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Limit of Spatial Resolution of Refractometer
Cavities

William J. Hartman
(July 9, 1959)

Filter factors that determine an upper limit for the wave numbers for which refractom-
eter measurements can be used to calculate the spectrum of refractivity are derived in this
paper based on the assumption that refractometers measure a weighted average of the refrac-
tive index in a volume of air surrounding the center of the refractometer cavity. Two models
are used assuming the weighting function has spherical symmetry around the center and one
model is used assuming the function has eylindrical symmetry. All models result in a simple
mathematical form which should be easy to use in further theoretical developments.

1. Introduction

The wave number power spectrum of refractivity is determined for large wave numbers /
by the correlation of the refractive index variations at points which are separated by small
distances [1]." Thus, refractometer measurements discriminate in two ways against the spec-
trum for large wave numbers. First, the refractometer does not measure the variation of the
refractive index at a point, but rather, a weighted average of the variations in the volume of
air in the vieinity of the center of the refractometer cavity, and second, the centers of two
cavities may not be placed arbitrarily close because of obvious physical limitations. The first
of these effects is evaluated in this paper assuming several different weighting functions and
neglecting further practical limitations such as finite response time and noise characteristics of
the instrument. The result shows that the measured spectrum is a filter factor times the
theoretical spectrum.  With appropriate approximations, the effect is also evaluated for the
measured frequency spectrum of refractivity.

The exact weighting function is determined by, among other things, the size and shape of
the cavity and the size and shape of the openings which allow the passage of air through the
cavity. The commonly used microwave refractometer cavity [2] consists of a right circular
eylinder with the ends partially opened to permit the flow of air and operated in the 7'/, mode
at about 9 kMe. Considering the weighting function for a closed eylindrical cavity operated
in the TFEy,, mode, it appears that the weighting function for an open cavity with the same
dimensions, and operated in the same mode, decreases approximately as a partial sine wave
across a section of the cavity perpendicular to the axis and gaussianly along the axis from the
center [3]. For mathematical simplicity, however, the most desirable weighting function is one
that has spherical symmetry about the center of the cavity, as will be seen later in the analysis
in this paper. (This would be a very good approximation, for example, for a refractometer
using a cavity consisting of two concentric spheres, the outer sphere being a grid to allow for
the passage of air.) Two of the weighting functions used in this paper have spherical sym-
metry, and a third function is used which has cylindrical symmetry. The results for the three
different forms differ significantly only in the region where data become unreliable because of
other limitations.

2. Theoretical Development

It may be assumed that the refractometer measures a weighted spatial average of the
variation An=n—mn, where n, denotes an average value of the refractive index n. Let the

1 Figures in brackets indicate the literature references at the end of this paper.
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weighted average of An at any time ¢ be given by

o J‘(l“/'An " Of () f{[“)'Aﬂ(?{ Fr,0)f ()
A e =+ ; =
J dBrf(r) J *rf(r)

- -

where v is a volume centered at R, the center of the refractometer cavity, and f(r) is the weight-
ing function for the cavity. Figure 1 shows two spherical cavities and the vectors associated
with these.
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Fraure 1. Geomelry for two spherical refractomeler cavities.
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Using two refractometers with centers at R, and R, it follows that
)
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where < > denotes a time average or ensemble average.
Following Wheelon [4]2, one obtains
ﬂ)/ ﬁ)/ \ 7 7)/ 7>/ 1 ' g = &7 ’ ’
< Aan(ry, t) An(ry,t) >= < An*> (,'()'1—1'2):8—7;3] kS (k) exp [—ik-(ri—ry)] 3)
> v
> o
where < An?>> is the variance of the fluctuations of the refractive index. C(rj—7}) is the cor-
- - -

relation of the fluctuations at two points determined by the vectors »; and r,, and S(k) is the
wave number power spectrum of refractivity.
Similarly, one may define

BBty BBy t) > = < &> O (P) (4)

-
where C,(P) is the correlation function between the centers of the cavities of two refractom-
- > o o
eters, and the vector P is the vector between the two centers, P=R,— RR,.

