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By a refinement of the procedure used in the usual earth-flattening approximation, the
problem of propagation around a spherical earth is reduced to an exact equation of the same

form.
heights and distances.

Thereby the earth-flattening procedure becomes applicable to arbitrarily large
It is also found that existing solutions of the approximate equations

can be re-evaluated to yield the exact solutions for slightly different refractive index distribu-

tions.

1. Introduction

The problem of propagation of radio waves around
a spherical earth has been attacked by many writers
over a period of more than a half a century. For the
idealized case of homogeneous atmosphere and earth,
the presently ac cepted solution is due to van der Pol
and Bremmer [1]. This makes use of a modified form
of the Watson transformation to convert from a very
slowly converging series of spherical harmonics lo a
more rapidly converging series of residue wave
Physically, the transformation is from waves ])l()-
gressing radially out from the earth to waves which
progress along the earth’s surface.

In order to reduce the mathematical complexities
accompanying the van der Pol-—Bremmer treatment,
M. H. L. Pryce [2, 3] introduced the so-called earth-
fattening approzvmation, in which plausible approxi-
mations are introduced to simplify the original dif-
ferential equations. This procedure reduces the
problem of propagation over spherical earth to
propagation over a plane earth with an atmosphere
having a modified refractive indez. In this way the
ran der Pol—Bremmer type of result for the homoge-
neous atmosphere can be obtained in a much more
direct manner. Furthermore, the method can be
applied to inhomogeneous atmospheres in which the
refractive index varies only with height (so-called
horizontal stratification).

Pekeris [4] investigated the accuracy of the earth-
flattening approximation in the case of the standard

atmosphere (in which the modified refractive index
increases linearly with height). He found that the
accuracy decreased with increasing distance along
the earth’s surface and also with increasing hught
above the surface. If » is the great-circle distance
and a the earth’s radius, the error with distance is
proportional to (7/a)? independently of the frequency,
amounting to about 8 percent at »/a=1. The error

1 The research reported in this paper was supported in part by the Missile and
Space Vehicles Department of the General Electric Co.
2 Electromagnetic Research Corp., Washington, D.C.,
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with height, however, is proportional to frequency,
and to height as A°2. The height error becomes
serious in the microwave region at heights in the
order of a few thousand feet.

In this paper we improve and extend the Pryce and
Pekeris treatments to obtain exact differential equa-
tions for the spherical geometry in terms of equations
of plane earth type. The solutions of these hold for
arbitrary heights and distances. C omparison with
the previous (‘:lll])~“dll(‘lllllg approximation leads to
an interpretation of the errors therein.

2. Formulation of the Problem

We consider propagation from a source above a
spherical earth of radius @ with an atmosphere whose
refractive index 7 is a function only of the radial
distance (i.e., horizontally- stratified atmosphere).
The treatment is sunpllfwd without any essential
restriction by assuming that radiation from the source
is independent of azimuth (we shall indicate later the
extension to remove this restriction). Then it can
be shown [5] that the electric and magnetic fields at
any point may be derived from a radial Hertz vector
¥, which satisfies the reduced wave equation

V- knty—0,

where ko=2r/\=2xf/c. By adopting a spherical co-
ordinate system (£,6,¢) with origin at the center of
the earth and with the source on the polar axis, (2.1)
(with the assumed azimuth independence of )
reduces to

2.1)

oy

16 -
1”6/: R

>+1 %111060 8“10 i’y =0.

(2.2)

This equation can be separated in the usual way by
letting

—TO)U(R),



whereby there result the two ordinary differential

equations
U o SN
uw+§§ﬁ+%[”_c%)]bz 2
+ cot OdT (as)*T=0, (2.4)

d02

in which (as)? is the separation constant and S=s/k,.
We now introduce the transformations ?
n=a log(R/a), (2.5)

r=aé. (2.6)

Equations (2.3) and (2.4) become, respectively,

?U 14U

n® +a i ——+k2(nPe/*—S*HU =0 (2.7
*T 1 T | .

e + cot, (7/a) %—}—5 =) 2.8)

§?%is the eigenvalue of the differential eq (2.7), which
eventually is determined by the boundary conditions.

The problem of solving (2.1) thus is equivalent to
solving (2.7) and (2.8).

3. The Height-Gain Function U

We consider first (2.7) for the helght gain function

U. By introducing a new variable V, given by
*(a/la’)ZV Ve=n/29, (3.1)
(2.7) becomes
2
%-}—kﬁ([\”—o“’) Vo, (3.2

in which we introduce as our definition of the modified
refractive index

N=ne*=nR/a,
and define
o’=8%41/(2koa)>.

(3.2) is exactly the same in form as the plane-earth
equation, which is

d*U,

e TR

SHU = (3.3)

where h=R - a is the actual height above the earth’s
surface, and

N2=n2(1+hja)? ~n*(1+2h/a).

3These are the transformations used by Pryce [3], who credited Pekeris for the
range transformation and E. T. Copson for the height transformation.

62

The method of the usual earth-flattening approxi-
mation is to approximate U by U,, which is the
solution of (3.3). But U can be obtained exactly
by means of (3.1), in which V' is the solution of (3.2).
This fact will permit us to interpret properly the
significance of the earth-flattening approximation
with respect to the height dependence.

