images are 
located at z= ± 2h, ± 4h, ± 6h, etc., and all have equal sign and magnitude, because of tIl(' 
assumed perfect conductivity of the bounding walls. These images will always direct a wave 
broadside since the radiation from each image is in phase. At a distance which is large com
pared to h, this field can be calculated by replacing the line of dipole images by a continuous 
line source carrying an equivalent uniform current la. This current is the average current 
along the z axis and is given by 

in terms of the height ds of the dipole and its cmrent 1. N ow the field of a line source of cm
rent is well known and thus 

E = laILw H (2) (k ) = ILwlds H (2) (k ) 
Z 4 0 p 4h 0 p (2.1) 

where Hci2) (kp) is the Hankel function of the second kind of argument kp, IL is the permeability 
of the space, w is the angular frequency, and k = 27fI A. When p':'J> A, the Hankel function can 
be replaced by the first term of its asymptotic expansion and this leads readily to 

E~?!. Ids e i . ) 4e - ikp 

Z- 2 heAp)! 
(2.2) 

where 1] = (!l/f)!~1207r. As mentioned above, this field corresponds to the radiation directed 
broadside so the rays are parallel to the bounding walls. However, there will be other angles 
where the rays emanating from each of the dipoles in the line of images are also in phase. 
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Such a resonance condition exists when 
2hC= n'h (2.3) 

where C is the cosine of the angle sub tended by the rays and the z axis and n is an integer 
(see fig. 1) . It is seen that for each value of n there are two families of rays which have the 
same radial phase velocity (i.e., = c/S) but with opposing vertical phase velocities (i.e., = 
± c/C). Again the radiation of these sets of waves (i.e., modes) can be imagin cd to originate 
from an equivalent line source . The strength of this line SOUTce is IS where S is Lhe sine of the 
angle sub tended by the rays and the vertical direction. To obtain the r esultant vertical field , 
this must be again multiplied by S. Consequently the resultant field of all the families of 
rays or modes is obtained by summing over integral values of n from 0 to ro to give 

E = }.IwIds ~ S2H(2)(kS ) 
z 4h n=O ~. 0 . P (2.4) 

where Eo= l , En= 2(n = 1, 2, 3 ... ) andSn= (I-C~)t and Cn=n'h/2h. The term n = O, corres
ponding to mode zero discussed above, is only included once in the summation, whereas the 
higher modes are included twice. In the far field, this expression for the field reads 

(i mage ) -- - z=2h 
t 
I ~ 
I <i}", 

--------T-~~----~~-------------z=h 

(source) --;o;i"''------\------.:L-------....L.:...../ __ z = 0 

I 
arc cos C'---t\ ",J-. 

I 

(Imag e) - ! - z=-2h 

FIG DR E 1. Depicting ray-geometry corresponding to the first 
mode between parallel plates; for resonance, A= 2hC 1• 

(2 .5) 

Up to this poinL the bounding walls have been assumed to be of perfect conductivity: 
The reflection coefficients for the rays are always + 1. Another simple case is whcn the upper 
boundary has a m flection coefficient of - 1 corresponding to a perfect magnetic conductor , and 
the lower boundary still has a rcflection coefficient of + 1 corresponding to the more common 
perfect electrical conductor. For this situation the images are now located at Z= ± h, ± 2h, 
. . . but now they alternate in sign . It may be observed that there is no coherent family of 
rays directed broadside. This would have been the zero-order mode. The resonance condition 
for the modes is now 

2hC= (11, - }6) 'h (2.6) 

where n = 1, 2, 3, . . .. The corresponding cxpression for the vertical electric field is thus 
given by 

(2.7) 
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where the summation starts at n = 1 and includes all positive intE-gers. In the far field 

E ~ 7J Ids ei ".j4 :S S3/ 2e-ikSn P (2.8) 
z - heAp) H n~ I,2,:J, . .. n . 

1n tbe foregoing discussion the observer and the source, which is a vertical electric dipole, 
are located on the ground plane. The above results are easily generalized to a finite source 
height, Zo, and a finite observer height, z, by inserting the factor cos (kzoOn) cos (kzGn ) inside 
the summations of eqs (4), (5), (7), and (8). This can be verified by returning to the image 
picture and noting now that they are located at Z= -h, ± (2h+ zo), ± (2h- zo), ± (4h +zo), 
± (4h-zo) , . . .. It may also be observed that the cos (kzOn) when replaced by [exp(ikzOn ) 

+ exp (-ikzGn)]j2 can be identified as a family of upgoing and downcoming rays within 
the guide. 

The important modifications of the preceding formulas as a Tesult of imperfect reflection 
can be obtained by a rather simple physical argument. The complete treatment requires a 
more mathematical approach which is to be described later on. 

The reflection coefficient for a ray incident on the ground plane at an angle (whose cosine 
is G) is denoted Rg( 0) . The corresponding reflection coefficient for the upper boundary which 
is the lower edge of ionosphere is denoted R i ( G). The resonance condition now has the form 

(2.9) 

which reduces to eq (3) if the reflection coefficients are both + 1 and reduces to eq (6) if one 
reflection coefficient is + 1 and the other - 1. Physically, the above more general form can 
be the condition for a ray to traverse the guide twice, be reflected at each boundary, and yet 
s till suffer a net phase shift of 2 7r n radians where n is an integer. Since Rg( 0) and R i ( 0) may 
be complex and less than unity the value of a (i.e., On) which satisfies the resonance equation 
may also be complex. The angle of incidence of these rays in the guide are thus also complex. 
The corresponding value of Sn is also complex and this resul ts in attenuation of the wave in 
the radial direction. In fact, the attenuation constant is minus the imaginary part of kSn in 
!lepers per unit distance. 

When the angle or its cosine a must be complex in order to satisfy a resonance equation, 
the resulting waves are damped. The numerical solution of such a complex resonance 
equation is quite difficult, in general, since it is not usually possible to obtain an explicit expres
sion for G in terms of known parameters. This aspect of the problem is discussed in a later 
section . 

3. Formulation for Flat Earth Case 

3.1. Vertical Dipole Excitation 

It is now desirable to formulate the problem in a more definite fashion. A vertical electric 
dipole of moment I ds is placed in a homogeneous plane layer bounded by two plane interfaces 
(see fig. 2). The lower interface is at z= O corresponding to the surface of a homogeneous 
ground of conductivity U g and dielectric constant Eg • The upper interface at z= h is the lower 
edge of a homogeneous ionosphere which for the moment is assumed to be isotropic and has 
effective electrical constants U i and f i . The fields in these regions can be derived from a Hertz 
vector which has only a z component, lIz. Thus, for h ~ z ~ 0 

02 

E p=opoz IIz 
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FIGUHE 2. Cylindrical cOO1'd£nate system f01' the vertical ci'ipole 
between the two plane intel/aces. 

Similar express ions are applicable for the regions z>h and z< O where the z directed H erlz 
vRctors are denoted m il and lI~ g), respectivRly, and the corresponding wave numbers are ki and 
kg, r espectively. Th e formal solution of this problem is obtained in a s traigh.tforward fa Ilion 
by requiring that the tangential field components Ep and Hq, are continuous across t he two plane 
in terfaces. An equivalent statement of these matching conditions is as follows: 

FlI.= lc~ lIz (8)] 
Oll. oll. (g) 

OZ =-sz 
for z= O, 

for z= h. 

(3. 2) 

(3 .3) 

To facilitate the solution, the primary excitation 1'e Lilting from the somce dipole is r epre
sented as a spectrum of plane waves . This well-known represcn tation , for the primary Hertz 
fun ction, is given as follows: [25] 

(3 .4) 

wh ere }.;[ = ! ds/(47riwe) and S = (1 -C2)t. The in tegraLion variable C can be r egarded as th e 
cosine of the angle of incidence of the plane waves in the spectrum. r is the contour of in tegra
tion and it extends from -0) along the negative real axis to the origin, then out along the real 
axis to +0) . It should be noted since C can be greater than unity complex angles in the 
spectrum occm . The above form for the primary excitation then suggests that the resul tant 
H ertz function for the three r egions can be written in the respective forms 

(I) (3. 5) 

for O ~ z ~ h; 

(II) (3 .6) 

for z~ 0; and 

(III) (3 .7) 

for z>h. In the above, it can be verified that these Hert,,; functions satisfy the appropriate 
wave equation subj ect to the conditions that 

Ng(l - Cij -1x= (1-C2)t= N i(1 - cnt 
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where 

Terms containing exp (-ikgCgz) and exp (ik ,Ciz) are not permitted since they would violate 
the Sommerfeld radiation condition at Izl-;.oo. 

The form of the unknown function A(C) , B(C), G(C), and I(C) can be obtained explicitly 
by using the fom equations of continuity. This purely algebraic process is easily carried out 
and further details are omitted. The resultant Hertz function for the air region is explicitly 
given by 

where 

F(C) 

and 

n z=ikM r F(C) Hg2) (kSp)dC 
2 J1' 

(e ikCZ+ Rge-ikCZ) (eikC (h - Zo) + Rie-ikC(h-Zo» 

e ikCh (1_ RgRi e 2ikhC) 

It can be immediately noted that the integrand has poles where 

1- R g (C) R i (0) e 2ikhC = O. 

(3.9) 

(3.10) 

(3 .11) 

(3.12) 

This is the (complex) resonance equation obtained in the previous section by mtuitive reasoning. 
The integral may be evaluated by using function-theoretic means. The contour is trans

formed to the S plane. Thus eq (9) becomes 

(3.13) 

where the contour r may now be taken as the real axis from -00 to +00 in the S plane. 
The contour is now closed by semicircles in the lower half-plane as indicated in figure 3. 

Because of the branch point at S= + 1 and its associated branch line drawn vertically downward, 
the closing contour runs from one Riemann sheet to the other in the manner indicated. After 
making two circuits the contour closes on itself. The contours are indented at other branch 
points in the manner shown for B on the figure. These branch points are located well below 
the real axis (i.e., imaginary part of S> > 1) and the corresponding branch cut integrations lead 
to waves which are heavily damped provided 

h 1 -N~ -«I-N 'l and kp I N~- 1 1» 1. 
p i 

(3.14) 

N ow the line integral around the complete circuit in the two sheeted Riemann surface is equal 
to - 47ri times the sum of the residues of the poles of the integrand . The poles which occur in 
pairs are located on both Riemann sheets. For highly conducting walls , a number (at least 
one) is located just below the real axis between the origin and the branch point at +1. The 
remainder are located along or near the negative imaginary axis. The contribution from these 
latter poles is very small and they correspond to the waveguide modes beyond "cut-off." 

The contribution along the semicircles is seen to vanish if the radius R approaches infinity. 
This is assured by the presence of the Hankel function Hri2) (kSp) which is exponentially de
creasing in the lower half-plane of S . Consequently, each of the two integrations along tbe 
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FIGURE 3. S plane. 
Branch pOint ; x, poles. 

real axis are approximately equal to - 27ri times the sum of the residues at S= Sn. When the 
integral is expressed in the original C plane the residue series may be regarded as the con tri
butions from the poles at C= Cn which for n = O, I, 2, ... are in t he first quadrant and for 
n = - I, - 2, - 3, ... arc in the third quadrant. This leads to 

where the square bracket term is the residue of the fun ction F(C) at the pole 0 = On. Carrying 
out the differentiation and making use of the resonance condition 

leads read il.r to 

(3.17) 

where 

(3. 18) 

where 

(3.19) 

andjn(zo) has exactly the same form. 
When the walls are perfectly conducting R i(O) = Rg(O) = I , the factor on(O) becomes unity if 

n = I , 2, 3, and becomes ~ if n = O, andj,,(z) = cos kC"z. The above expression can then 
be written 

lIz = i7rt: t? f nH J2)(kSnP) cos (kO"zo) cos (kOnz) 
n-O,l, ... , . .. 

(3 .20) 

where fO = I, f n= 2(nrfO). The corresponding value of the electric field component E z can be 
expressed 

(3 .21) 

which is in agreement with eq (2.4) obtained from physical intuitive reasoning. 
The extension to the case when the source is a vertical magnetic dipole is simple. Formally 

the above resul ts are still valid if I is replaced by the magnetic current K. Ez then becomes H z 
and the field is essentially horizontally polarized. The reflection coefficients Rg( 0) and R i ( 0) 
arc to be replaced by their counterpar ts for horizont,al polarization. 
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Explicitly these are given by 

(3.22) 

and 

(3.23) 

It may be noted, since R(- O) R(O) = l where R is any of the reflection coefficients R i , 

R g , R7, or R~, that for negative values of n 

0_1= -00 

0_2=- 0 1 

+00 00 
It then follows that the summations ~ ... may be replaced by 2 ~ .. . everywhere 

o 

For convenience in numerical computation, it is convenient to express the field components 
as a ratio to the quantity 

(3.24) 

Eo is the field of the source at a distance p on a perfectly conducting ground. Thus for both the 
source and the observer near the ground it is not difficult to show by means of eqs (1), (17), 
and (19) that 

E z = WEo 

where 

W ~ - i7r -hP ei kp ± onS~HJ2) (kS nP) 
n=O 

(3.25) 

where 

S "'~!!.- ei kp ± 0 S H (2) (kS p) 
= N g h 11 =0 n n 1 n (3.26) 

and 

where 

(3.27) 

In the above it has been assumed that INgI2> > 1. 