2 The magnitude of the S(k) defined by Wheelon is about one-fourth as large as the one used here since he used A€ = 2nAn instead of An.
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Combining (2), (3), and (4) one finds that
f d’r f dir, (An2>(’(),—/2)f1])f( )
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The factor in the braces in (5) is called the filter factor £ and this determines the upper
-

limit of k£ for which the refractometer may be used to measure S(k). It should be noted that in
the above formulation, the exact form of the structure of the atmospheric turbulence, whether
isotropic or anisotropic, affects the weighting function but will have no other effect on 2. 1In
practice, 2 must be greater than the size of the cavity, but for theoretical purposes, one may
assume that P can take on any value greater than or equal to zero. Then, taking the inverse
Fourier transform of (5), one finds

An(hl, t)An( 1])2, t) >=<An*>( w(P :

= J &k exp [—ik-PIS (k) (5)

i =
ES (k) — [ BP exp [ik-P]< &> Co(P) )
which is the quantity obtained from measurements.
In the following we will evaluate £ assuming the following forms for l(l

I for l;'[gu,

=

1° f(r)—

-
0 for |r| >a
o

2° f(r)=exp{ —r*a’},
and

- exp {—72/b2} for yri+ri<a

B — ’ S

0 for 72 +rt>a,

where r,, 7,, and r, are the components of » in the z, y, and z directions respectively. The
first form, 1°, gives an upper bound for any closed spherlcal refractometer cavity of radius a,
and the second form, 2°, gives an upper bound for such a cavity operated in the 7FE;, mode.
In each of the three forms it is possible (but not necessary) to identify the parameter a (or b)
with the dimension of the cavity.

For the first case, 1°, if one has two refractometers which measure a small spherical volume
of air of radius @ and b, respectively

2
J= f sin )xlrl)\lj r/l)l[ ridr, exp [—1kr, cos \]
(4 7r(L3>

2w

l ™ h
1 [=sinndr j r/af 2dr, exp [ikr; cos A
v (4 7‘_],3>J;1 @ | 2] rdr, exp [1kry cos N, s
3
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The quantities in the braces in (7) are the same, except that the parameter (a) is changed
and one is the complex conjugate of the other. Thus we may write

E=g(k,a)g*(kb) (8)

where g*(k,b) is the complex conjugate of g(k,h). One then obtains by integrating

)

g(k,a)= (ka)® [sin ka—ka cos ka) 9)
and thus,
5 9 . .
Iﬁ:(kiij:‘_(/:"l;)"‘ [sin ka—ka cos kallsin kb—kb cos kb]. (10)

For the second case, 2°; one finds that

1 (. (" :
_{ . 372[ sin xl(lxlf (ZOIJ ridry exp [—ikr cos N] exp {—1}/a?} }
a’m 0 0 0

S "o eN--)
X {ﬁw J ) Sin Ao\, J ) (lazjﬂ r3dry exp [ikry cos Ny] exp { —r2/b?} } (11)

Again, one may set the two factors of the right hand side of (11) equal respectively to g(k,a)
and g*(k,b). After performing the X and 8 integrations, one obtains

gk (1)_——*,,1 :171117/»71, exp {—r*a*}dr (12)
Vo cr

which yields, using relation No. 19, page 73, of reference[5],

gk,a) —i = ('\p { }v exp {— ﬁ} (13)
a? \7r

E= exp { —k*(a*+b?)/4}

Thus

Figure 2 shows the filter factors for the sharp spherical cutoff F(ka) and for the gaussian
cutoff K (ka) versus ka, assuming that the refractometers used to determine £, (or F£,) are the
same.

For the case 3°, Eis given by

E=g(a, b)g*(c, d) (14)

where

L) *a L - —>
J dr, j dr J dr, o ik exp {—n, /b
f dr f dr f dr, exp {—r, /b‘“

with L=+/a?>—r2 and g*(¢, d) is the complex conjugate of g(c, d). After integrating the de-
nominator of (15) one obtains

g(a, b)=

(15)

g(a,b)= f (/lf ({rf dr. exp [—i(rh,+rh,+r.k.)] exp { —r2/b*}. (16)
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The 7, integration may be done using relation No. 23, page 121 in reference [5] and one
obtains

sxp | —F 2h2/4) (@ °L )
{/(a,b‘):QPA -f’rrl—)—/él—i‘ «//'_UI dr, exp {—i(rjhe,+r.k,)}. (17)
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Changing to polar coordinates, (17) becomes

—~ .22 ‘a o -
g (dyb)zg}')”{'vwa%l)ﬁ} J y(lyj d6 exp [—iyvk,>+k.2 sin 6], (18)
0 0

which may be integrated to yield

( b-—__z__J( PP ?) o — k. %b* "
sobl= e Tk TR oo | == (19)

where J1(Z) is the Bessel function of order 1. Referring to figure 3, one finds that
Vi ke t=k+/1—sin?@ cos? 8 (20a)
and

k2= k? sin? 8 cos® B, (20b)

=
where 6 is the angle which & makes with the vertical, and g is the angle in the XZ plane with
the z-axis assuming that the cavities are both alined along the z-axis. Combining (14), (19),
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(20a), and (20b) it follows that
E. = (akyT—sin? # cos? ) J; (cky1—sin? f cos? B)

" ack*(1—sin? § cos? B) J
e 2 ey 2 2 2
P exp{_,(,?m 0 cos® B)k*(b*+-d )}- (21a)

1

E, is plotted versus ka in figure 4, assuming two identical cavities, and also that @ equals b in
(21a), for the values 8 equal zero and several values of 6.

