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The Joint Use of the Ordinary and Extraordinary Virtual
‘Height Curves in Determining Ionospheric Layer Profiles
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An extension of Budden’s matrix method for determining ionospheric layer profiles is

described.

When analyzing vertical incidence ionograms by the matrix method, it is usual
to interpret the virtual height curve for the ordinary mode only.

Errors then arise from

the presence in the lower ionosphere of low-density ionization for which the plasma frequency

is less than the lowest frequency observed.

In the proposed extension of the method, such

errors are reduced by making use of the extraordinary virtual height curve as well as of the

ordinary.

1. Introduction

In 1954 Budden [1]? introduced the matrix
method for analyzing the records of vertical incidence
ionospheric soundings, and since then it has come
mmto wide use. The records, which are known as
‘“Gonograms,” contain curves of the virtual reflection
heights of the ordinary and extraordinary modes
as functions of frequency (“virtual height curves”),
and the object of the analysis is to determine, from
one or the other of these curves, how the ionization
in the underside of the ionosphere is distributed in
height. The difficulty lies in the integral equation
that relates this distribution to the virtual height
curve; in general, it is too complex to be solved
analytically. The principle of Budden’s method is
to approximate the integral by a sum of discrete
values of the integrand, thus converting the integral
equation into a matrix equation, which may be
solved by inverting the matrix.

In its customary form, the method makes use

only of the ordinary virtual height curve. The
ordinates of this curve are measured from the

ionogram at selected frequencies, and then this set
of ordinates is multiplied by a matrix to produce a
set of the corresponding ordinates of the layer
profile. The matrix multiplication is a simple
repetitive process and so lends itself readily to
performance by a digital computer. As a result,
the matrix method is now widely favored for the
routine analysis of ionospheric data.

Unfortunately, however, two rather restrictive
conditions have to be met if the method is to work
properly: First, the original virtual height curve
should extend down to zero frequency; second, the
ionosphere should consist of a single layer only, so
that a given density of ionization occurs at just
one height on its underside. Only under these
conditions does the integral equation define a unique
distribution.
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Usually neither condition is met in practice.
Most 1onospheric sounders do not operate below
about 1 Me, while the ionosphere often appears
to be stratified into several distinct layers. Then
there are many possible distributions that could
have given rise to the observed portion of the virtual
height curve. In fact, these uncertainties are the
main sources of error in the analysis of ionograms
by the matrix method.

This paper deals only with the problem of how
to reduce the errors that arise from ignorance of
the virtual heights at low frequencies. Here the
ionosphere still is assumed to consist of a single
layer. The analysis appears capable of being
extended to cover the case of multiple layers with
mtervening “valleys,” but this development is not
considered.

When the virtual height curve is missing at the
low-frequency end, the usual practice is to assume
that the unknown virtual heights are constant and
equal to the value at the lowest frequency observed;
this assumption implies that there is no ionization
below the level of reflection for that frequency.
If such “low-density ionization” is present in fact,
then the group delay that it produces in the observed
frequency range is attributed wrongly to time spent
by the waves in traveling up to the ionosphere, so
that the true heights are overestimated.

So long as attention is confined to a single virtual
height curve, there is no way of detecting the low-
density ionization or of isolating its effects in the
observed frequency range. But these effects are
different for the two modes of propagation; the
group delays differ in amount and vary with fre-
quency in different ways. This fact suggests that
the low-density ionization could be studied by
measuring both the ordinary and extraordinary
virtual height curves and combining the data that
they contain. In the present paper, extensions of
the Budden matrix method are developed to do this.

The contents of the paper are arranged as follows:
In section 2 terms are defined, and the present method
for the interpretation of a single virtual height curve
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is reviewed briefly; the work reviewed is chiefly
that of Budden [1], Rydbeck [2], and Schmerling [3].
Section 3, which contains the substance of the paper,
shows how the matrix method may be extended
to make joint use of both virtual height curves; the
errors that may arise in the inferred distribution
of ionization, due to random errors in measuring
the virtual heights, are examined also. The analysis
is illustrated in section 4 by a worked example, in
which an artificial ionogram, computed for a known
distribution of ionization, is interpreted by the
new procedures. Finally, the whole analysis is
discussed and eriticized in section 5, and the con-
clusions of the paper are summarized in section 6.

Certain previous authors also have considered
using the two virtual height curves in conjunction.
The suggestion was made originally by Jackson [4],
but his approach, which is one of trial and error,
is not suitable for extensive use. Thomas [5],
however, in a recent survey paper, has outlined some
work by Titheridge [6], who appears to have adapted
Jackson’s method into a more convenient form.
Titheridge’s work, which has not been published at
the time of writing this paper, may anticipate some
of the results presented here.

2. Interpretation of a Single Virtual Height
Curve

2.1. The Integral Equations

In this section the integral equations are derived
that relate the virtual height curves for the ordinary
and extraordinary modes to the distribution of
ionization.

At vertical incidence, the virtual height of reflec-
tion A’ is given as a function of the wave frequency
f by the integral

h'(f)=f:R W (f,N) dz, (1)

where z is height in general, zz is the true height of
reflection for the given frequency, and u’ 1s the
group refractive index, which depends both on the
frequency and on the local electron density V.

In the limit of very low wave frequencies, the
virtual and true heights of reflection for both modes
all tend to a single limiting value z,, the height of the
base of the ionosphere. From ground level up to
this height the waves travel at the speed of light,
which is to say that their group refractive indices are
unity.® Thus (1) can be written as

)=t [ ) b @)

3 Actually u’ is slightly greater than unity even below the ionosphere due to
the refraction of the air, but the departure from unity is negligible in the present
context.

where the integral now embraces only the range of
height in which free electrons are present.