'iVhen kp> > 1, corresponding to the "far-zone," the above expressions may be simplified 
since the H ankel functions may be r eplaced by the first term of their asymptotic expansion.2 

'} The relevant expansions are 

H")(x)~ (~) t e- i.ei~ [ 1 _~+_9_, ... J 
o 1'1'".1: 8tl' 2( 8IX )2 

H ") )~(~) j - ix i~ [ ~ __ 15_ J 
1 (x ~ "-1' e e 4 1+ Six 2(Si1'l"" . 
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This leads to the compact resul t 

(3.28) 

which is valid for P> >A. As expected, the ratio of W to T for a given mode is S" which for 
low order or grazing modes is of the order of unity. The ratio of-S to T for a given mode is 
- l /No which is very small compared to unity; in fact, it vanishes for a perfectly condu cting 
ground as it must. 

3.2. Horizontal Dipole Excitation 

The previous section contains the formulation for a vertical dipolc source. The COlTes
ponding treatment for a horizontal dipole is also quite straigh tforward although the lack of 
symmetry increases the complexity. Often in the radio propagation li terature the statement 
is made that the fields of a hori zontal electric dipole arc the same as, or proportional to , the fields 
of a vertical magnftic dipole at t he same location. This is only true broadside to the horizontal 
dipole wher e the fi eld is purely TE (transverse electric) or horizo ntally polarized. For other 
directions, the field has a TM (transvcrse magnetic) component corresponding to vertical 
polarization. Th e modes cOlTesponding to the T N1 waves may have much smaller attenuat ion 
than the modes of the TE type and thus it is desirable to formulate the problem directly with 
a horizontal dipole source. 

As in t he previous section the ear th and the ionosphere arc assumed to be bounded by 
parallel planes separated by a distance h. Choosing a rectangular coordinate system (x, y, z), 
the dipole is located at Z=Zo and is parallel to the x axis (sec fig. 4). 

Th e solution for a horizontal dipole over a homogeneous flat earth with no ionosphere 
(i.e., h- HX» was obtained by Sommerfeld many years ago. Th e generalization for t he two 
interfaces is quite straigh tforward. A H ertz vector is introduced which bas bo th an x compon ent 
llx and a z compon ent ll,. The fi.elds in terms of these a re 

E = J, 2ll +~ [Ollx+ Oll,] 
~x c x ox ox 0 2 ' 

E = 52 [Ollx + Oll,] , 
y oy ox 0 2 

E = Fll +~ [Ollx+ Oll,] , , ' oz ox 0 2 

LT . ollx 
rz = -~~w-' , oy (3.29) 

As before a subscript g 01' i is added to t hese quantities when speei1ic refercnce is made to the 
ground or the ionosphere, respectively. 

The boundary conditions at the interfaces z= o and z= h are that tangen tial components 
of the fields are continuous. This, in turn, requires that Pllx, ollx/ox+ oll,/oz, i~wll, and 
i~wollx/oz are each continuous at these interfaces. Integral representations of llx and ll, which 
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I 

l 

F I GURE 4. R ectangular cool·dinate system jor the horizontal 
dipole between two plane intelfaces. 

are sui table for matching are 

ITx=M e~kR + f r[U(O)e - ikCZ+ V (0)e+ikCZ]Ho(2l(kS p)dC 

ITz=~ r [X(C)e - ikCZ+ Y (C)e+ikCZ]Ho(2l(kS p)dC 
Ox)r 

(3. 30) 

(3.31) 

for 0< z< h. Similar expressions are used for th e x and z components of t be H er tz vector in 
th e spaces z< 0 and z> h. Applying th e boundary conditions involvin g ITx only, leads directly 
to t he following solutions for the unknown coefficients in ITx: 

U(C)_[R~+ R~m exp [- 2ik O(h-zo)]J ' (_ ·kC ) 
- 1 - R~Ri exp (- 2ik Ch) exp ~ Zo 

V(O) = [ m '+R;m exp [- 2~kOzolJ ex [-ikC(2h-z) ] 
1- R ; m exp (- 2~kCh) p 0 

(3.32) 

(3.33) 

wher e R~ and R~ ar e the complex reflection coefficients given by eqs (22) and (23) a nd they 
ar e also functions of O. 

Th e remaining two boundary conditions, namely, th e continuity of i~wITz and oITz/oz 
+ oITx/ox enable the coefficients X(O) and Y(C) to be found in terms of U(O) and V(C). Th e 
connecting r elat ions are 

and 

where 

and 

X (C)- P - QRg exp (-ik Ch) 
- l - R iR g exp (- 2ik Ch) 

Y (C)- PRi exp (-2ik Ch)- Q exp (- ik Ch) 
- 1- R iR g exp (- i2kCh) 

(3 .34) 

(3.35) 

(3 .36) 

(3 .37) 

It is unders tood that R i , R g are functions of 0 and are defin ed by eqs (ll ) and (12) . 
The integral for ITx can be obser ved to have precisely t he sam e form as the z component of 

a (m agnetic) H er tz vee tor for a ver tical m agnetic dipole. This in turn has the sam e general 
form as th e z component of the (electric) H er tz vector for a ver tical electric dipole. The 
r esidue series r epresentation for ITx is given by 

(3.38) 

where 

Oh (C) = [ l + · dm(C) RZ(C) /dGl 
m ~ 2khC - J 

C=,C", 
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wh ere t he summation is over t he poles of th e in tegrand at C = (Ym of th e in tegral in eq (30) . 
These arc solu tions of 

(3 .39) 
for i ntegr al values of 1n . 

The h eigh t fun ct ions have t he form 

(3 .40) 

Of par t icula r in terest is t he vert ical m ag netic fi eld com po nen t. 

TT . oIIx . oIIx · 
nz=-tEw ~=-tEw ~ sm 4> 

uy up 

_ . Idsk '" S 1:7 (2) ( ' S . jh( )fh() h (n) - Sil l 4> ~41 L-J In ·:II Ie mP) In Z o m Z 0", l . 

~ '" 
(:3.41) 

\iVhen IlcS", pl > > 1 or when p> > A, t he fi rst term of t he as.Ymp to ( ic expans ion of t he Hankel 
funct ion H F)(lcS ", p) m ay be em ployed. This leads to 

_ s in 4> ( pl'-Hei~/-' t .. ikO-S) /, 
Hz~-Eo(1 I' ) - ')- :6S", j,,, (zo)f", (z)e In P 0". (C). 

7J ~ I\ ~ '" 

(3.42) 

Th e other fiel d compo nents invo lve in tegrals w hich m a.\" be treated in t he same wa.,"
Also of gr eat in terest is t he vert ical elecl ric field . It is not diffi.clIl t to show t hat 

(3.43) 

wh ere 

(3.44) 

It m ay be noted that 

(3.45) 

The summ ation is now over t he roots C=Cn of t he eq uat io n 

(3.46) 

vVhen p> > '- t he above expression sim plifies to 

( I ,-)t - i~/4 
E '" c ,J.. E p e '" s t j () (7) ik (I -S,, ) p< (C) ~z= os,+, 0 (hl '- ) - 2- ~ n n Z g" ~o e Un· (3.47) 

When Ilc Cnzo l« l and IlcC"zl« l t be preceding simplifies even fu rther to 

1 ( 1'- )1, e- h / 4 1 E !:!!. cos,J.. E - -p--" -- '" S "'J eik ( I -Sn) Po (C) 
z- '+' 0 N g (hl '-) 2 ~ n n · 

(3.48) 

4. Properties of the Modes for Flat Earth Case 

4.1. Vertical Polarization 

Much has b een written i n t he literature on t he mIDlerical characte ristics of t he m odes. 
Co n troversy concerning t he m ethod of numbering t he modes h as also arisen. It is th e opillio n 
t hat much of t his discussion has b een unnecessarily involved . The importan t t hing is to sum 
ove r all modes \vhich arc excited by t he dipole. Consequently only these m odes need be 
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considered. Because of the form of t he integration con tour r the relevant solutions must 
satisfy 

(4.1) 

and have their real and imaginary parts positive. That is, On is located in the first quadrant. 
The numbering is then assigned in such a way that there is continuity in the limiting case of 
perfect conductivity (i.e., Rg= R i= l ). 

On=~~ with n = O,1,2,3 , 

As Dr. H. H . Howe points out, this is not quite unambiguous when both the ground and 
the ionosphere are both imperfectly conducting. The more general statement of the rule 
is [23]: 

For a fixed value of kh, determine n on the assumption of perfectly conducting walls, then 
(J" g and (f i in turn are to decrease continuously to their prescribed values while 0 varies continu
ously. For walls of high but finite conductivity this means that mode ° has a minimum atten
uation and the other modes have successively higher attenuation as n increases. For poorly 
conducting walls, this is not necessarily so, and in fact , in cases of most practical interest for 
the vlf band the mode of lowest attenuation is of order one. 3 

Numerical values for On are available and will not be quoted here. Some properties of 
the modes, however, may be simply obtained without resorting to a full numerical solution. 
For example, if the walls are highly conducting the reflection coefficients may be approximated 
as follows: 

(4.2) 

(4.3) 

subject to 101 2> > INy l-2 and INi l-2. Then the resonance equation is simplified to 

(4.4) 

where f:.. = (1 /N i + 1/N g). 
Regarding f:..jO as a small quantity, this can be solved to give 

(4.5) 

where Eo= l , En= 2, (n~O). 
The magnitude of the second term must be small compared to the first term for the above 

perturbation method to be valid. This restriction and the previous one are both met if 
simultaneously 

If:.. I (71"11)2 kh 1 f:.. 1 < < 1 and - < < 1- -- . 
kh kh 

N ow for highly conducting walls (f g> > EgW and (f > > EiW and thus 

r. . EW '2 EW '2 [( )' ( )'J f:..~.y '/,I f:.. 1 ~-P/' (f g + (f i • (4.6) 

3 The mode numbering system described above is somewhat different from Budden. For a fixcd value of u, he starts with a very small value 
of kh , increases it continuously and requires that C varies continuously for the same 11 value. [13] 
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Consequ ently 

Rc S ~[ ] _(7rn)2J} + En 1_11 1 [1_(7rn)2J-i 
n kh 2.y2kh leh 

(4. 7) 

and 

I S E n 111 1 [ (7rn)2J-~ 
m n~-2 ..... 2Ieh 1- leh . (4.8) 

The influence of fini te condu ctivity is thus to incrcase the real par t of S n and co nsequ ently the 
pbase velocit~T c/Re S" is decreascd r elative to t he frce space value c. As expected tbe fLll i Le 
co ndu ctivity produces damp ing and the resulting attenuation factor is - k 1m S n in ll eper-s 
per unit distance, to t his approximation. 