One may also write -
V1—sin? 6 cos? B=cos
where ¢ is the angle F forms with the z-axis. With this notation, (21a) becomes

S J, (ak cos ¢) J, (ck cos ¢) exp{ k*(b*+d?) sin® ¢}. (21b)

a— 7 7
“ack? cos® ¢ 4

In figure 4, the curves for 6 equal to 0°, 45°, and 90° correspond to ¢ equal to 90°, 45° and 0°,
respectively.

If one assumes isotropic turbulence and then carries out the angular integrations in (5)

using the filter factor (21a), a new filter factor is obtained which, as in the two previous
=2
forms, is dependent only on the magnitude but not on the direction of /.
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Ficure 4. Filter factor for a cylindrical refractometer cavity
with its axis in the horizontal direction.

=
6 is the angle a vector k, in the zy plane makes with the vertical axis, and the

>
angle ¢ is the angle a vector k makes with the axis of the cylinder.
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It may be noted here that zeros of the functions shown in figure 2 and figure 4 can actually
occur, the only requirement being that the weighting funection for the refractometer decrease
slowly over a small volume surrounding the center of the cavity.

The frequency spectrum of refractivity is given by (6]

v o

- »
U',,(u):j dr cos vr<_An(r,, t)An(r,, t+7) >. (22)

JO

Many measurements of this type, taken with a stationary refractometer, are available [2]

Assuming (somewhat arbitrarily) that the structure of the turbulence is frozen in blobs which
. . . . > .

are carried past the refractometer by the wind with the constant velocity w, one may write

o

Y > > >
<A1 ) ARy, tH-7) > =< An(r,t) An'rH-pr,t) >, (23)

and then, using (1), it follows that

_— —_ —_ - -
< An(r,t) An(ry, t+1) >=<An(r,,t)An(r;+ur,t) >. (24)

It should be noted that in the above expressions ((23) and (24)) no allowance is made for the
“self motion” [4] of the air, and this may be of considerable importance. Applying (24) and
(5) in (22), one obtains

H',,a(y):Jn dr cos vr Sir:‘J, d*k exp [A’I./('-;,;TIS(/(,‘) FE(ka), (25)

where W,,(v) is the spectrum which is actually measured and v=2xf where [ is a frequency.
For the case of isotropic turbulence (25) yields

: [~ ST

W o0 (5) =- f Ak Sk E (ka), (26)
T v/u

using either 1° or 2° for the filter factor.

Substituting v=/ku in (26) and differentiating both sides with respect to k, one obtains

kS (k) £ (ka)

d -
e = g Whalkw) (27)

Norton [7] and Wheelon [4] each obtained the result

kS d o, _
e Ml @8

which, when combined with (27) yields

AW, (k) - 1 (lu"m(ku)

d(kp)  E(ka)  d(kp)

(29)
which relates the slope of the actual spectrum to the slope of the measured spectrum.

3. Discussion of Results

Because no data are available for calculating the wave number spectrum, the interpreta-
tion of results will be confined to the frequency spectrum. It is well to bear in mind, however,
the assumptions made (eqs (23) and (24)) to obtain these results.

Referring to figure 2 and figure 4 it is seen that K(ka)~1 for ka< 0.5, so that in this range
the filter factor has very little effect.  If one assumes that a=2.5 centimeters, which corresponds
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to a microwave refractometer cavity [2], it follows that £< 0.2 per centimeter. For the con-
stant wind velocity Z of 5 meters per second (approximately 11 mph) this yields f<100/27
cycles per second as the range in which the frequency spectrum is unaffected by the filter factor.
The available data [8] gives a spectrum accurate to frequencies of at most 10 cycles per second,
and the filter factor does not alter the spectrum in this range.

If the filter factor does go to zero, as in figure 2 and figure 4, the first zero determines a
definite upper limit for £ (or f) for which the refractometer determined spectrum is valid.
However, refractometer measurements are generally inaccurate because of noise, ete., before
this limit is realized.

The need for more data to determine the weighting function and the two spectra is ap-
parent. Kven if such data were available, it is felt that one of the three forms derived bere
would give a satisfactory approximation.
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