The general expression for the virtual height is com-
pleted by introducing the relation between the density
of electrons and the height. However, instead of the
density itself, it is more convenient to work with the
“plasma frequency” fy. which is proportional to its
square root. The function z(fy), in which plasma
frequency is viewed as the independent and height as
the dependent variable, will be referred to here as the
“layer profile.” The profile is a multivalued function,
even for a single layer, since a given value of fy, if it
occurs at all, must do so at least twice, once on the
upper surface of the layer and once on its underside.
The relationship between the true heights of reflection
and the layer profile may be understoed by consider-
ing the condition for reflection. The condition for an
ionized medium to reflect radio waves is that its
plasma frequency should exceed a certain critical
value that depends on the frequency of the waves
and also on the mode of propagation. This value will
be written as fz(f). It follows that waves of a certain
frequency and mode, propagated up into the iono-
sphere from below, are reflected at the first level that
they encounter at which fy is equal to the appropriate
value of fz. Obviously, this is the lowest such level.
Hence, the true height of reflection is given by

zp=minimum value of z(fz). (3)

To summarize, the true height of reflection is a
particular value of z, determined by fz, which in
turn is a function of f; this function is different for
the two modes of propagation.

Since all reflection takes place from the underside
of the ionosphere, only the profile of this part needs
to be considered. Further, since the ionosphere has
been assumed to consist of a single layer, the profile
of its underside is a monotonic function. In this
case, fx can be taken as the variable of integration.
Also, the group refractive index u” will be expressed
as a function of fy instead of N. With these changes,
the integral equation becomes

W (f) =zt f "Wt () ke @

Here the equation is still quite general, in that it
applies equally to both modes. The particular
equations for the ordinary and extraordinary modes
are to be obtained by considering their respective
reflection conditions, that is to say, the different
relationships between fz and f. These relationships
are graphed in figure 1.

The ordinary mode behaves very simply; the critical
plasma frequency for reflection is equal to the wave
frequency. Thus,

fa=f (ordinary mode) (5)
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Ficure 1. Thre conditions for reflection of the ordinary (O)

and extraordinary (X) vertical

incidence.

magneto-ionic modes at

Abscissa: wave frequency (f).
reflection (fz).
quency (fu).

Ordinate: plasma frequency at the level of
Both frequencies are normalized with respect to the gyrofre-

so the integral equation for the ordinary mode is

Wh=at [t () it ©

From here on, the quantities A, A/, and p’, when
written without subscripts, will refer to the ordinary
mode only. The corresponding quantities for the
extraordinary mode will bear the subscript “z.”

The extraordinary reflection condition is more com-

plex. The relationship between f and f is now
Fa={f(f% fw) }?
=
where fy is the gyrofrequency. The positive sign
applies if f<fy (L.H. curve in fig. 1), while the
negative sign applies in the more usual situation,
where f >fyz (R.H. curve).

Note that, as the wave frequency approaches the
gyrofrequency from below, f; tends to the value 72
fu. On the other hand, as the gyrofrequency is
approached from above, fz becomes vanishingly small,
so that the extraordinary reflection level should de-
scend to the base of the ionosphere; actually, such
echoes are never detected, because they are heavily
absorbed.

The integral equation for the extraordinary mode
can be written now as
dz
>df1\'J

dfy.

(extraordinary mode)

@)
(8)

say

By (f) = 20+ fo"p; (f. fx) ©)

where the symbol ? has been adopted to denote the
value of fz for an extraordinary wave of frequency f.

532053—60

_ This equation differs slightly from the correspond-
ing equation for the ordinary mode, in that the upper

limit of the integral (f) is not the same as the inde-
pendent variable (f) on the left-hand side; also, to
each value of f below the limit /2 f,; there correspond
two possible values of f (see fig. 1), one of which is
less than the gyrofrequency, while the other is
greater. However, only the upper range of f will
be considered here, because most records of iono-
spheric virtual height do not extend below the gyro-
frequency. With this restriction, there is a straight-
forward correspondence between f and f, and the
virtual height may be regarded equally well as a
function of either variable. When it is regarded as
a function of f, the extraordinary virtual height will

be represented by the symbol ; thus

R =ha ().

To find the virtual height for a specified value of
7, 1t is necessary to know the corresponding value of
/. This frequency is given by the positive solution
of the quadratic eq (7), and it is

(10)

f:%fy{{1+4<7/fﬂ>2}%¢1}, (11)

where the positive sign now yields the range of
frequencies above fy, which 1s the range to be
considered.

In these terms, the integral equation for the extraor-
dinary mode is

R =20t f " Fd) (%) dfy. (12)

This equation is similar to (6), the only remaining
difference being that, in calculating u’,, it is neces-
sary first to obtain from (11) the value of f that
corresponds to the given value of 7.

The integral eqs (6) and (12) relate the virtual
height curves to the slope of the layer profile. Were
it possible to invert either equation so as to obtain
a solution for the slope, then the profile itself could
be recovered by a straightforward integration.

2.2. The Matrix Equations

The integral equations cannot be solved analyt-
ically in the general case, because the group refrac-
tive indices are complicated functions of f and fy.
Therefore, they are solved by converting them into
matrix equations as will be described now.

Consider the eq (6) for the ordinary mode. The
first step is to replace the continuous functions A’
and z by their values at a number of discrete “sample
frequencies.”  These frequencies will be written, in
order of ascending magnitude, as fy, fi, fz . . . etc.,
or generally as f,, where the index m is zero or a
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positive integer; f, is zero frequency, and the rest
are assumed to be spaced closely, but not necessarily
evenly, through the full frequency range. The fol-
lowing notation will be used also:

Afm:fmvfm—l (771 = 1) (13)
hn=h' (fu) (14)
£ams0) 09

. Zm—Cm—1 (77?/; 1)
Afn= {20 (m=0). (16)

The quantities Az, are increments of height on the
layer profile; note the definition for m=0.