Th e above approximate formulas for the real and imaginary parts of S n arc the ones usually 
encountered. T hey ll ave been quoted by Schumann [5] for example. It is no t also appre
ciated that t hey arc not applicable for a mode which is ncar cutoff. This should be evid ent, 
however , from the second inequality given above. To relax this restriction, the resonance 
equation 

(4.9) 

is solved as a quaclraLic in C to yield 

2(\=G~) ± [(~y+4i :hJ· (4.10) 

The posiLive sign before the radi cal is chose n sin ce it redu ces to C= (7rnlkh ) when 11 approaches 
zero as i t must. The cOlTesponcling form for S" is the ll givell by 

{ ( 7111)2 1 [ I . Melt J 2"'1 t 
Sn = 1- kh 4 1 + -V 1+ 41, (7rnF J . (4.11) 

When n = O, this simplifies to 

which r educes to eq (5) vvhen n= O and 1111< < kit. 
expanded for n> O to yield 

Now sin ce Il1 lkh< <1 the radical can be 

[ (7rn)2 . 211J t S,, ~ 1- kh -tkh for n = 1,2,3, .... (4.12) 

The preceding discussion concerns walls which arc highly conducting. The approximate 
solution obtained would indicate that the attenuation increases indefinitely as the conductivity 
of t he walls decreases. Such is true as long as 1111< < 1. For very poor cO llductivities this 
condition becomes v iola Led. When Il1 lkh is of the order of uni ty, i t is apparently necessary 
to solve the resonance equation by numerical or graphical means. This approach is described 
briefly in a later sectioll. As it turns out, for a given value of n, the attenuation reaches a 
maximum value as 1111 is co nLinuously increased and thereafter diminishes and approaches a 
broad minimum. To illustrate this in teresting phenom enon the resonance equation 

(4.13) 

is solved approximately under the condition that 



1_ 

Thus 

and therefore 

Og +NiO+ ·khO- .( _ .1) 
NgO Oi ~ - 7r~ n 2· 

The zero-order approximation is obtained by replacing R i (O) by - 1 and R g(O) by + l. 
wo uld yield 

O= U,,= (n-! )-rr-j (kh) , n = l , 2, 3, 

as mention ed in section 2. For the first-order perturbation 

and 

since 'N/1' > > 1. With these simplifications it r eadily follows that 

and 

When the upper m edium is an ionized region , it is convenient to write 

N7=1- i· 

(4. 14) 

(4.15) 

This 

(4.16) 

(4.17) 

( 4 .18) 

It may be shown tha t for vlf, L is approximately real and has a magnitude of the order of 
unity. Furthermore, for a highly conducting ground 

where 

Then 

G= €W. 
rYg 

o ~ 7r (n-t) + e+ i3"/4G~ ((:7n ) - ) 

n-kh- i (1-*) [(Cn)2_±] ~. (4.19) 

Assuming (On)2< < L (which is true for low order modes) , 20 ncl that L is real, the real and 
imaginary parts of S" can be written 

(4.20) 

and 

1m Sn - 1 [ (Z) )2 (-.a+_1 )+-.,(jJ 
2.J27r (h/'A) Sn n , -fL " (4.21) 
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" I 

wh ere 

anci 

- 7r (n- t) 
C,,= kh 

(n - t) 
(2h/t.. ) 

It may be observed that for a fixed value of h/t.. and G the attenuation facLo)', - Ie 1m S n, 
has a broad minimum when L = l. For L somewhat less than unity, th e aLLenuation fa cLor 
varies as L -! or directly as the square root of the effective conductivity of the ionosphere. 
On the other hand, for L somewhat greater than unity the attenuation fac tor varies as L ! or 
in versely as the square root of the effective condu ctivity. 

The excitation of th e mod es is proportional to the quantity 

When kh lll l< < 1, where ll = I /N v+ l /N t , iL fo11olvs from eqs (2) and (3) that 

Rg(C,,) R tCCn) ~exp [- 211/Cn], 
and 

[ o [Rg(C) R;(C) l/OClc =cn=~~ exp [- 211/Cnl 
n 

and thus 

[ . II ]-1 
8,,(Cn)= l +~ khC~ . 

No w the r eSOllance condi Lion states that 

ikhC" + ll/ Cn = i2 7rn 

and for n = O th is leads immediately to 
DoC ('0) = 1/2 

while for 11 = 1,2,3, . . . 

On the other ll and , if the upper medium is very poorly conducting such tbat 

INi CI1 I«1 

and the lower medium is highly conducting 

it follows that 

and 

Thus 

(4.22) 

(4 .23) 

(4.24) 

(4.25) 

(4.26) 

( 4.27) 

for n = 1,2,3, . . . since the term in parenth eses is always small compared to unity. 
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4.2. Horizon tal Polarization 

In the case when the excita tion is by a vertical magnetic dipole or horizontal electric 
dipole the modes excited may be of a transverse electric (TE) type. The appropriate modal 
equation is 

whero m= 1,2,3, 

and 
R~ (C)~- exp (- 20 jN gOg) 

R~(O)~- exp (-2CjN i Oi )· 

The modal equation is thus simplified to 

remembering that 

and 8 2= 1-02. 

(4.28) 

(4 .29) 

(4.30) 

(4.31) 

A first order solution is obtained by replacing 8 2 in the expressions for Ot and Co by the 
zero order value, e.g., 

The approximate solution of the mode equation is then given by 

wh ere 

[ (7r m)2J-~ [ (7rm)2J-t Ll;~~ N~- l + kh + N~-l+ 1h 

and S m= (1 -G;,,)t. When i N~ 1 a nd IN~I» l - (:~y 

it is seen that 

F or Ill ;:' I« kh, 

and 

[ (7rm)2J-! .Ll(7r m)2[ (7rm)2J-t 8m ~ 1- kh -tkh leh 1- 1h 

which is valid when the modulus of the second term is small compared to the fu'st, 
For highly conducting walls 

and therefore 

Re 8m~[ l_(:~)]t + ~Ll~h [ l -(:~YJt(:~y 
168 

(4.32) 

~ 4.33) 

(4.34) 

(4.35) 

(4. 36) 

(4. 37) 

(4.38) 

,~ 



and 

I ~ I [ (7rm)2J-t(7r1n)2 
1m 8"'~-.l2 kh 1- kh kh' (4.39) 

In summary, t hese are valid when 

all d 7r1n jkh< l. 

It is rather interes ting to note that the above expressions for Re 8m and 1m 8 m are very 
similar to the corresponding expressions derived for R e S n and 1m 8 n in the case of vertical 
polarization. [For example compare with eqs (7) and (8).] In the present case, of course, 
there is no zero order mod e but apart from this, the perturbation term involving I ~ I now ha 
an additional factor [(7r1n/kh )]2 which is less than unity if the mode is above "cutoff. " Thus, 
everything else considered equal, the attenuation factor of t he TE mode is decreased rela
tive to the TM mode in the earth-ionosphere waveguide with walls assumed to be of high 
conductiv i ty. 

In the earl ier no tation it was convenient to represent the refractive index in the form 

Ni= l-i 

where L is a real number which ma." be comparable to or much less than un ity. Thus 

(4.40) 

T he correspo nding solu tion for the modal equation is obtained from 

[ ( 7r1n )2J+ 
8 m= 1- kh-i~~' . (4.41) 

When L< < 1 this reduces to eq (36). 

5 . Influence of Earth Curvature 

The curvature of the earth has been neglected up to this point. The problem is now for
mulated in terms of spherical coordinates (r, 8, 4» , with the earth idealized as a homogeneous 
sphere of radius a, of conductivity rr g, and dielectric constant Eg • The lower edge of tbe as
sumed homogeneous ionosphere is located at r= a+ h. The source vertical electric dipole is 
then located at r= a+zo and the observer is at r= a+z (see fig . 5). In view of the intrinsic 
spherical symmetry t he fields can be represented in terms of a single scalar function , f , a 
follows [26J 

532053-60-15 

i 1 0(. Of) E =- 1/ -.-- sm 8 -
r r Sll1 8 o(} 08 

i 02 
Ee=-- 1/ -- (ry;) 

r oOor 
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I ", " (r,e,cp ) 

FIGURE 5. Spherical coordinate system for vertical electric dipole 
between concentric spherical intelfaces. 

As usual, the permeability is taken to be the same as free space for all the regions (}.L = 
471' X lO- i ). A subscript g is affixed to (J , E, etc., when reference is made to the ground and a 
subscript i for the ionosphere. Since f is a solution the wave equation appropriate for the 
regions, the solu t ion may be represented in terms of spherical wave functions, 

for 1'>(a+ h). 

In the above 

(5.2) 

where H~~21 (kJ') is the Hankel function of the first or second kind of order v+! with argu-
2 

ment k1'. P ,( - cos 0) is the hypergeometric series which is a special case of the hypergeo-
metric function F (a, (3, ",/ , z) namely 

( l +cos 0) P,(-cosO) = F -1',1'+ 1, 1, 2 . (5.3) 

The reason P ,( -- cos 0) is employed rather than P . (+cos 0) is due to the fact that f must be 
regular on a ray 0= 71' , whereas 0= 0 is to contain the singularity which is the source of the 
field. Sommerfeld [26] has pointed out that 

(5.4) 

which illustrates the singular natnre of if; along the polar axis. 
The quantity v is to be found from the boundary conditions that the fields Ee and H q, are 

continuous at 1'= a and a+ h. This, in tUI'll, requires that (1J /r) 0(1'if; )/01' and kf are contin
uous. Thus, four linear equations in the coefficients a;ll , b;l), b;2), and C;2) are obtained. In 
order that these yield a nontrivial solution, the four by four determinant of the coefficients 
should vanish. This requirement is explicitly given by eq (5) as follows: 
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l 

(~) [OJ'h!~r(lq)] -G) [Orh!~r(kr) ] -G) [Ol'h!~}ler) ] 0 
a 

lei/,!' ) (lcga) - kM' ) (lea) - leh!2) (lea ) 0 
= 0 

0 (_Ti_) [Orh!l) (lcr) ] 
a+ h Or 

(_Ti ) [ Orh!2) (kr )] 
a+ h Or 

( ~ ) [Orh!2) (le i7')] 
a+ h Or 

a+ h a+ h a+ h 

0 kh!l) [Ic (a+ h)] Ieh!2) [Ie (a+ h)] k ;h!2) [lci (a+ h)] (5.5) 

Such an equation as this was obtained by G. N. Watson in 1919. To solve it for II withou t 
approximation does not seem to be possible, although if the general spherical Hankel fun c
tions of complex order and argument could be programed for a computer , an exact numerical 
solution might be obtained. In view of the idealizations of the model and the uncertain ty 
of the effective electrical constants of th e lower ionosphere, however , it doe not seem war
ranted to expend too much effor t in this direc tion . As is so often desirable in physical prob
lems, asymptotic approximations to the rigorous wave functions are in troduced which grea tly 
simplify the problem bu t at the same time lose some generali ty. 

The D ebye-Watson represe nLa tion of t he Hankel fun ctions are [26] 

(5.6) 

when 1(II+ t) /h l< l but noL near l. Also Iv+ t l andlcT must be large compared to uni ty. 
The upper (and lower) signs are to be considered together . This is really a W.K.B . (W en tzel , 
Kramers, and Brillouin) approximation to the radia l par t of the wave equation . It is not chffi
cul t to show tha t the resonance equation involving spberi cal H a nkel functions can now be ex
pressed in the equivalent form 

(5.7) 

wh ere n= O, ] , 2, .... 

(5.8) 

and 

(5.9) 

The fun ctions R, and Hi quo ted above can readily be iden tified as Fresnel reflection 
coeffi cien ts for complex angles of incidence cos- IO and cos -10' , respec tively . Furthermore 

and 

0 ' =[ l - (S ' r]lz-
"' 

1I +.! where S= __ 2 
lea 

where S' 
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The resonance equation can thus be wl'itten 

where 

and 

NiC'-C; 
N iC' + C; 

It can be seen that, in view of the relation 

[ (S')2] t 
with C;= 1- NI . 

(a + h) S' = as, 

(5.10) 

(5.11) 

(5.12) 

the resonance equation reduces to its fiat earth counterpart as h/a tends to zero. In fact, it 

appears that if I CI» (h/a)t~1/10, the effect of curvature can be disregarded. This condi
tion is violated for most of the numerical results given by AI'pert in the region from 15 to 30 
k:c. He assumed that the modes could be calculated on the basis of a flat earth in all his 
work [14, 15). 

The resonance equation quoted above for a curved earth is only valid if the "V.K.B. or 
second-order approximations to the spherical wave functions are valid. In a later section the 
corresponding form of the mode equation based on the Airy or third-order approximation is 
developed following the work of Rydbeck. It is indicated from this more involved analysis 
that the second-order approximation is valid if 

As will be seen, this is met for most cases of practical interest if the frequency is less than 
about 15 kc. 

6. Mode Series for Curved Earth 

Following the suggestion of Sommerfeld, the field is WI·itten as a sum of modes. Thus 

'f(r, 0) = 'L, D,z, (kr) P ,( - cos 0) (6 .1) 
n 

for a< r< a+ h, where 
~6 . 2) 

The factor D, is to be determined by insisting that the function 'f(r, 0) has the proper behavior 
at the source. The summation is over all integral values of n and the corresponding (complex) 
valu es of v are obtained from the resonance eq (5.5) as described in the previous section. 

Invoking the W .K .B. or second order approximation for the spherical wave functions , 
it follows that 

z, (kr) ~ const { Eo - t (Cn) exp [ + ik Soz ((' ;, + 2: S ;, ) t dZ] 

+ Eot (Cn) exp [ - ik Soz (C~+ 2: S;,)t dZ]} (6.3) 

This can b e identified immediately as a combination of a downcoming and an upgoing wave. 
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Th e ra tio of these two at tIle earth's surface (z= O) is Rg(O,,) . An alternate r epresentation is 

zvCkr) ~const{ R";t (O~) p[ +ikJ.h( c;+ ~ S! Y dzJ 

+Rt (0;.) exp [ -ikJ.h( C~+ 2: S~ Y dz J} (6.4) 

which is a combination of an upgoing wave and a downcoming wave. The ratio of these two 
at the lower edge of the ionosphere (z= h) is Ri(O~). It should b e no ted that 

C ~ ( 0;; + 2~~ S! ) t 

sin ce (a + h) S ;'= aSn and h/a < < 1. The internal consistency of these two r epresentations 
at z= o and h for zv(kr ) can be readily demonstrated from the relation 

(6.5) 

which also indicates that tbe multiplicative cons tall t is thc sam e for the two representations. 
In what follows the constant can be absorbed into the factor Dv. 

To study t he orthogonality proper ties of the modes, the followin g in tegral i co nsidcrcd 

I kC(l + h ) 

1= z,(p) z~(p)dp 
ka 

wll cre v an d p. are two sets of modes. Now qui te generally the function z,(p) satisfies 

d2 
p dp2 (pzv)+ [p2- v(v+ l )]z,= O 

(6.6) 

(6.7) 

a nd tb ere is a similar relation for z~. Th ese two equations are now mul tiplied by Zp. and Zv , 

respectively and int egrated over the domain ka to kb , to obtain 

(6. ) 

For th e important mod es, the righ t hand sid e of eq (8) is negligibl.v small if p. ~v since th e 
numerator vanishes at the limits ka and kb wh en R g and R i approach ± 1. For th e important 
case p. = v, a normalization fa ctor is defin ed by 

N,=lim fkbZ~ (p) zv(p)dp 
p-:;,, ) ka 

i kb 2kh 
= [z,(pWdp~-.-, where On 

ka Un 

1 
(6.9) 

It should b e remarked at this poin t that the modes are not strictly orthogonal sin ce the 
right-band side of eq (8) does not vanish id en tically although i t is sm all compared to N,. As 
the condu ctivity of the bounding walls approaches infinity tb e mod es would be completely 
orthogonal. 

;"i[ultiplying both sid es of eq (1) by z,(p) and then integrating with respect to p from 
ka to kb, leads to the following formula for D,: 

1 J'kb D. N P (_ 8) z.(p)1/;(l', 8)dp. , . , cos ka 
(6 .10) 
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To actually evaluate D" it is desirable to let 1' --'71'0 and 8--'70, in which case f(r ,8) --'71/10(r,8) 
where 1/10 is the primary influence which is singular at (1'0,0). For a vertical electric dipole 
consisting of an infinitesimal element of length ds and carrying a current, I, it is well known that 

Ids e- ikR 

1/10(1',8) = 4'1f'7'ok --:tr (6.11) 

Following the process suggested by Sommerfeld for the determination of the Green 's 
function for the perfectly conducting sphere, the integration in eq (10) is carried out in the 
immfldiate neighborhood of the source. For example, r = ro(1 +17) where - E< 17< + E, E< < 1 
and dr = rod17 , zv (kl')~ zv(lcl'o) , e-ikR~ l , while 

(6.12) 

Therefore 

(6.13) 

Now 

lim [Pv( - cos 8)] --'7 sm J!1T']og 82 

o~o 'If 

and 

(6.14) 

It then follows that 

(6.15) 

The final form of tbe function 1/1 is thus given by 

f(1' 8)'" Idsi ~ zv(kro) zv(kr) Pv( - cos8) 0 
, =2khron~o,1,2, ... zv(ka) zv(ka) sin J!7r n 

(6.16) 

where the second-order or 'V.K.B. representations ma.'- be used for radial functions zv(kr) , etc. 
As can be seen from eq (4 ) these can be greatly simplified if z/a< < le,; I, for then 

(6.17) 

which is the same height-gain function obtained for the flat earth case. For heights even as 
great as 10 km and frequencies less than 20 kc, this is an excellent approximation. Similarly, 

z v (h'o) "'1 ( ) 
zv (ka) = n Zo 

where zo= ro - a is the height of the source dipole. 

(6 .18) 

The radial field component is of most practical interest and, for the moment, attention 
will be confined to it. Since 

(6.19) 

and 
1 0 [ . oP v ( - cos 8) ] 

sin808 slll8 - 08 +v(v+ 1)P ,(-cos8) = 0 (6 .20) 
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i t follows Lhat 

(6.21) 

wi th v+ Yz r;;;, kaS". This is the final solu tion of the problem being valid for the airspace between 
the earth and the ionospb ere4 

For purposes of computation several simplifications can be made. The asymptotic 
expansion for the L egendre fun ction , given by 

P v ( - cos 8) r;;;,( ~ )~ eos [(v+~) (7r- 8) - 7!:.] 
7rV S1l1 8 2 4 

(6.22) 

is valid if Iv I> > 1 and 0 not neal' 0 or 7r. Since the imaginary part of v(7r -8) is also large for 
7r - O greater than about 10° or 20°, ,it follows that 

P v (- cos 8)r;;;, (27rV ~in oy· exp [ i (v+D (7r- O) - i7r/4]- (6 .23) 

Furthermore, the source and observer heights are usually sufficiently low that khoOn and 
kh10 n« 1 and ror;;;,rr;;;,(L. 

The simplified form of the field can now be written 

E = E [ . d/a J~ (d/A)! ei [2"- (<fIX) - (,,- / 4) J "'. '" 8 S 4 e- ;2"-S,, (d / A) 

r 0 sm d/a (h/A) 7~ n n . 
(6.24) 

where el= (L8, the arc length b etween the source and the observer, A is the free-space wave
length, and S,, = (1- O,,2)t. Eo is the field of the source at a distance el on a fla t perfectly 
co ndu ctin g earth. For el/A» 1 , 

(6.25) 

As the rad ius (L of the earth tends to infinity it is immediately eviden t thaL the fla t earth 
formula given by eq (2.5 ) is recovered. 

7 . Antipodal Effects 

Th e general form for the field in the space a< l' < a+ h for a vertical dipole source has 
the form 

Ids ." '" v(v+ 1) 
Er= 2kl 2:Z= On - .-- Pv\ - COS 8) 

W n=O s l n V7r 
(7. 1) 

where oo= !, 8n= 1 (n~ 0) , and 
(7.2) 

N ow as m entioned above when 8 is not near 0 or 7r, the Legendre function mar be replaced 
by the fu'st term of its asymptotic expansion. This result quoted above is valid if 

1 
and r;r »0. (7.3) 

In this region, the modes arc simply proportional to 

(7.4) 

4 From au analysis by Pckeris; P l lYS. Ue,·. 70, .018 (1!J46) it may be shown that 

Pv(- eos 0) "" H,I') (k8,p)- Jc (!!.) ' T-hl2l (k8,p) 
Sin WI(' J2 a 

pl us terms in (pIa) ', (p/a)', etc., where v+!=k8,p. Inserting t11is in P.Q (21 ) lead s directly back to eQ (3 .21) wheLl the CUL'vature correction terms 
are neglected. 
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which apart from a constant factor can be identified as the lineal' combination of two peripheral 
waves of the form 

1 -ikaS 6 --- e n 

(sin 0) ~ 
and 

__ 1_ e-ikaSn(2,,-8)e;,r/2 

(sin 0) ~ 
where O< 7r. 

These waves are traveling in opposing directions along the two respective great circle 
paths aO and a(27r-O ) from the source to t he observer. It is noticed that there is a 7r/2 phase 
advance which the wave traveling on th e long great circle path picks up as it goes through 
th e pole O= 7r. The linear combination of these two traveling waves is to form a standing 
wave pattern whose distance .6.m between minimums is approximately given by 

subject to 
- 1m S ,,«Re S n. 

As one approaches the pole O= 7r, the first term in the asymptotic expansion for the 
L egendre function is inadequate. A more general form is the asymptotic series [27] 

. [ ( 2l + 1) (2l+1) ] 2 r(v+ l) [(Yz)l]2 cos v+-2 - (7r-O)- - 4 - 7r 
P.(-cosO)~ 7ry, r(v+3/2) ~ (v+3/2)lll (2sinO)I +Y, (7.5) 

where 

for example, ao= l, aj = a, az= a(a+ 1), a3= a(a + 1) (a + 2), etc. 

Since Ivl» 1 the factorial functions may be replaced by the first two terms of t heir asymptotic 
expansions; this leads to 

r(v+ l) 1 ( 3 (1)) 
r(v+ 3/2)"'~~ l - Sv+O;Z . (7.6) 

The preceding asymptotic expansion for p .(-cos 0) is not usable at and in the vicinity of 
the pole O= 7r. In this region a sui table representation is given by [27] 

where 1) = (2v + 1) sin [(7r- O) 12] . J m (1)) , for m= O, 1, 2, and 3, is the Bessel function of first type 
of argument 1) and order m. When 7r - O is small the first term is 'usually sufficient and further-
more 

Thus for mode n, the field in the neighborhood of the pole is proportional to the Bessel function 

It is then not surprising to see that the first term of the asymptotic expansion of Jo is the same 
as that of P.( - cos 0). 

8. Resonator Type Oscillations Between Earth and the Ionosphere 

At extremely low frequencies (elf), where the wavelength is large compared to the height 
of the ionospheric reflecting layer, the electric field is essentially radial and only one waveguide 
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type mode is significant. The field is thus expressed by the first term of the mode series which 
reads 

(8.1) 

wh ere v +!~kaSo and 

(8.2) 

in terms of the relative refractive indices Ni and N g of tbe homogeneous ionosphere and the 
homogeneous ground, respectively. Now at elf INgl> >INi l and fmthermore, 

Thus 

N ow as mentio ned in section 7, the factor P ,( - cos 0) may be replaced by an asymptotic expan
sion if kaO or ka(7r - O) is somewhat greater than unity. The field in this case may be regarded 
as two azimuthal- type traveling waves. Fmthermore at the pole (0 near 7l") where the second 
of these r estrictions is violated, it is possible to usc an equivalent representation which correctly 
accounts for the axial foeusi.ng. An alternate viewpoint which is suitable at elf is to co nsider 
the fi eld as a superposition of cavity-reso nator type modes. I t is expected that such a repre
sentation would be very good when the circumference of the earth is becoming comparable to 
the wavelength. A suggestio n of this kind was apparently first pu t forth by Schumann [28J. 

The starting point is the expansion formu la 

PvC-x) 
sm V7r 

_~ £: P (x) 2n+ 1 
7l" ,,=0 n n(n+ l) - v(v+ 1) 

(8.3) 

where the summation is over integral values of n. This result follows directly from a formula 
given by Magnus and Oberhettinger [27J (p . 57) which is valid for )I~O , ± 1, ±2, ... , and 
02:0< 7l". The electric field, for h/a< < 1, is thus written 

where x= eos O. The early terms of the series are then proportional to 

Po(x) = l , 

Pl(x) = cos 0, 

P z(x) = i(3 cos2 0- 1) , 

(8.4) 

(8 .5) 

and so on. The configuration of the electric field in the first three cavity modes is depicted in 
fig me 6. 

Retaining just the firs t term it is seen that 

E O-EJ _ Ids ! 
r- ;=0-47l"a2 Ell, iw (8.6) 

which is independent of O. Clearly this corresponds to a co ncentric spherical capacitor ener
gized by a current Ids/h resulting in a constant voltage hE; between the plates. On rewri ting 
eq (6) in the form 

hE~=( ~ds/h) 
~wCe 

(8 .7) 
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it is seen that 

FIGURE 6. Depicting electric field lines in the first three cavity 
resonator modes. 

C _47ra2~ 
e- h 

which can be identifi ed as the capacity between the spherical surfaces whose areas are both 
47ra2 within the approximation hla< < 1. 

It has often been suggested that the omnipresent constant voltage gradient in the atmos
phere results from the accumulated action of lightning strokes which impart a charge to this 
earth-ionosphere condenser. For example, when a current surge flows say for 10- 3 sec with an 
average of 103 amp with an average column height of 3 km (i .e., ds~ 2X I03 , then for h~70 km 
it readily follows that 

hE~ ~1.3 v or E~~2X IO - 5 vim. 

Presumably, many such charges are required to build the field up to its observed value. 
Of somewhat more interest are the cavity-resonator oscillations which may be excited. 