The next step in the approximation is to assume
that the slope of the layer profile is effectively
constant over each elementary frequency interval
Af,,, 1.c.,

dz Az
dfy Afn

Then the complete integral can be split up into a
series of discrete sums, as follows:

(fm—l §fN§ fm) J

h——AZo+Z 4m ‘f

B (furfv) dfx

m= lAfm fmf
~Z M, Az, say (17)
where Az, has been written in place of z,, and
(m=0)
f"[ I < <
"m A fm fm = (f"’fN) (ZfN (1 =M= 71/) (1 8)
m_>mn).

Now suppose that in (17), n is set equal in turn to
0, 1, 2, ete., up to the value that corresponds to the
highest sample frequency. The result is an array of
simultaneous equations, which may be solved for
the unknowns Az, by the simple algebraic process
that is deseribed below in section 2.4. Originally,
however, Budden [1] adopted an alternative ap-
proach, which is to regard the complete array as a
single “matrix equation;”’ this approach has pro-
vided a more convenient basis for the subsequent
extensions of Budden’s methods. In matrix termi-
nology, the set of quantities %, and also the set of
Az, both constitute “vectors,” while the coefficients
M,,, form a “lower triangular matrix.” This differs
from the corresponding matrix used by Budden
(1955) and Schmerling (1957) by including an extra
column with m=0, in which all the coefficients are
unity, and an extra row with 2=0, in which all the
coefficients except the first are zero. Kach of the
remaining nonzero coefficients is the average of the

values of group refractive imndex assumed by a wave
of frequency f, in traveling from the level where
f=fm_1 up to that where fx="7,.

If » is understood to run through its full range of
values, then eq (17) states that the vector of the
h, is obtained by multiplying the vector of the Az,
by the matrix of the coefficients A,,,. Thus (17) is
the required matrix equation for the ordinary mode.

The integral equation for the extraordinary mode
can be treated likewise, and the result is the matrix
equation
n

=
M, Az,

~
h, =~

n=0

(19)

where

(=%

(m=0)

~

oo 5 [ wtufotte  asmzn @)
m—1

Jm

f_—A"'_\
= B '
et

(m>n)

and the other new quantities are defined like their
ordinary counterparts (cf. eqs (13), (14)).

From here on, the complete matrices will be rep-
resented by symbols in square brackets, while the
same symbols without brackets will refer to the
individual elements. Thus the group refractive index

matrices will be written as [A,,,] and [M,m]. Their

elements M,,, and MM may be computed from the
formulas given in appendix A.

2.3. Solution by Matrix Inversion

The matrix eqs (17) and (19) for the ordinary and
extraordinary modes, respectively, may be solved
by inverting the matrices. Thus, for the ordinary
mode, the solution is

n
2,2> Noynho, (21)
m=0
where the matrix [V,,,] is the inverse of [M,,]. Sim-
ilarly, for the extraordinary mode,
n _
Az, =~ Z Nnmhm (22)

m=0

where [&m] is the invmsc of [7\~4,Lm] Because the

matrices [M,,] and [Jlnm] are lower triangular, so
also are their inverses.

The increments of height may be summed now to
give the heights themselves:

n
211:2 Azy,. (23)
m=0

This summation is analogous to the final integration
that would be performed if the original integral equa-
tions, that involve the slope dz/dfy, could be solved
analytically (see sec. 2.1).
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2.4. Solution Row-by-Row

As an alternative to inverting the matrices, the
increments of height on the layer profile may be
found by solving the matrix equation row-by-row

[7]. For instance, consider the eq (17) for the
ordinary mode. It can be rearranged to read
il . =1
AzrzS N VAR hn'_' Z AlnnzAzm © (24}
A{nn m=0
There is one such equation for each value of n. The

complete set may be solved by starting from n=0

and working upwards. Thus,
I e
Aoo—m{ho}i
1

A’:lz’/\‘[‘ { }lvi_“{]oAE() } )

11

1 " .
Acl’}-ﬂf[; {he—M,,A2,—MyAZ,}»

and so on. In effect, the method consists of isolat-
ing, at each stage, the group delay produced in the
unknown uppermost increment of height, by sub-
tracting from the observed virtual height the group
delay produced in the known height increments at
lower levels.

The eq (19) for the extraordinary mode can be
solved similarly. Matrix equations can be solved in
this way only when, as in the present case, the
matrices are triangular.

3. Joint Use of Both Virtual Height Curves

3.1. General Remarks

In the previous section, each of the matrix eqs
(17) and (19) represented a set of linear simultaneous
equations in which the number of data (ordinates of
the virtual height curve) was equal to the number
of unknowns (increments of height on the layer pro-
file). Hence each set had an exact solution, so that
the complete virtual height curve for either mode
was sufficient by itself to determine the profile.
But when some of the curve is missing, as when the
records are unavailable at low frequencies, then the
remaining high frequency data are insufficient to
determine the profile without making special assump-
tions (see sec. 1).

However, the situation is not hopeless, since the
data for the two magneto-ionic modes are mutually
independent. Suppose, therefore, that in sampling
the virtual height curves to obtain these data, the
sample frequencies are chosen so that the unknowns
are the same in the two sets of equations. Then, if

both sets are combined, the number of data is in-
creased while the number of unknowns remains con-
stant. Hence, the total data may now be enough
for the complete set of equations to be soluble.

To make the unknowns the same, the ordinary
and extraordinary virtual height curves must be
sampled at frequencies which correspond to the same
true heights of reflection. Considering one such
pair of frequencies, this is to say that the values of
fr must be the same for the two modes. From the
expressions for fr ((5) and (7)), this requirement is
seen to be met if the sample frequency f, for the or-
dinary mode is made equal to f, for the extraordi-
nary; the corresponding sample frequency f, for the
extraordinary may be found from (11). Thus the
corresponding values of f, are not equal for the two
modes; moreover, if the sample frequencies are
spaced evenly for the ordinary mode, then those for
the extraordinary mode will be spaced unevenly.
From here on, the two sets of sample frequencies will
be assumed to be related in this way.