Using the notation of the operational calculus iw is formally replaced by p then 

where a= 1/[h (CJ iM)1/2]. The source dipole moment Ids is in general a function of timo. For 
purposes of illustration, consider 

Ids = (Ids) 0 u(t) (8 .9) 

where u(t) is the unit step function at t= O. The Laplace transform of the source moment is 
thus given by 

!C OO Tl -p1 lt (Ids) 0 .l.c se G =--. 
o P 

(8. 10) 

The Laplace transform of the field is given by 

E ( )_ (Ids)o ( + a t)~ P (x) 2n+ l 
r P - h2C P P L.....J n 2 + 2+ 3 e n=O w" p ap2 

(8. 11) 

178 



where w;, = (a /eF n(n+ 1). The actual time response of the electric field is denoted er(t) and is 
zero for t< O. It is related to E r (7)) by 

(8. 12) 

The inversion of this integral equation is a stand ard problem in operational calculus and has 
been carried out explicitly by Schumann [27] for a transform which has the form of eq (11). 
In tbe present discussion a much simpler approach is used which is justified wh en the damping 
is small. It should be noted that apt has already been assumed small compared to p, thus a 
pertur bation method is in order. 

'When a = O corresponding to no diss ipation (i.c. , perfectly conductin g boundaries) 

E (n) ( . )= (Ids)o p () (2n+ 1)p . 
r p 12C n X 2 + 2 

/, • Wn P 
(S. 13) 

TIle poles in th e p plane are thus at p = ± iwn . The inversion to the tim e domain gives 

(n) () (JdS)O jCl ( )(? ) er t = h2(1 • . n X ~n+ 1 cos wnt (S .14) 

which may be verifi ed by no t ing that th e above expressions for E r(n)(p ) and er'n) (t) satisfy eq 
(12). 

A step-function dipole source thus excites thc sta ti c field (i.e., wo= O) alld Lh e cavity-reson
ator mod es (n = l , 2, 3, ... ). For a= 6,400 km 

wl/27r= 10 .6 cps 

w2/27r= lS. 3 cps 

wd 27r= 25.9 cps. 

To account for finite conductivity it is necessary to solve the equation 

p2+p3/2a+w.~ = 0 

which gives the poles for the function E r(P) in t he case wilen a ~ O . 

< <p, it readily follows that 

. [J+ a ';3>-/4J . I ... p~lwn . 2w~/ 2 e ~1wn - H n 

where w~ = W n (1- ? 3 / 2
a 1/2) is the resonant frequency and 

*-' W n 

(8. 15) 

R emembering that ap } 

(8.16) 

is the damping coefficien t. It then easil~ ' follows that cos w"t is to be replaced by 

To this approximation, tbe effect of finiLe conductivity is to exponentially damp the os,cillations 
with time. For a= 6,400 km, h ~ 100 km , ()' i ~ 10- 4 mhos/m , the time constant is given by 

1 4 
Q~ I sec (n= 1,2,3 , .. . ) 
- n 'vn(n + l ) 

(8. 17) 

which is rather interesting. 
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The total field is thus given by 

(1 ds) '" 
er(t) ~ h20. O~tn(X) (2n+ 1)e- nnt cos w~ t (S. 18) 

which is valid for a2t> > 1 or t> > l / (h2rr iJl- ). 

9. Excitation by Horizontal Dipoles for the Curved Earth 

The formulation of the theory for a horizontal dipole is similar to that for a vertical dipole. 
The complexity of the equations is greater, however, because of the nonsymmetry of the prob
lem. Schumann [6] uses this approach in his analysis but his results are not complete as dis
cussed below. The deficiency arises when the eigenfunction series is matched to the source 
singularity. In the case of the vertical dipole as outlined in the previous sections, this process 
is relatively straightforward but in the case of the horizontal dipole there is coupling between 
TE and 'I'M modes which apparently is not accounted for using this technique. An alternative 
is to set up the problem in terms of a harmonic series representation wherein the summation is 
over integral values of n, the index of the spherical wave functions. This series is poorly 
cOllvergent, however, and the vVatson technique must be used to transform it to a series of resi
dues at the complex poles v. Such a procedure was used by W'ait [29] for a horizontal dipole 
over an earth with a homogeneous atmosphere. It would not be difficult to generalize these 
results to include the influence of the ionospheric reflecting layer. In the present work, how
ever, it seems more instructive to use a different method which makes use of the reciprocity 
theorem and the results for vertical electric and vertical magnetic dipoles. 

For the first part of the problem a vertical magnetic dipole of moment K ds is considered. 
It is located at 1' = 1'0 on the polar axis. Due again to the intrinsic symmetry of the problem the 
fi elds can be obtained from a single scalar function f h as follows: 

T[ i 1 0( . O~) 
r r= 1'7] sin 0 00 Slll 0 ()(j 

i 02 

H e= - 1'7] 0001' (1'~) (9.1) 

and H q,= E r= He = O. Such fields are purely of the TE type whereas they were of the TN[ type 
for a vertical electric dipole source. 

The solution precedes in the same mann er as for the vertical electric dipole. ~ow, how
ever, the boundary conditions are that (l /7]1' )o(1'fh) jo 1' and kfh are continuous at the concentric 
spherical interfaces. In a form suitable for application to vlf propagation, the finall'esult is 
given by 5 

(9.2) 

where 

1 
o::.~ ---o--~-=-

sin 2khCm' 
2khOm 

(9.3) 
1 

2f,~( z) = [R~(('m)] - Yz cxp [ikCmz]+ [R;(Om)] t exp [-ikCmz] (9.4) 

' '1'0 conform with stand ard waveguide practice, the 'I' E mode of lowest attenuation is denoted m= 1. 
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and imilarly for f~(zo). The modal equation has the form 

(9.5) 

where 

with C = 1- -[ 82Jt 
g Ni 

and 

0' -NiO~ . , [ (8 1 )2J1 R h,. (0') . th 0 1 . 0 ' +NiO~ Wi i = - N7 

The electric field component E", is thus given by 

(9.6) 

N ow when the source i a small loop of area da carrying an average circulati IIg curren t I it 
follows that 

Kds= i /-Lwlda. (9.7) 

Furthermore, if the r eceiving antenna is a horizontal elec tric an tenn a of effective length dl , 
the voltage at the terminals is given by 

v= E,.dl sin 1> (9. ) 

where 1> is the angle sub tended by the receiving antenna and the arc joining the two antennas 
(see fig. 7) . Thus the mutual impedan ce Zm between the source loop of area da and 

/ 
/ 

sou rce ( pion view) < 
dipoles , d l~/ ~rf> 

~--------------~/'~7~--~-----

f-I--- 08 

FIG U RE 7. Source vertical magnetic and electric dipoles and 
receiving horizontal electric dipole for mutual impedance 
calculation. 

the horizontal receiving antenna of length dl is 

Z V 
'-'tn I 

i /-Lw cIa ell sin 1> ~ •• • 
2hro m 

where the summand is the same as in eq (6). 

(9.9) 

The mutual impedance Z. between a vertical elec tric dipole source at (J = O, r = l'o, and the 
horizontal receiving antenna is also required. This may be obtained from the scalar function if.' 
previously obtained. In particular 

(9.10) 

(9.1l) 
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where 

29n(Z) = [ C~+ 2aZ S~J { R-~/ 2 exp [ +ik.C (C~+ 2: s;,y dZ] 

_Rl~2 exp [ - ikSo' (C~+ 2: s~y] dZ} . (9.12) 

When zja< < I O~ I 
(9 .13) 

Furthermore if IkCnz l < < 1 which is t he usual case 

(9.14) 
'where 

The mutual impedance Ze between the ver tical electric dipole and the horizon tall'eceiving 
an tenna dl is thus given by 

Z '" 1/ ds dl cos </> ~ • • 
e 2hro n 

(9.15) 

where the summand is the same as in eq (ll ). 
It is now a simple mat ter to wTite down the field expressions wh en the source is a hori

zon tal electric an tenn a carrying a curren t f of length dl. The an tenna or dipole now is con
sidered to be located at 1'=1'0 and (J = 0 and oriented in the direc tion ¢ = o. The ver tical magnetic 
field a t (1', (J , ¢) is obtained from the relation 

(9.16) 

which relates t he to tal magnetic flux in a small loop of ar ea da at (1', (J , ¢) and the ver t ical 
magnetic fi eld at the same point . Using eq (9.) i t is seen that 

H _ f dt """ .h f!;n (zo) f:', (z) oPo; (-cos (J ) . 
T- 2h L-.; Um· A(J Sill </> . 

l' m sin 117r U 
(9 .17) 

In a similar fashion, the vertical electric fi eld at (1', (J , ¢) is obtained from the relation 

(9.18) 

which relates the voltage in the small ver tical antenna of length ds at (I', (J , ¢) and the vertical 
electric field at the same point. Thus 

E - f dl """ onfn(z) gn(zO) ~P (- (J) 
T- 1/ 21 L-.;. A (J ' cos cos </> . 

I~r n sin 117r U 
(9. 19) 

The other field compon ents can b e found from the above expressions for ET and H T. Quite 
generally the field components in spherical coordinates (see fig. 8) can be written in terms of a 
set of purely TE and 'I'M modes derivable from scalar functions U and V. Thus 

(9.20) 

E8-~~ 1'U _ i J.lw a (rV) 
- l' o(Jor ( ) l' sin (J o</> 

(9 .21) 
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? ~ ( r ,e,q,) FIGU RE 8. Spherical coordinate system fo r horizontal electric 
dipole between concentl'ic spherical interfaces. 

/ 

E __ 1_ ~ (rU)+ilLw o(rV ) 
</>-r sin 8 o¢or r 08 (9.22) 

H T = o2 (r~) +PrV 
or 

(9.23) 

l::T _ 1 02 (V) + i EW 0 ( 'U) :Ie - -- r -- - 1 
- l' 01'08 r sin 8 oc/> (9.24) 

(9.25) 

Since U and V satisfy the equations 

in the space a<1'<a+h they must be made up of solutions of the form 

h;l) (leI') 

h~2 ) (kr) 
Pff(cos 8) 

cos q¢ 

sin qc/> 

(9.26) 

(9.27) 

where q is an integer. Since the field for ET and HT has already been prescribed, q= 1. With 
some consideration i t is seen that 

alld 

Further, on noting 

it is seen that 

and 

u= '" A j (z) oP. (- cos 8) eos ¢ "'T,-' n n 08 

V= "'B fn ( ) oP.(-cos 8) . -I. . 
~ m m Z 08 sin 'I' 

E = '" 1'(1'+ 1) A f ( ) oP.(- cos 8) A. 
T L..J n . n Z " 8 cos 'I' 

n r u 

l:T _ '" ii(ii+ 1) B fh ( ) oP-,,( - cos 8) . A.. 
:I T- L..J , m. m Z "8 Sill ,/, 

m 1 u 
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(9.29) 

(9 .30) 

(9.31) 
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On comparing eqs (30) and (3 1) with (17) and (19), i t follows that 

An 
'rJldl ongn(ZO) 

(9.33) 
2hv(v+ 1) Sln V7r 

and 

Em 
l (ll o':n f ':n (zo) 

(9. 34) 
2hv (ii+ 1) SIn V7r 

Wh en Ivi > > 1 and 0 is not near 0 or 7r the following asympto tic expansion is valid : 

u p ( 0) e a "2' SI / 2 -ikdS 1 A 2 -i7r /4 ( ) ' 
- .-- - "-cos ~ - n e n 
sm V7r GO (sin 0) ~ >. 

(9. 35) 

where use has b een made of the rela tion 

The heigh t function g(zo) occurring in the expression for Er can be simplified at low heigh ts. 
For example, if IkCnzol< < 1 which is the usual case 

(9 .36) 

Thus the vertical electric fi eld of a horizon tal dipole is well approximated by 

(9.37) 

wh ere 
Eo = i( 'rJ I>') I ds (e - i 27rdf)..) Id. (9. 38) 

It is of interest to compare this wi th eq (6 .24) for the ver tical electric fi eld of a ver tical dipole 
with the same moment . It is seen for a given mode 

E}n) (for horizontal dipole) '" cos 4> (1- S; )~ . 
Ein ) (for vertical dipol e) SnNg Nl 

(9.39) 

Since Sn~ 1, it is seen tha t the ratio does not depend critically on mode number n , thus 

Er (for horizontal dipole) ", cos 4> (l __ l_)t. 
Er (for vertical dipole) N g N'1: 

(9.40) 

In most cases INol> > 1 so the ratio is of the order of 11No which is small. 
very low frequencies 

In particular , a t 

cos 4> (fW)t i7r/4 ,/.. 
--~ - e cos ,/-, 
N g Ug 

(9.41 ) 

which indicates that the ratio varies as the square roo t of the frequency. This is in disagree
ment with the resul ts of Schumann who finds that dependence is the inverse first power of 
frequency. In the direction 4> = 0, of course, the ratio derived here turns ou t to be no thing 
more than the " wave-til t " for a vertically polarized plane wave a t grazing incidence on a flat 
ear th . Thus, Schumann's results [7] for the horizontal dipole would seem to be in error. 

The horizontal dipole also, of course, radiates horizontal polarization . The simplified 
expression for Hr can be writ ten by employing the single term asymptotic represen tation 
described above. Thus 

H ", Eo sin 4> (dl >.)t [~Jtei[(27rd/>')-(7r/ 4 )1~"" ohe-ika8S S >i fh (z )fh (z) 
T 'rJ (hi>') sin dla ~ m 'In m m Om • 

(9.42 ) 
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10. Influence of the Earth's Magnetic Field 

In the preceding analysis the earth's magnetic fi eld has tacitly been neglected. To 
indicate its effect the r eflection coeffi cient for sharply bounded ionosphere with the magnetic 
field includ ed shall be discussed . The derivation of the general formulas is due to Budden [30] 
but for highly obliqu e in cidence grca t simplifications to his results can b e m ade. 

The starting point is the magn eto-ionic formula of Appleton and Hartree for the complex 
refractive index !1- for a homogeneous ionized medium with superimposed magnetic field. 
In the r egion from 70 to 90 km in the ionosphere wh ere very low frequ en cies ar e reflected, it 
is often permissible to employ the qu asi-longitudinal approximation of Booker. It is now implied 
that the waves after they are transmitted into the ionosphere are steeply refracted toward the 
vertical. E ssentially this means that the refractive index does not depend to any great extent 
on th e direction of propagation for temperate and polar latitudes so that 

where 

and 

In the above 

tan T= wdv 

w5= Ne2/em, 
N = number of electrons per meter3, 

e and m= charge and mass of electrons, 
e= 8.854X 10- 12, 

v= collision frequency, 
WL = (47rX 1O- 7)He/m, and 

(J 0. 1) 

H = effective strength of the earth's magnetic field, (i.e., the longi
tudinal component /"01' propagation in the ionosphere). 

It is now desirable to consider four r eflection coefficien ts IIR II , IIRJ.. , J.R II , and J.RJ.. to indicate 
the compl ex ratio of a specified electric fi eld in the wave after reflection to a specified electric 
field in the wave before reflec tion. The first subscript denotes whether the electric field 
in the incid en t wave is parallel (I i) or perpendicular (..1) to the plane of in cidence and the 
second subscript r efer in the same way to the reflected wave. A cartesian coordinate sy tern 
(x, y, z) is now tak:en with z measured vertically upward s. The incident wave h as its normal 
in the xz plane inclin ed at an angle 8 to the z axis. Th e components of the electric fi eld are 
E ll in the xz plane and EJ. perpendicular to this plane (i.e., in the direction of increasing y) . 
Wh en the + sign is taken in eq (1), the r efractive index is denoted !1-0 corresponding to the 
ordinary wave, and when the - sign is tak.en the refractive ind ex is denoted !1-. corresponding 
to the extraordinary wave. With this convention , it can be shown tha t 

(1 0.2) 

in the northern h emisph ere. 
The incident wave is now characterized by a factor exp [- ik(x sin 8+ z cos 8)x] and the 

reflected wave, therefore, con tains a factor exp [-ik (x sin 8- z cos 8) x]. Furthermore, the 
transmitted waves havefactors exp [- ik (x sin 80+ z cos (0) !1-ox] and exp [- ik(x sin 8e+ z cos 8e)!1-ex]. 
The reflection coefficients are now obtained by matching tangential field components at the 
air-ionosphere interface. The results, expressed in a form suitable for computation ar e 
listed below. 

IIR II = [(!1-0+ !1- e) (02-COC.) + (!1-0!1-.- 1) (Oo + Ce)G]/D 

IIRJ.. = 2iO(!1-oCo- !1-eCe)/D 

J.R II = 2iC (!1-oC.-!1-eCo) /D 

J..R J. = [(!1-0+ !1- e) (C2- CoCe) - (!1-0!1-e- 1) (Co+ Ce) C]/D 
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wh ere 
(10.7) 

and 
O=cos (J, Oo=cos (Jo,Oe=cos (J •• 

N umerical values based on these formulas are available. 
Now for highly oblique incidence the value of 101 is small. Thus for 1021« 1 

(10.8) 

(10.9) 

~-exp(- 2i311C) 

wh ere 

(10.10) 

T o the same approximation 

R [ 2 Oo+ Ce OJ ( C) .L .L~ - 1- - - -- ~-exp - 2i3.L 
J.!O+J.! e CoOe 

(10.11) 

where 

fh= _ l- Oo+Oe. 
J.!o + J.!e OoCe 

(10.12) 

Also 

R 2iO J.!oCo- J.!ef'e 
II .L !::::! n C - lJo e J.!O+ J.! e 

(10.13) 

and 

(10.14) 

It is immediately evident from the above that as (J tends t o 7r/2 (i.e., grazing incidence), 
the reflection coefficients IIR II and J.R J. are bo th approaching - 1 whereas the conversion co
efficien ts II R J. and J.R II are both approaching zero . In this sense a sharply bounded ionosphere 
behaves as an equivalent isotropic m edium for highly oblique incidence. 

Some further simplifications are possible when the ionosphere is effectively a good con
ductor. For example, if 

IwT/wl» l 

Consequently, 

R ~ (l+i)(w/wT) ~ cos (r /2) (C2- 1) ± 2t [1 - iw/wTl C 
~ ~ (l + i) (w/wT)t cos (r/2)(C2+ 1) + 2t [1+ iw/wTl C 

and 

R !::::! - 2 (w/wT)t (l + i) C sin (r /2) 
~ rr- ( l + i)(w/wT)~ cos (r /2)(C2+1)+ 2t [1 + iw/wT l C 
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These may be further approximated, for cos e< < 1, by 

1- R ~ 2 (iw)~ cos (7/2\ R + 1 ~ 2 (iw)~ cos e (10.19) 
II II - W r cos e .L.L - W r cos (7/2) 

provided the right-hand sides of these equations arc small compared to one. To the same 
approximation 

" R.L 1 " R' ~-2 (iw/wrr sin (Tf2) . (10. 20) 
.L . II 

The quasi-longitudinal approximation used above is only valid when 

W} Ie W6 . v)21 
4w2wt< < 1 -;;-~ ~ 

where WL and W r are the longitudinal and transverse components of the (angular) gyro fre
qu ency. Clearly, this condition is violated when the transverse componen t of the earth's 
magnetic field is large such as for propagation around the magnetic equ a tor . 

The case of a purely horizontal and transverse field has been considered by N. F . Barbel' and 
D. D. Crombie (to be published in Journ al of Atmospheric and Terres trial Physics) . Their 
results, applicable to a sharply bounded ionosphere, may be wTitten in the following form 

(10.21) 

where 

[02+ l + i L Jt ('L - L 2- 2) _ ' S 'L L2 2 ~ 'Y ~'Y 
~ - - "I 

where L = w!wr and 'Y= wrw/w6. For east-to-west propagation (along the magnetic equa tor), 
'Y is posi tive, wbile for wes t-to-east propagation , 'Y is negative. For highly obliqu e incidence , 
the above simplifies to 

1 
~~ ~II (10.22) 

wh ere 

Furthermore if, IJlII 0 1< < 1 

1 (l + i L )t(iL - V _ 'Y2)t- i'Y 
~II (l + i L )2_ 'Y2 . 

which has the same form as equ ation (ll ) 

(1 0. 23) 

The exact determination of th e refl ection coefficients for any orientat ion of th e earth 's 
magnetic field may be canied out using a method outlined by Bremmer [3]. This has been 
don e by Johler and vYalters whose results ar c to b e published in the following issue of this 
journal. 

11. Mode Series for on Anisotropic Ionosphere 

In this section the formali sm for the mode theory is developed for a plane earth and an 
anisotropic sharply-bounded ionosphere. Th e geometry is the same as in section (3) where the 
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ionosphere was assumed to be isotropic. In the present case the reflection coefficient [R i]1! is 
regarded as a matrix and written in the form 

[Ri] I! =["R" 
II R..1. 

(1Ll) 

where the two primes are to indicate that it is a two column matrix. The individual coefficients 
IIR II, ..1.R II> IIR ..1., and ..1.R ..1. discussed earlier, indicate the complex ratio of an electric field com
ponent in the wave after reflection to an electric field component in the wave before reflection. 
The first subscript denotes whether the electric field specified in the incident wave is parallel (II) 
or perpendicular (..1.) to the plane of incidence. The second subscript refers in the same 
way to the electric field in the reflected wave. 

When the ionosphere becomes isotropic corr esponding to a zero magnetic field, the reflec
tion coefficient in matrix notation becomes simply 

o hJ" R i 
(11.2) 

where Ri and R7 are the complex scalar reflection coefficients for vertically-polarized and 
horizontally-polarized waves, respectively. The corresponding [matrix] reflection for the 
ground is 

o J" Rh • 
g 

(11.3) 

The case of two successive reflections, the first from the ground and the second from the 
anisotropic ionosphere, is represented by the matrix 

(11.4) 

In the case of the isotropic ionosphere this reduces to 

(11.5) 

The arguments employed here are virtually identical to those of Budden who, however, assumes 
a perfectly conducting ground , such that 

R,=+1 and R~=-1. 

In the previous formulation for a vertical electric dipole between the plane ground surface 
and a sharply bounded isotropic ionosphere, the fields could be completely derived from an 
electric Hertz vector which has only a z component. Of course, if the source was not sym
metrical it was necessary to introduce an additional component of the electric Hertz vector. 
When the upper boundary is anisotropic, the single component Hertz vector is not adequate 
even for a vertical electric dipole source. This is not surprising since the TM modes are coupled 
to the TE modes by the anisotropic boundary conditions. 

Any electromagnetic field, in such a parallel plate region, can be obtained from a super
position of TM and TE modes which are derived from electric and magnetic Hertz vectors. 
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...., ...., 
These are denoted individually by IIU and Ill. or, eollectively by the matrL~ 

(11.6) 

...., 
where the single prime is to indicate that it is a single column matrix. TIl. which is a magnetic 
H ertz vector is often referred to as a Fitzgerald vector. Furthermore, thc electric and magnetic 
fi elds can also b e written as single column matrices in the manner 

...., [Ell J' ''''' [ iIII J' [El' =""" , [H], = ...., 
El. H l. 

(11.7) 

where 
...., ...., 
E ll = W + grad cliv)l111 (1l.8) 

...., ...., 
H II = i EW curl TIll (1l.9) 

...., ...., 
TJfh= W + grad div)TIl. (11.10) 

...., ...., 
TJEl.= - i J.I.W curl TIl. . (11.11) 

Tho intrinsic impedance TJ is introduced in the latter two equations to make IIII and TI l. of the 
same dimensions. The H ertz vector in matrix form corresponding to the primary excitation is 
then written 

(11.12) 

...., 
where IIp has only a z component TI ( ~ ) . To match boundary conditions in the case of azi-

...., ...., 
muthal symm etTj' it is only necessary that the vectors IIII and TIl. have a z component. The 
condition of azimuthal symmetry is achieved if the refiection coefficients themselves are inde
pendent of the azimuthal coordinate cf>. 

Formally the solution has the same form as the isotropic case if the appropriate reflection 
coefficients are now r egarded as matri ces. For example for the space 0< z< h th e (matrix) 
Hertz vector 

where 

and where 

[F(C)) " 

[IIzl, = ik[M]' r [F(O) II H ti2) (kSp)dC 
2 Jr 

[MJ' Ids [111] = ° withM= 47ri EW 

(e ikCZ+ [Rg) " e- ikCZ) (eikC (h- ' 0 ) + [R i)" e- ikC(h-Zo» 

eikCh (1_ [RgR i ) II e 2i khC) 

(11.13) 

(1l.14) 

It should be noted that the denominator in the above expression is also a two column ma trix. 
Inverting this , following the usual rules for such operations, leads to 

for 2 0 = 0, where 
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l. RII R~ I 
e2iCkh_ l.Rl. R~ 

(1l.15) 

(11.16) 



and 

The corresponding residue series are thus given by 

[ ITII J' e2i Cvkh [G II iJ' 
IT = - 7rkM L, [M/oCl _ Hci2) (kSp p) G . P. 

-L p C - C p -Lp 
with 

and 
G -L p= if~( z) Rg il R-L. 