The question now arises, under what condition
can the layer profile be determined fully by joint
use of both virtual height curves? Suppose, to
simplify the discussion, that all the data come in
pairs; sample values of ordinary virtual height for
which no corresponding extraordinary virtual heights
are measurable, or vice versa, will be ignored.
Suppose also that the range of index n for the two
sets of data 1s r=n<r-+s-1. Then the data com-
prise s values of /£,, together with s values of A,
a total of 2s separate items. The number of the
unknowns Az, 1s r+s. Evidently the condition*
under which the data determine the unknowns fully
is that s=>7.

If the positions of the pairs of sample frequencies
can be chosen arbitrarily, it is easy to arrange for
a surplus of data. If, on the other hand, it is decided
to space the frequencies evenly for one or other of
the modes, say the ordinary, then the condition
entails that the frequency range over which the
ordinary virtual height 1s measurable should be
wider than the unobserved range of low frequencies.
Since, for most ionosondes, the low frequency limit
lies below 2 Me, while the ordinary penetration
frequency for the F2 layer usually exceeds 4 Me,
this requirement is likely to be met most of the time.

Assume, then, that there are enough data to
determine the unknowns. Two distinet cases are
to be considered: In the first, s is equal to 7, so that
the data determine the unknowns exactly; in the
second, s is greater than r, and the unknowns are
over-determined. The exactly-determined case is
treated in section 3.2, and the overdetermined case
in section 3.3.

4 Strictly speaking, this condition is necessary but not sufficient, for, even when
it is satisfied, the determinant of the set of equations still might vanish. In
practice, the determinant is unlikely to vanish exactly, though it might become
very small. Then quite small errors in the data would produce large errors in
the inferred values of the unknowns, a state of affairs that is to be avoided. For
a discussion of the effects of random errors, see section 3.5.
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3.2. The Exactly-Determined Case

In the exactly-determined case, the index n for

the data (k. and &,) runs from » to 27—1. The matrix
eqs (17) and (19) together represent a set of 27
simultaneous equations, which are to be solved for
the 27 unknown values of the Az,.

It is convenient to split the solution into two
steps: First, the equations are solved for the incre-
ments of height in the unobserved frequency range
(0=m<r); after which, the remaining increments
in the observed range (r=m<2r-1) are found by
existing methods.

In finding the Az, for the range 0=m<r, the
values outside this range first must be eliminated.
This is done most simply by starting from the in-
verse eqs (21) and (22). Because the sample
frequencies for the ordinary and extraordinary
virtual height curves correspond to the same true
heights of reflection, these two expressions must
give the same values for the Az, to the limits of
accuracy of the matrix formulas. Therefore, they
can be equated to yield the relation that holds
between the two virtual height curves as a conse-
quence of their being derived from the same layer
profile:

S { Ny N} 22 0. (25)
m=0

When n=7r, (25) provides a relation between the
observed and the unobserved virtual heights. This
fact can be made plain by splitting the sum into
separate parts for the two frequency ranges:

~

S Nomta— N} 2 [Ny Nomha} (0> 7).

Mm=r m=0

(26)

The next step is to substitute for the unobserved
virtual heights and reintroduce the corresponding
Az, by use of (17) and (19):

i {Nnmh;n_]vnmﬁm} 0 Avnm ,Y?‘_’L./Mml A~l>
- ZVnm(,ii Iml AZl)} (nz'”)
1=0
—1 m ~ ~
=~ ZZ {Nanml_NnmJIml} Az, (n>7) (27)
m=0 1=0
r—1r—1 I~ i~
~ z l{N,mMm,—u oM} Az m>7r)  (28)
=0m=

The reversal of the order of summation on the
right-hand side, between (27) and (28), may be
justified by pomtlng out that, in the form of (27)
a given m oceurs in combination with all the /’s
from O to m; hence, a given / must occur in combina-
tion with all the m’s from [ to r—1, as indicated in

(28). Or again, it may be checked simply by
writing down the triangular array of the possible
combinations of [ and m.

Now (28) may be written in the concise form

Sy anz Azp  (n27) (29)
where
Sy= n_r{ Nuhp—Nohn) — >7) (30)
and -

Prum S (NonBlr NonM)  029). (31

The matrix eq (29) relates the Az; for the unob-
served frequency range to the quantities S,, which
are formed from pairs of corresponding values of
ordinary and extraordinary virtual height in the
observed range. Its solution will be written as

2r—1

AZz——E an (ZST— 1), (32)

where the matrices [(;,] and [P,;] are mutually in-
verse.

Having thus arrived at the height increments Az,
for [<r—1, the remaining values can be found by
solving one of the original matrix equations row-by-
row (see sec. 2.4). Use of the virtual height data for
either mode should lead to identical results, even
when the data contain errors of measurement, be-
cause the equations for the two modes together form
an exactly-determined set.

3.3. The Overdetermined Case

In the overdetermined case, where s>, any subset
of r-+s selections from the 2s items of data would
suffice, in principle, to determine the unknowns com-
pletely. If the data were free from error, it would not
matter which subset was chosen. But when the data
contain errors of measurement, some subsets will
give better estimates than others. A still better esti-
mate might be obtained by taking an appropriately
weighted mean of the estimates from all the possible
subsets, in which case each unknown would be given
as a linear combination of all the data. The choice of
the best combination would be governed by the
statistics of the errors. Here it will be assumed, for
convenience, that the errors of measurement of the
virtual heights are all random, mutually uncorre-
lated, and distributed normally with equal standard
deviations. Then the best estimate of the Az; is that
given by the “Method of Least Squares” (see, for
mstance, Whittaker and Robinson [8]), and it is the
solution of the matrix equation

r4s—1

Rmz Z DTml AZZ) (33)
=0
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where
1

rls—
= 3 {Mnmhn—’rw,,mh } (34)
n=r

and [U,,;] is a square symmetric matrix, the elements
of which are given by the expression

r4-8—1 ~ ~
erl: ; {Mannl+Mannl} (35)

These equations are derived in appendix B.