(11.17) 

(11 .18) 

(11.19) 

(11.20) 

The summation is over the poles of th e integrand [F( C) lit. Clearly this corresponds to the 
roots of the equation , L1 = 0, which are designated C= Cp. It is understood that all quantities 
in the summand of eq (18) are to be evaluated at C= Cpo The "height-factors" jp(z) andj~(z) 
have the usual form, that is 

and 
(11.2 1) 

(11 .22) 

The above results reduce to those of Budden when the ground is perfectly conducting. 
The modes excited in the waveguide can be logically grouped in to two sets. The first 

has a TM: (transverse magnetic) character and the second has a TE (transverse electric) 
character. To obtain the attenuation and the phase constants of these individual modes, 
it is adequate to consider the anisotropy as sort of a perturbation to the corresponding TE and 
TM modes for the isotropic case. 6 

To simplify the discussion the ground is considered to be perfectly conducting. That is , 
Rg= 1 and R~= - ] . The modal equation now becomes 

When mode coupling is disregarded this breaks into two equations 

(1l.23) 

( 11.243.) 

(1l.24b) 

where nand m take integral values. As mentioned in the previous section the reflection 
coefficients for highly oblique incidence may be approximated by 

and 
(1l.25) 

(1l.26) 

where to a first order , tJ[[ and tJ -L are independent of C. It thus follows that the first approxi
mation (indicated by a superscrip t (1» for the solutions of the modal equation are 

for the TM modes, and 

7r (n -.},.) 
kh .~ (n = 1, 2, ... ) 

-t II 

7rm 
kh - itJ-L (m = 1, 2,3, ... ) 

(11 .27) 

(11.28) 

for the TE modes. These h ave exactly the same form as when the ionosphere is assumed 
to be isotropic. The difference lies in the value of the coefficients tJ fI and tJ-L which are functions 
of th e earth 's magnetic field. 

' It shonld be noted that the negat:ve order modes in thc case of an anisotropic ionosphere are not the same as the positive order modes. 
'1'hat is, C- ,;,,-Co, C-,;"-C,, etc. 
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A second approximation to the mode equations is obtained in the following way. The 
modal equation is rewTitten in the two equivalen t forms 

where 

and 

1- II R ll e-i2kCh= 28 (0) 

1+ J.. R J..e - i2kC"= 2"1 (0) 

28 (0) = 

2"1 (0)= 

II R J.. J.. R lle-i2kCh 

ei2kC"+ J.. R J.. 

II R J.. J.. R lI e- i2kc" 
ei2kch- Ii R Il . 

(11.29) 

(11 .30) 

(11.31) 

(11.32) 

I t is to be expected tha t 8(0) is a small quantity for th e TM type modes and 'Y (O) is a small 
quantity for the TE type modes. The second approximations then are obtained by replacing 
8(0) by 0 (0~1 ») for the TM set, and r eplacing 'Y (C) by 'Y (O;;») for th e TE se t . Solving eqs (29) 
and (3 0) wi th these substit utions leads readily to 

for the T:M type m odes, and 

for the TE type modes . 

7r (n-!) -i8( O~l)) 
kh - i (3 11 

7rm-~'Y (C,~» ) 

kh- i (3 J.. 

(11.33) 

(11.34) 

These should be adequate solutions since 10(0,, (1 ») 1 a nd I'Y (O",<J»)1 arc small compared to unity 
for tb e impor tan t mode . In fact for most cases of practical in terest, the firs t-order approxi
mations should suffice. 

To provide some idea of the character of the TM and the TE type modes excited by a 
ver tical dipole source, the ratio of the tangential mag netic field in the t wo principal pla nes is 
considered . For the pth mode, this ra tio is given by 

where it is unders tood that the refl ection coeffi cients are to be evalua ted at 0 = Op. 
ceding expression r educes to 

(1 1.35) 

(11.36) 

The pre-

(11 .37) 

which was given originally by Budden [11J . In general this ratio is small excep t n ear the TE 
resonance wherein the denomin ator becomes very small .1For the important TM modes whi ch 
are of low order , bo t h Op and II R.l. are small compar ed to unity a nd thus the magnetic field 
I-Jp in th e direction of propagation has a relatively small magnitude. 

12. Higher Approximations to the Curved Earth Theory 

In tb e previous sections the mode series for a concentric spherical earth-air-ionospher e 
system was developed. In order to simplify the discussion and lead to results suitable for 
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immediate use, rather crude approximations were introduced. In this section t,he problem is 
reformulated in a more rigorous fashion and higher order approximations for the various spher
ical wave functions are introduced. This analysis is really an extension of the work of ~T atson, 
Rydbeck, and Bremmer. The final results indicate the range of validity of the lower order 
approximations used in the earlier sections. The formulas are in a form which is suitable for 
numerical computation. 

The earth is represented by a homogeneous sphere of radius a and is surrounded by a 
concentric homogeneous sharply-bounded ionosphere of radius c. The source is a vertical 
electric dipole of strength I ds and is located at T= b. The electrical constants of the air space 
are denoted E and }.t and subscripts g and i are added to these when reference is made to the 
ground and the ionosphere, respectively (see fig . 5). 

The fields can be expressed in terms of a H ertz vector which has only a radial component 
U, and thus, for the region a< T< a+ h. 

(12.1) 

where k= (E}J.)1 /2W. i A subscript g and i are also added to the field quantities when referen(;e 
is made to the regions 1'< a and T> C, respectively. Furthermore, lc g= (E g}.tg)l /Zw and k i= 
(E i}J. i)1 /2W are the respective wave numbers for these two regions. 

The Hertz functions satisfy the inhomogeneous wave equation 

(12.2) 

for a< T< a+ h, where the 8's are unit impulse functions. The factor 271'1'2 sin 0 is the Jacobian 
of the transformation from rectangular to spherical coordinates. The constant C is to be 
chosen so that D has the proper singularity at the dipole, that is 

e- ikR 

- bU---O>-4 . HI ds for R --70 
71'~WE 

where R = [r2 + b2 - 2br cos O]I /2, and therefore C= (i /WE) I ds. 
The field in the region a< 1'< a+ h is now written as the sum of the two parts De+ US) 

where De has the proper dipole singularity at R = O, and Us is finite at the point. As Us is a 
solution of the homogeneous wave equation, it can be written in the form 

(12.3) 

where j Q(kr) and hQ (2) (k1' ) are spherical Hankel functions of the first and fourth ki nd, respec
tively, and P Q( cos 0) is the Legendre function. The snmmation is over positive integral values 
of q. The corresponding expression for De is given by 

7 'rhe funct ion U= -i~of in terms of scalar function of "sed previously for the potential. 

192 

for r< b 

for 1'> b. 
(12.4) 



Since there arc no singularities other than th e source dipole, the H ertz functions Ug and U i are 
olutions of the homogeneous wave equations 

for O~1'~a (12.5) 

and 

(12.6) 

Noting that V g is to be finite at 1'= 0 the solution must be of the form 

(12.7) 

where aq is a coefficien t which is independent of T and o. Furthermore, since V t is to give rise 
to an outgoing wave at T= 00, the solution is of th e form 

(12.8) 

wh ere bq is a coeffi cien t. 
The four unknown coeffi cients A Q , B q , aq , a nd bq, can be found from the boundary condi

tions at T= a and c. These require tbe continuity of tbe tangential fi eld components. In 
order to facilitate the solution and to readily permit later generaliza tions, tbe (four) boundary 
conditions as stated above can be replaced by two impedance type boundary conditions. For 
the qth terms of the series these read 

(12.9) 

and 
(12.10) 

where 

and 

Replacing kT by x, eqs (9) and (10) may be rewritten 

.!. ~ (xU) =i(Z(q)/TJ) U 

.r o.r g 
for x=ka (12.11 ) 

and 

for x= kc. (12.12) 

Applying these to eq (3) enable A q and B q to be obtained explicitly in terms of known quantities. 
Using these results lead s r eadily to the following exact solution for a~ T~ b. 

(12.13) 
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l ---

where 

F - [l + R (q ) M1 )(ka) h~2) (kr) J [l + R (Q) h~2 ) (ke) h~l)(kb) J 
Q- g h~2 ) (ka) h~l)(kr) i h~l ) (ke) h ~2 ) (kb ) , 

D = 1-R (q) R (Q) h~l ) (ka) h~2) (ke) 
q g - , h ~2 ) (ka) h~l ) (ke) 

In' [ka h (1) (ka) ]-iZ(Q) IT! R (q)= - q g 

g In'[kah~2 ) (ka)l-iZ~Q)h 

(q)_ In'[ke h~2) (ke)] +iZ ;q) h 
R i - In'[keh~l ) (ke)] +iZ;q)h· 

The symbolln' denotes logarithmic differentiation, for example 

In'[ka h~l ) (ka)] 

(12.14) 

(12 .15) 

(12.16) 

(12.17) 

(12 .18) 

The above result, although rigorous, is not of practical value for vlf propagation calcula
tions because of poor convergence of the series solutions. In fact, something of the order of 
2 ka terms are required to achieve 5 percent accuracy. At 15 icc, for example, 2 ka~2,000 
which is a rather large number. An important observation, however, is that terms of order q 
beyond 2 ka contribute little to the series. Thus the spherical Bessel functions j q(kga) may be 
replaced by the Debye or second-order approximation since Ikga l > >q in the important range of 
q so long as Ikgl> >k (i.e., well conducting ground). Thus 

(12.19) 

Similarly, for Iktl> >k 
(12.20) 

Since the total field is of the form 

'" U = L:, (2q+ 1)f(q)PQ(cos ()) (12.2 1 ) 
g=O 

it can be rewritten as a contour integral over q where the integrand has poles when q takes 
integrand values. Such a representation is 

U=i r qdq f(q-t)Pq-t [cos(1T- ())] J C[+C2 cos q1T 
(12.22) 

where the contour 0 1 + C2 encloses the real axis as illustrated in figure 9. Noting that the poles 
of the integrand are located at q= 1/2,3/2,5/2 ... etc., it can be readily verified by the theorem 
of residues that this integral is equivalent to eq (21). N ow, subject to the validity of the second
order approximations, for the wave functions of order kga and k la mentioned above, the function 
j(q-}6) is an even function of q. This means that the part of the contour 0 1 just above the 
positive real axis can be replaced by Ci which is located just below the negative real axis (see 
fig. 9). The contour Oi + C2 is now entirely equivalent to L, a straight line running along i ust 
below the real axis. Replacing q-% by J.I the contour representation for U takes th e form 

U=- i r (~+t) f(v)Pv [cos (1T-())] dv. JL SIn V1T 
02.23) 
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It is to be noted that this manipulation of the con tou]'s is only strictly justified whenj(q-}6) is 
an even function of q. This is well justified when [lcg [2 and [le i [2 are both> > P. 

c, 

----.-l--.~~.,--~ 

c', FIGURE 9. The contouTS -in the complex q 1,lane. 

L 
x 

The next step in the analysis is to close L by an infinite semicircle in the negative balf
plane. The contribu tion from th is par t of the contour vanishes as the radius of the semicircle 
approaches infinity because of the exponentially decreasing character of the integrand. The 
value of the integral for U along the contour L is now equal to - 27ri times the sum of the residue 
of the integrand evaluated at the poles of j(v) located in the lower half-plane of v. It then 
follows that 

(12 .24) 

where D;/) = ODv/ov . All quantities in the summand are to be evaluated at the poles of j(v) 
which are the roots of the equation 

Dv= O. 

This equation is precisely the same as the one d iscussed earlier (i.e., eq (5.5». At tha t time 
the relevant spherical wave functions of order lea and lee were simplified by the u e of thc 
Debye or second order approximation. The Hankel or third order approximation will now be 
employed. It rna)' be written [26] 

(12.25) 

where 

(12.26) 

(I) 

and H m(p) is the Hankel function of order 1/3 of argument p given by 

p= v;i [ (v~2i)2-1J' (12.27) 

For R e (v+!) < <x or for [p[> > 1, the above reduces to 

(1) (1) 

xM2) (x) ~ m2) (x) (12.28) 

which is the Debye approximation used in section (5). 
The third order r epresentation for the logarithmic derivative is 

(1) .2.- [ ( 1) 2J ) m In'[xh;2) (x) ]~ e±13 1- v+; '[ H~i~(p) 
x H {%(p) 

(l 2.29) 

while the corresponding second order approximation, valid for [p[> > 1 is simply 

(1) [ (v+!YJ~ In'[xh;2 ) (x)]~ ±i 1------i- -. (12.30) 
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For convenience in what follows, it is desirable to introduce two new spherical refl ec tion 
coefficients Tg and r i which are connected to Rg and Ri in the following manner: 

T = _ In'[kaM2)(ka)] R = l - ln'[kah;l) (ka )] 
g In'[kaM1) (kal ] g 1- it.g 

In' [kah;2) (ka)] 

(12.31) 

and 

(12.32) 

wher e 

(12.33) 

and 

(12.34) 

These new reflection coefficients may be expressed to a high order of approximation by using 
the Hankel or third-order approximation for the spherical Bessel fun ctions of argument ka 
or kc. Thus 

(12 .35) 

and 
t.; .ZC Hln (p el 1-[ ( +.!)2J' e'G H (2) ( ) 1- ~ -z- 2/ 3 Pc 
kc 

(12.36) ri~ H O ) ( ) t. i _ i~ 1/ 3 Pc 1+[ ( +.!)2J' e 6 H O ) ( ) 1- ~ -z- 2/ 3 Pc 
kc 

where 
_ II+! [ (ka) 2 J3/2 

Pa--3- (1I+ !)2- 1 (12.37) 

and 
II+ ! [ (kC)2 J3/2 

PC=-3- (1I+ !) 2- 1 . (12.38) 

To tbis same approximation 

(12.39) 

and 
r '" i4"./3 HilHpc) H I7H pc) R. 
,=e H O) ( )' E:T (2) ( ) " 

1/ 3 Pc 7.2 / 3 Pc 
(12.40) 

When iPa i and iPci> > 1 

(12.41) 
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and 

[ (V + t)2J~ 1- - - -Ll . . kc 1. 