The matrix eq (33) represents a new set of r-s
linear simultaneous equations, equal in number to
the unknowns; each of the new equations 1s a linear
combination of the 2s original equations, represented
by (17) and (19). The solution of the complete set
will be written, in matrix form, as

r4s8—1

Az~ Z Vi B,y

(36)

where the matrix [V,] is the inverse of [U;,] and like-
wise 1s square symmetric.

In eqs (33) to (36), the index 7 would be a constant,
fixed by the properties of the recording equipment,
but the index s would vary from one set of data to
another because of the variations in the penetration
frequencies of the /2 layer. Equation (36) is the
solution of (33) just so long as s>r. The equations
do not contain this restriction explicitly, but when
s<r the determinant of [UU,,;] vanishes so that the
matrix cannot be inverted. Equation (36) is indeed
applicable to the exactly-determined case when s=r,
but for this special case the equations developed in
section 3.2 give the same answer more simply; at
least, the matrix that has to be inverted is smaller.

3.4. Some Practical Considerations

The variability of the index s makes the full least-
squares solution inconvenient for practical use be-
cause each value of s requires a different matrix
Vi, to be computed. In practice, it is best to fix
s at some particular value, so that V;, need be com-
puted only once. The chosen value of s should be
sufficiently high for the unknowns to be thoroughly
overdetermined, yet sufficiently low for the upper-
most sample frequency (f,.s_;) never to exceed
f,F's. The use of this particular matrix [V,] yields
the values of the Az; for 0/<r-+s—1. When data
are available at frequencies above f,,;_;, the remain-
ing Az, may be obtained by continuing the row-by-
row solution upwards. If the data contain random
errors, however, the results would be different
according as the ordinary or extraordinary virtual
heights were used in the solution. Better results
would be obtained by combining both sets of virtual
height data following the Method of Least Squares.
The least-squares value for each of these Az;(I>r-s)
is found by applying the procedure of section 2.4

to the equation

Az~ M;,

ﬁ{h;-—
MpA+M?
M” { S }
+—cx— 1 hy— M, Az, (37)
waitn M

-1
Z MlmAZm}
m=0

m=0

which replaces (24).

Probably not much accuracy is lost by fixing the
value of s in the way suggested, which entails that
only data at frequencies between f, and f,,.,, are
used to determine the distribution of the low-
density ionization. For this ionization has its
greatest effects on the observed virtual heights at
frequencies just above f,, and hence these frequencies
must provide the data that are most useful in de-
termining its distribution.

Furthermore, the virtual height data at the higher
frequencies may be systematically unreliable as a
result of “lateral deviation.”” This effect is discussed
more fully in section 5. Here it is mentioned only
as a further justification for omitting the data at
frequencies above f,.,; initially, when using the
matrix method for the overdetermined case.

3.5. The Effect of Random Errors

If the measurements of the virtual heights con-
tain random errors, these errors produce fluctuations
in the inferred values of the Az, The standard
deviation of these fluctuations will be calculated now
for the total range of /. The calculation will be made
for the overdetermined case assuming that the
Az; have been obtained by the full least-squares
procedure ((33) to (36)). As before, the errors in the
measurements will all be assumed to have the same
standard deviation, and this will be called o.

Now the change that occurs in Az;, as a result of
a small error 6k, in the measurement of the ordi-
nary virtual height A;, is found by differentiating
(36) and (34):

5(Az) V,m aa[if )6h’
r+s—1
~ S5y, M0 (38)

m=0

An error in the measurement of the extraordinary

virtual height %, has a similar effect. The total
standard deviation of Az; due to all the errors, is
found by squaring and adding these two contribu-

tions, summing over all =, averaging, and then
taking the square root. The results can be written
as:

Standard deviation of Az;=ap;, (39)
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where

r4+s—1 r4s—1 2 r4s—1 ~ 2
(40)

The “error coefficient’”” p,, which is the standard
deviation of Az; per unit standard deviation of the
original measurements, is a measure of the suscepti-
bility of the estimate of Az; to disturbance by ran-
dom errors of measurement; the smaller is p;, the
more reliable is the estimate.

For the exactly-determined case, the error coeffi-
cients may be obtained by using (40) with s set equal
to 7. The special equations developed for this case
in section 3.2 do not lend themselves well to the
derivation of the coefficients.

Let it be emphasized that the p, are the error
coeflicients of the increments of height (Az;) on the
layer profile. Of greater interest, perhaps, are the
error coeflicients of the heights (z;) themselves.
These coefficients will be called 7, and they are
defined thus, by analogy with the p;:

Standard deviation of z,=om,. (41)
The 7, cannot be derived from the p, in any simple
way because the errors in the calculated Az, are
mutually correlated even though there is supposed
to be no correlation between the errors in the virtual
height data. An expression may be derived for the
m;, however, similarly to that for the p;, using (23)
as well as (36) and (34); it is

r+s—1 I r+s—1 ) 2
ﬁ: Z_) {I:Z Z L7krrL1unrrz]

k=0 m=0
I r4s~1 ~ 2
+[Z Vkmﬂ/[rm] }'
k=0m=0

Alternatively, in appendix C it is shown that the
whole analysis can be developed from the start in
terms of the z; rather than the Az, without altering
the form of most of the expressions. In the analysis
so developed, the 7, would be given by the equation
analogous to (40).

(42)

4. A Test of the Method

The foregoing analysis has been tested on an
artificial ionogram. The test consisted of assuming
a particular layer profile, computing the correspond-
ing ionogram (fig. 2), and then attempting to recover
the profile from the data in the ionogram, using first
the conventional matrix method, and then the vari-
ous extensions of the method that were developed in
section 3. In the numerical calculations, the gyro-
frequency was taken as 1450 ke, and the angle of
dip as 68.2°, which are the values that apply at
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Ficure 2.  The virtual height curves calculated for the assumed

layer profile.

Boulder, Colo. The calculations were performed on
the IBM—-650 computer at the Central Radio Pro-
pagation Laboratory of NBS.

The assumed layer profile is graphed as the solid
curve in figures 3 to 5. It is monotonic, since the
analysis is restricted to profiles of this type for the
time being. It represents a distribution of ioniza-
tion in which there is a ledge of low density beneath
a layer of high density. Such a distribution might
arise in the ionosphere soon after dusk, when the
FE-layer is decaying rapidly but the /-layer persists.

The virtual height curves that are derived from
this profile are shown in the “ionogram’ of figure 2.
The lowest observable frequency (f,) for the ordinary
virtual height curve has been taken as 2 Mec, while
the corresponding lower limit for the extraordinary
curve is 2.85 Mec. The figure shows only those
portions of the curves that are supposed to be
observable. A particularly precise type of numerical
integration (a 48-point Legendre-Gauss quadrature
[9]) was used in computing the virtual heights, so
that these data essentially are free from error.
Hence any errors that may arise in the deduced layer
profiles represent systematic defects in the methods
of analysis.

The results of various attempts to recover the
profile are presented in figures 3 to 5. In these
figures, the points on the deduced profile are shown
as solid dots, while the broken line is a direct inter- |
polation between adjacent points. ‘
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Figure 3 shows the results of analyzing the iono-
gram by the conventional matrix method in which
only the ordinary virtual height data are used [1, 3].
Because the low-density ionization has been ignored,
all the computed points are much in error, lying
well above the true profile (the solid curve); the
error amounts to more than 30 km at the lowest
observed frequency (2 Me), while even at 6 Mec it is
about 6 km. It is this error that the extensions of
the matrix method seek to eliminate.
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Ficure 3.  The layer profile inferred from analysis of the ordi-
nary virtual height curve by the conventional matriz method.

For further explanation, see section 4 of the text.

However, in attempting to apply the new methods
various problems were encountered, as follows:

The first, a comparatively trivial problem, was
presented by the “rounding-off errors’ in the digital
computer. Such errors proved to be particularly
serious in the inversion of the matrix [{/;,]. Even-
tually they were made negligible by performing the
inversion with a ‘“double-precision” program in
which the computer carried 18 significant digits of
each number instead of the usual 8 [10].

The main problem proved to be one of balance
between the effects of random and systematic
errors on the derived layer profile. The random
errors are introduced by the inaccuracy of the
virtual height data, as explained previously. The
systematic errors are introduced when, in the process
of converting the original integral equations into the
corresponding matrix equations, the continuous
curve of the profile is approximated by a series of
rectilinear segments (see sec. 2.2.). The need to
compromise between the two types of error does not
arise in the analysis of a single virtual height curve,
that is, in the situation studied in section 2, for in

that situation the systematic errors can be made
arbitrarily small by increasing the number of sample
frequencies and reducing the intervals between
them. The introduction of a new sample frequency
adds a new unknown to the set of equations, but
it also adds a new item of data that is related closely
to this particular unknown, so that the random
errors are relatively unaffected. The situation is
quite different, however, when the virtual height
curves are incomplete. Then the introduction of a
new sample frequency in the unobserved range
increases the number of unknowns without adding
to the data, so that the precision with which the
profile can be determined, in the presence of random
errors, suffers accordingly. Tt is clear that the
disposition of the sample frequencies, particularly
of those m the unobserved frequency range, is a
delicate problem and one that involves balancing the
effects of random and systematic errors against each
other. In view of the complexity of the equations,
it seemed futile to attempt an analytic solution to
this problem; instead, the sample frequencies were
selected by a process of trial and error. The im-
portance of the random errors was judged from the
size of the error coefficients, and that of the sys-
tematic errors from the accuracy with which the
derived profile reproduced the true one. An account
of the series of trials is given now.

In the search for a satisfactory set of sample
frequencies, five particular cases were tried in suc-
cession. Their properties are summarized in table
1, which gives for each case the values of the para-
meters » and s, the sample frequency f, that cor-
responds to each index /, and the error coefficient
p; of each height increment Az, on the layer profiles.
The profiles themselves were computed only for
those cases where the error coefficients were reason-
ably small (i.e., <10), since it was found that the
other cases developed severe “rounding-off errors’
in the matrix multiplication (36).

Cases 1 and 2

In the first two trials a constant interval of 400
ke was maintained between sample frequencies.
Case 1 was exactly-determined, with the number
of data equal to the number of unknowns, while
case 2 was overdetermined, with twice as many
data as unknowns. As would be expected, the error
coefficients for the overdetermined case were smaller
than those for the exactly-determined case. In
both cases, however, the error coefficients for the
height increments in the observed frequency range
were excessively large, of the order of several hundred.
This fact suggests that it is not practical to space
all the sample frequencies uniformly because random
errors then have too severe an effect on the lower
part of the deduced profile. Rather, a relatively
coarse spacing must be employed in the unobserved
frequency range, so that in this range the number of
sample frequencies is reduced and the unknowns
become very much overdetermined.
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TasrLe 1. The error coefficients (p1) of the increments of height

on the layer profile.

Each coefficient is given in the form of a number, followed in parentheses by
the power of ten by which that number should be multiplied; these coefficients
are dimensionless. For further explanation, see section 4 of the text.

Case 3

Accordingly, in case 3 the effect was tried of repre-
senting the entire unobserved frequency range by a
single interval of sample frequency; in other words,
the variation of height with plasma frequency was
assumed to be linear from 0 to 2 Mec. The sample
frequencies in the unobserved range, however, were
the same as those in case 2. The error coeflicients
now became reasonably small, and so the layer pro-
file was computed for this case; the result is shown
in figure 4. Although this profile is slightly more
accurate than that of ficure 3, it still contains large
systematic errors which are due to the crudity of
the straight-line approximation to the layer profile
in the unobserved frequency range. Evidently a
representation has to be found for this part of the
profile that is intermediate in complexity between
those of cases 2 and 3.