1' i ~Ri~ J. ' 

[ (V+1.)2J2 
1- k/ +Lli 

(12.42) 

On writing v+ ! = kaS= kcS', these latter forms are readily identifi ed as the Fresnel reflection 
coefficients 

and 
1' . ~R .,...., N7[1 - (S')2]! - [N7- (S')2]t. 
.- t N7[1 - (S')2]!+ [N7- (S')2]t 

Attention is turned specifically to the determination of the roots of the equation 

D v= O. 

This may be written 

(12.43) 

(12.44) 

(12.45) 

(12.46) 

where R g and R i are defined by eq (31) and (32) and n may take integral values . Emplying 
the third-order approximations, this may be rewritten, for Re (v+ -!) < ka 

wherc 

Jka [ (v +t)'Jt . 'Ya= 1- --2 - d.1 
v+Yz X 

(12.48) 

and 

'Ye= 1 _ _ - .-2 - dx J' ke [ (v + 1. FJ! 
vH5 x-

(12.49) 

while, for kc> R c (v+t) > ka, 

1'1' H~7HPe)H~7HPa) e - i2'Y ei~pc-e-i271"n 
g ; lCT(l ) ( ) H(l ) () c - • 

7. 2/ 3 Pc 2/ 3 Pa 
(12.50) 

In the above formulas the (sphcrical) reflection coefficients l' g and T; are defined by eqs (35) 
and (36). When IPal and IPcl » 101' if Re (v+!) < <ka, the relevant equation for the modes 
is simply 

(12.51) 

where 1'g and T ; are defined by eq (41) and (42) which are the Fresnel form of the reflection 
coefficients. Equation (51 ) is identical to eq (5.10) which was discussed previously. 

13. Influence of Stratification at the Lower Edge of the Ionosphere 

Attention in previous sections has been largely confmed to a sharply bounded homogeneous 
ionosphere. In view of the general uncertainty about the electrical properties of the lower 
edge of the ionosphere, a more elaborate model might hardly seem worthwhile. Furthermore, 
despite the geometrical simplicity of the above models, the computation of the modes is very 
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involved in the general case. Despite these disparaging remarks the inhomogeneity of the 
lower ionosphere may be considered in some cases without greatly increasing the complexity. 
Some of these generalizations are discussed here for what they are worth. 

The theoretical treatment given in section (3) for a vertical electric dipole located in the 
air space between a flat ground and a plane interface of a homogeneous ionosphere may be 
easily generalized to a stratified ionosphere . The essential modification is to replace the 
ionosphere reflection coefficient R i ( 0) by a more elaborate form which is denoted Ii:; (0). For 
example, a two layer ionosphere is chosen. The lower edge is at z= h and from there to 
z= h+s, the refractive index (assumed constant and isotropic) is Nt; at this point the refrac
tive index (also assumed constant and isotropic) is N2 and remains at this value thereafter. 
It is not at all difficult to show that, for vertical polarization [31], 

where 

NW- (Nr-S2)tQ 

NW+(Nr-S2) t Q 

Q NICN§ - S2) t+ NHNr - S2) t tanh [iksCNr-S2)t] 
NHNr-S2) t+ NICN§-S2) t tanh [iks(Nr-S2)t ]' 

Here it may be observed that if IkNls l < < 1 the reflection coefficient becomes 

- N 20- CN2-S2) t 
R . CO)~ I 2 • 

• - NW+CN§-S2)! 

whereas if IkN)s l > > 1, it becomes 

(13.1) 

C13.2) 

(13.3) 

(13.4) 

These two limiting cases correspond respectively, to the conditions of an electrically thin and 
an electrically thick stratum. In the former case the effective reflection level is at z=h+s 
and in the latter case it is a,t z=h. 

The formula for R i(O) may easily be generalized to any number of layers. For example, 
in the case of discrete layers or strata, O<z<h corresponds to the air; h<z<h+s1 corresponds 
to a stratum with index N I , h+st <z<h+st +s2 corresponds to a stratum with index N 2 , and 
so on. (See fig . 10.) With this generalization, Q, in eq (1), is to be replaced by 

NrCN~- S2)tQ2+N§(Nr- S2)! tanh [iksl(Ni-S2)!] 
NHNr-S2)t+ NICN§-S2)!Q2 tanh [iksICNr- S2)!] 

NHN~-S2)Q3+NHN§-S2) tanh [iks2CN§-S2)!] 
Q2 N§(N§ - S 2) + N§(N§-S2) Q3 tanh [iks2(N~-S2)!] 

(13.5) 

(13.6) 

and so on. Q3, (h, Q5 . . . are obtained by cyclic permutation of indices. It should be 
noted, however, for M discrete strata that Q.M= 1 since effectively SM= 00 • The resultant 
Hertz vector for the air space O<z<h is then formally given by eq (3. 13) with the more general 
meaning now attached to the ionosphere reflection coefficient. In the general case, the rigorous 
evaluation of the integrals 'would be extremely involved. However, using arguments similar 
to those for the homogeneous ionosphere, the field may be approximated as a sum of residues 
evaluated at the poles of the integrand. Thus the contributions from the branch points are 
again neglected since for finitely conducting layers they correspond to heavily damped waves. 
Therefore , the residue series formula given by eq (3 .15) is also applicable if the reflection co-
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FIGURE 10. Stratified model fo r ionosphere. 

h 
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efficient R i(On) is replaced by R i(On). The modal equation now reads 

(13.7) 

where n takes in tegral values. 
A numerical treatment and an application for the special case of a two-layer ionosphere 

has been carried ou t and reported in the li terature [21] . There is no intrinsic difficulty in 
extending such calculations to an indefinitely large number of such layers each with infinitesimal 
thickness. For finitely condu cting strata such a process converges and leads to an adequate 
representation for a continuous refractive index profile. 

A great simpJification to the formulas for a stratified ionosphere is effected if the refractive 
indices for an layers are large. For example, if INJ/ , INzl . .. INM I > > 1, then 

Ql~NIQ2+ N2 tanh (~kSlNI) 
- N 2+ N 1Q2 tanh (tks2N 1) 

QZ~N2Q3+N3 tanh (~kS2Nz) 
N 3+ N zQ3 tanh (tlcszNz) 

(13.8) 

(13.9) 

and so on. Thus to this approximation, 01 does not depend on the angle of incidence or the 
factor O. In this case, the modal equation simplifies to 

(13 .10) 

where 

(13.11) 

Regarding !::l IOn as a small quan tity, this can be solved to give 

(13. 12) 

where f O= 1, fn= 2(n ~ 0 ) . This is valid if l!::lkhl < < 1 and l!::l l < < kh [1 - (7I"nlkh )2]. Thus, at 
extremely low frequ encies and for highly conducting layers, the propagation faetor S n is 
expressible in a relatively simple form. 

The special case of a two layer ionosphere was considered in some detail in a previous paper 
[21]. Such a model was sufficient to explain the variation of the observed attenuation rate for 
frequencies of the order of 500 cps to 15 kc. 

Exponential Profiles 

At the extremely low frequencies it was seen that for a stratified model of the ionosphere. 
the factor 0 does not depend on 0 or S. In fact, it is not difficul t to show that the surface 
impedance Z at z= h looking ou twards is given by 
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From this viewpoint is becomes quite easy to write down expressions for 01 for other profiles. 
For example, if the refractive index varies in an exponential fashion relatively simple formulas 
are obtained. Two cases which could be considered are 

N(z) = 1.0 for O<z<h, 

N(z) = N exp [=F (z-h) /l] for z>h, 

where the (-) sign corresponds to a refractive index decreasing with height and the (+ ) sign 
corresponds to a refractive index increasing with height. In the above, l is a scale factor; for 
example, at within a distance l above the lower edge of the ionosphere, the refractive index has 
changed from N to N /e or Ne for the two respective cases. 

Within the layers of the ionosphere propagation is vertically upwards and thus a compo
nent E of the electric field satisfies 

for z>h. 

Solutions of this equation for the exponential form of N 2(z) are 

const X10 (ikNle-(Z- ~)/l) 

E = 
const X Ko(ikNl e+ (Z-h)/ l) 

(13.13) 

for the two respective cases, where 10 and Ko are modified Bessel functions. The transverse 
component of the magnetic field is then found from Maxwell's equations, e.g., ip.wH= oE/oz. 
The surface impedance Z at the lower edge of this model of the ionosphere is then defined by 

For the case when the refractive index decreases with height 

Z=~ Q with Q 10 (ikNI) 
NI ' II (ikNI ) 

and when the refractive index increases with height, 

Z-~Q 'th Q_ Ko(ikNI) - WI - • 
NI ' KI (ikNI) 

(13.14) 

(1:3.15) 

For low frequencies, ikNI';;;;.,/~ x with x= INI kl. The arguments of modified Bessel functiclns 
are thus proportional to ~~. Numerical values are shown in the table for certain real values of 
x. In both these cases, it may be observed that as the scale length l approaches infinity, Z 
becomes 'T)o!'N as it should. 

The simplicity of the above formulas for the exponential profiles is due to the inherent 
assumption that the refractive index N( z) is large compared to unity for z>h. When this 
condition is violated, such as it would be at frequencies above several kilocycles per second, the 
solution is not expressible in closed form, except for horizontal polarization [32] which is really 
only of academic interest at vlf. Nevertheless for calculation of attenuation rates at extremely
low-frequencies (less than 1 kc, say), the exponential models find direct application. For ex
ample, if Q= 1 the homogeneous ionosphere is regained and the attenuation rate (- k 1m So) is 
proportional to wt ; on the other hand for an exponential profile with N( z) increasing upwards, 
the attenuation rate increases with frequency more rapidly as suggested by experiment.al data. 
In fact, it is quite easy to see, for both decreasing and increasing exponential profiles, that 

Attenuation rate for exponential model !2 (71" ) 
Attenuation rate for homogeneous model ,2 1QI sin 4-al'g Q . 
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T A BLE 1. Selected n umerical values of the factor Q 

Q~ To( -Ji x) 
1,( , '/1) 

Q~J(o(..rr...x) 
K ,(v; x) 

--,-
r IQI arg q 101 arg 0 

0. 2 10.000 -44°43' 0.3854 2~o58' 
0.5 'l. 003 - 43° J;{' 0.5880 17°16' 
1. 0 2.026 - 37°55' 0.7:144 ]] °59' 
1. 5 1. 417 -29°52' 0. 8047 g015' 
2.0 U 80 -20°59' 0. 8'159 7°28' 

2.5 1.100 - 13°44' 0. 8728 6°20' 
3.0 1. 083 - 9°09' 0.8919 5°28' 
4.0 1. 080 -5°42' 0.9169 4°18' 
5.0 1.073 -4°37' 0.9325 :J°33' 
6.0 1. 060 -:;°49' 0.9433 3°02' 

7. 0 1. 051 -3°19' 0.9511 2°37' 
8.0 1. 045 - 2°47' 0.9570 2°16' 
9.0 1. 040 - 2°26' 0.9618 2°06' 

10. 0 1. 035 -2°It' 0.9654 1°54' 

0.1 0. 25518 27°22' 
0.3 0.4719 21 °08' 
0. 7 0.6622 ]4°3W 

'The right-hand side of the above equation is a function of the quantity X= INl l~ CWr/w)tl wllcre 
W = ~/ EO is the co nductivity at the lower edge of the ionosphere andl is the vertical distance lin 
which N changes by a factor 2.718. 

The author thanks i\Ir. K enneth Spies for his carcfulreading of the manuscript and I~IT's. 
Ann Fails for her typing and assistance in preparing the bibliography. 
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