Case /

In case 4, therefore, three sample frequencies
were placed in the unobserved range, as against
five for case 2, and one for case 3. Also, the number
of sample frequencies in the observed range was
increased, and their spacing was reduced to 200 ke
in the hope that these changes would help to reduce
the error coefficients. In fact, however, the error
coefficients for index 0 and 1 turned out to be dis-
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Ficure 4. The layer profile inferred from both virtual height

curves by the extended matrix method in case 3.

For further explanation, see section 4 of the text.

appointingly large. The conclusion to be drawn from
this result is that no reliable detail can be obtained
at the low-frequency end of the unobserved range.

Case 5

In case 5, the final trial, the sample frequencies
were the same as those in case 4, but the ionization
in the lowest interval of sample frequency was
ignored: from zero frequency up to f; (0.8 Me) the
layer profile was assumed to be horizontal. This
restriction was imposed on the profile by modifying

the matrices [M,,] and [M,,]. The modifications
consisted of omitting the row and column with
index zero, and then defining the elements of the
first column to be equal to unity. These changes
had the desired effect of reducing the error co-
efficients to acceptable values, while at the same
time bringing the inferred layer profile (fig. 5) into
close agreement with the true profile. The only
outstanding discrepancy is at the extreme low-
frequency end of the unobserved range, where the
assumption that the profile is horizontal makes it
inevitable.  Throughout the observed frequency
range, the systematic errors of the computed points
are all less than 1 km. Hence, in this final case, the
choice of sample frequencies is deemed satisfactory.

No doubt the method could be improved further
by continuing this process of trial and error, but the
results already achieved are felt to give a sufficient
demonstration of its potentialities.
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The layer profile inferred by the extended matriz
method in case 5.

Ficure 5.

For further explanation, see section 4 of the text.

5. Discussion

This section contains a discussion of one difficulty
that might be encountered in the practical use of the
methods of this paper. The difficulty, noted pre-
viously in section 3.4, is that caused by “lateral
deviation.”” It is well known that, in vertical sound-
ing, the paths of the ordinary and extraordinary rays
within the ionosphere are deviated laterally in
opposite directions [11]. So long as the ionosphere
is uniform in the horizontal plane, this deviation has
no effect on the virtual heights. But whenever there
are horizontal gradients of electron density, then the
ordinary and extraordinary rays are propagated
through different distributions of ionization, and for
neither mode does the virtual height curve correspond
to the vertical distributionof ionization directly above
the sounder. This effect has been detected already
as a source of error in attempts to measure the gyro-
frequency in the F-layer by comparison of the pene-
tration frequencies for the two modes [11]. Pre-
sumably it also would cause errors in attempts to
deduce the vertical distribution of ionization by
joint use of both virtual height curves.

In this connection, it is of interest that the com-
parison of the penetration frequencies observed on the
1onograms indicates whether or not a horizontal
gradient of electron density is present. If this com-
parison yields the correct value for the gyrofre-
quency, then there can be no horizontal gradient;
such an ionogram could be analyzed with confidence
to obtain the vertical distribution of ionization. If,
on the other hand, there is a discrepancy between the
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calculated and true gyrofrequencies, then the size of
this discrepancy provides a measure of the gradient;
perhaps this information could be used to apply some
first-order correction to the virtual height curves, so
as to make them more amenable to analysis.

6. Conclusions

In principle, given an ionogram in which the
virtual heights are not recorded below some lower
limiting frequency, it is possible to deduce the
complete layer profile for the full range of frequency
by combinining the data in the ordinary and extraor-
dinary virtual height curves; it must be presupposed,
however, that the profile is monotonic and that the
data are exact.

In practice the data contain random errors of
measurement, and these errors have a severe effect
on the inferred profile if too much information is
sought about its shape in the unobserved frequency
range. To keep the effect of random errors within
reasonable bounds, detail must be sacrificed in the
unobserved frequency range, particularly at the
lowest frequencies; this is to say that the lower part
of the profile must be characterized by a few param-
eters only, and that these parameters must be grossly
overdetermined by the data. The abandonment of
this low-frequency detail involves systematic errors
even when the data are exact. In fact, a balance
has to be struck between random and systematic
errors. It is possible to strike a balance that gives a
considerable improvement over the conventional
matrix method, in which the ordinary virtual-height
curve alone is analyzed.

The methods need further extension to cover
situations where the layer profile is multivalued.

The author is indebted to T. K. Van Zandt,
E. L. Crow, S. Chapman, J. W. Wright, and J. M.
Watts for discussion and advice, and to Mrs. G. A.
Hessing, J. W. Finney, and R. B. Norton for assist-
ance with the numerical computations.

7. Appendixes

7.1. Appendix A: Formulas for Computing the Group
Refractive Index Matrices

The elements of the matrices [M,,,] and [M,,,] for
1 <m =<n, are given by the integrals in (18) and (20),
respectively. These integrals cannot be evaluated
analytically, in general, so they have to be evaluated
numerically. As numerical integrations, however,
they are difficult to perform for elements on or near
the diagonal of the matrix (m=2n), since the plasma
frequency fy then ranges close to the critical value
for reflection, where the group refractive index
becomes infinite. Nonetheless, the elements them-
selves are all finite; and, in fact, each integral may
be converted into a form that is usable right up to
the diagonal by a simple change of variable [1].



The procedures for the ordinary and extraordinary
matrices are slightly different, so they will be treated
separately.

a. Ordinary Matrix

For the ordinary mode, the matrix elements are
given by the integral

Mu=gp [ WGty A=msn). @)

Afnd sy

To obtain a form in which the integrand stays finite
as fy approaches f,, the variable of integration is
changed to

p=sin"'(fw/fy). (44)
Then

A ) 0=X0W Gulsin 9)dg

(l1=m=n), (45)

where ¢,,, ®,., are the values of ¢ for which fy=7,,
fn—1, and where
Xo=(fw/fn)’=sin’¢. (46)

If the frequency interval Af,, is a constant, say Af,
so that f,=n Af, then
bm : .
M= f (1= X% (fofo sin ¢ )do
d)m—l

(I=m=n). (47)

In evaluating this integral, the integrand is com-

puted from the equations of the magneto-ionic
theory, using the familiar variables

X=(fwlf)?
Y,=Y cos 0

(48)

Y=Ffulf Y,=Ysing (49)
in which 6 is the angle between the direction of
propagation (the vertical) and the earth’s magnetic
field; the effect of collisions is ignored, as is usual in
this type of work. From these variables, the
following parameters are defined:

S={Y}+4Y 3 (1—X)%}3, (50)
D=2(1—X)—E, (51)
E=Y24+S, (52)
F=FE4+2Y3:(1—X). (53)

8 These parameters are similar to a set introduced by Shinn [12] who is respon-
sible for several of the formulas quoted here. However, some of Shinn’s
definitions have been altered slightly.

It is convenient to compute the integrand as the
product of two factors:

(1—X)%#’:{uu’}{l_X}%‘

2

(54)

Here p is the wave refractive index for the ordinary
mode. Kach of these factors, separately, also
remains finite as fy approaches /. They are given by

401 v
' =it { B2y =D

(55)
and
= 2Y 31X
7 —1-E+2Y2’ (56)
while, furthermore
EX
2'— —_——
=1l 7 (57)

b. Extraordinary Matrix

The integral for the elements of the extraordinary
matrix is

ﬂm—j [ wuanan asmsn 69

m m—1

where

Fu=3 Tl 14T lf) 1] (59)

and the sign is to be taken positive or negative
according to whether f, is greater or less than f.
Equation (58) may be changed into a form suitable
for numerical integration by making the substitu-
tion

$=sin~"(fw/T,). (60)
Then
\f }n ;"’ e % ’ i o I
Jlﬂm:—T = {(1_‘Xn) :U.r(fn;fn SIn ¢)}d¢
Afm Pm—1
(I=sm=n) (61)

where ¢,,,¢, 1 are the values of ¢ for which fy=f,,
fm_1, and where

X.=(fw/f,)=sm%.

For the case where the frequency interval Afm s a
constant, say Af,

(62)

L”m:nf_‘”m (=% (fu ] sind) }de (1<m=n).
m—1

¢
(63)
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Again, the integrand is computed as the product
of two factors. Here the factors are, firstly,

(1— X3 (1—@)T3
. ] (64)

2
= +5[1—ME—X2 =
and secondly, the square root of

1—X D
2 20FY)(1—X+Y

)(1+2Y 1/E).  (65)

The wave refractive index for the extraordinary
mode is given by

2X(1—X)
2 S NS I
Note also that
X=X1FY ). (67)

Here, and in (65) above, the upper sign applies to
frequencies above fy, and the lower to frequencies
below fy.

7.2. Appendix B: Treatment of the Overdetermined
Case by the Method of Least Squares

The equations to be solved are

h,ﬁzg M, Az, r<n<r+4s—1) (17)
for the ordinary mode, and

5”“12 M,Az, (r<n<r+4s—1) (19)
for the extraordinary. Observed values of the

h, and h, are given for r=<n=<r-ts—1, where s=r,
but these data contain random errors of measure-
ment The aim is to find a set of Az, which, if
inserted in the equations, would yield calculated
values for the 4. and /4, that agree with the observed
values as closely as possible. The measure of dis-
agreement is the sum of the squares of the differences
between the two sets of values, and this quantity
is to be minimized.

Now, if certain values are assumed for the Az,
the implied errors of measurement are

E,—h!— zZ M, Az, 68)
=0
and
=T, —3>) 1,42, (69)
=0

For the ordinary mode, the sum of the squares of the
implied errors is

r+s—1 r4s—1
V‘ ]an E ]L )Z ‘) Z ZAIMILILAGZ
11 r n=r n=r =(

rs=1 n

+ 2 ZZ )\[nk ‘InlA~kAl

(70)
n=r k=010=0

A similar expression applies to the extraordinary

mode. These two expressions must be added, and

the total minimized. The condition that it shall be

a minimum with respect to variations of all the

Az, 18 that

o}

’2 T
3 (a2 ; {2 n}fo (71)
for all m (O=m=r4s—1). On evaluating the

derivatives, this condition yields the Az, as the
solutions of (33).

7.3. Appendix C: The Analysis Presented in Terms
of the Ordinates z,

In the analysis deseribed in this paper, the ordi-
nates of the layer profile have been arrived at by
two distinet steps: First, various matrix equations
have been set up and solved in terms of the height
inerements Az, then these inerements have been
summed to obtain the actual ordinates z,. It is
possible to combine these two steps by rewriting the
matrix equations with the ordinates themselves as

the unknowns. Consider, for instance, the eq (17)
for the ordinary virtual height. It may be re-

arranged as follows:

n
héﬁz ﬂjmnAZ m

(17)
m=0
W*A1n0A~0+ Z :\[n mA “m
2*‘T)‘InOZO-‘*ﬁ Zl M’I!IVL(‘;IIL'; Sm— l)
~~A1n0 0+2Mnm-’m Z j"fnmzm—]
m=1 m=1
=1
NZJInmﬁn ZAIn,nH-lzm
m= m=0
NZ a"VL/IL ~m, (72)
say,
where
r*‘[nm—':\jn,erl (m<n)
L0 (m>n).



This is the form in which Budden [1] uses the matrix
equation; it is, of course, completely equivalent to
the other.

The eq (19), for the extraordinary virtual height,
may be rearranged in the same way:

~ N~
V=02 Wil say. (74)
m=0

Since the eqs (72) and (74) are of the same form as
(17) and (19), 1t is clear that the analysis of this paper
could have been based equally well on the new equa-
tions, and developed in terms of the ordinates z;; the
arguments would proceed just as before, with the z,
replacing the Az;, so there isno need to give the details.
The choice of which of the two sets of equations to
start from is largely a matter of convenience, though
it may be that, in computation, one would involve
smaller “rounding-off errors” than the other.
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