4. Interpretation of the Earth-Flattening
Approximation

Equations (3.2) and (3.3) are identical only in
form. However, the height variable o differs from
h, and, for a given atmosphere, N as a function of
n will not have the same analytical form as N as a
function of A. In addition, the ecigenvalue o differs
from S? by the small real quantity 1/(2ke)?. Thus
it follows that a given solution U/, of the approximate
earth-flattened eq (3.3) couosponds (but is not
equal) to the exact solution of a slightly different
problem. The approximate solution differs from
the corresponding exact solution in three respects,
namely: (a) By the factor (a/R)** in (3.1) (this
factor usually 1s nearly unity); (b) the modified
index profile is different because of the difference in
height scale;* (¢) the eigenvalue is shifted slightly.
Both (b) and (¢) lead to differences between U/, and
U which involve the frequency. (b) probably is the
more important effect, so that the error of the earth-

Aattening approrimation as a function of height prob-

ably is due primarily to the choice of height scale.
5. The Standard Atmosphere
The standard atmosphere is now defined by
N*(h)=1+qh,
=3(20)-

In this case, (3.3) becomes Stokes’ equation, whose
solutions are Airy functions, or the modified Hankel
functions of order one-third [6]. In view of the fact
that an exact solution is available in terms of our
function (/, it appears that it may be desirable to
define the standard atmosphere by the relation

N2(m)=1+qn.
In this case (3.2) likewise becomes Stokes’ equation.
6. The Distance Function T

The distance dependence is given by the function
T, which satisfies the Legendre differential eq (2.8).
In the earth-flattening approximation, 7" is approxi-
mated by a function 7 which satisfies the differential
equation

a*T,
dr*

1 dTO

ST, =0, (6.1)

4 This shall be discussed in greater detail for specific cases in a later paper.



which is the Bessel equation of order zero. Equa-
tion (6.1) gives the distance dependence for plane
earth.

In investigating the accuracy of this approxima-
tion, Pekeris [4] assumed that 7' could be written
in the form

T(r)=To(r)+(as)~*To(r)

+ (as)~*Ty(r)+. . .. 2)
After substituting (6.2) into (2.8), expanding cot (r/a)
in a power series in 7/a and equating the coefficients
of like powers of (as)™? he obtained a system of
simultaneous differential equations, which is written
in terms of the operator

(6.

L(T)= (d ‘+1 dr+ )T
as follows:
B =0" (6.32)
L(T,)=2 T, (6.3b)
3 dx
* dT, |z dT, » o
LS 45 dx "3 da’ (Y
oy 2% dT, & dT, | (114 .
L(To= 45 dx +AT) dr U3 dx (6.3d)

where x=sr.

Pekeris wrote the solutions of (6.3a) and (6.3b)
in terms of the Hankel functions (corresponding to
an implicit time function e’¢’)

=Iah (),
7= o ),

and used

(as) *Ty(r)=—(1/12) (r/a)*H3? (sr)
as the term to estimate the error in using 7} as the
solution of (2.8).

We now proceed to extend Pekeris’” treatment to
solve for T,,(r) for arbitrary n. The solution will be
obtained in terms of ecylinder functions of corre-
spondingly higher order. Hence it is possible to
obtain 7'(#) in the form (6.2) to any desired degree
of accuracy for any distance r

Let Z,(x) be any (‘yhndm function of order n.
Define
Cr(2) =2"Z,(x)
and

L(T)=T"" 42 'T" 4T,

where primes indicate derivatives with respect to z.
Then (), satisfies the differential equation.

L(C)=(2n/z)C,. (6.4)
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Now a solution of (6.3a) is

TO:(jO:ZOy (6.5“)
and since
Cy=—2"2C},
(6.3b) becomes
L(Ty)=—(1/3)a~'C=—(1/12)42~'C;.
Hence from (6.4) it follows that
Ty=—(1/12) Cy=— (1/12) (sr)%Z,(sr). (6.5b)

Similar procedures may be applied to (6.3¢), (6.3d),

. by applying the following reduction formula to
reduce the terms on the right-hand side to a sum
of terms of the form 2nz'C):

k
'1:2kcy7,rt:2(]a,k,m0'1n+k+a, ]\:] ,2, .0y (66)
a=0
where
00,k.0:07
akl(mAk—1)! 25"«
Carn=D I G—almta—pr  ™1Te=0
(6.7)

Equation (6.6) may be derived from the recurrence
formulas for the cylinder functions. The solutions
for Ty and 7' are given below:

1—
=

1 Yorrs (6.5¢)

1(0

1 —
§="—

7 L

“120,960 v (63D
)

* 'Y
&540 Cits ">0

In most cases of propagation around the earth, one
or two terms of (6.2) give sufficient accuracy.

Finally, the treatment may be extended in a simi-
lar way to the case of 0y/0¢#0. Kquation (2.4)
then is replaced by the associated Legendre equation,
for which we have obtained a solution in terms of
generalized €' functions

On, m(x) :‘K,ZZIIL'{*IL(.‘T) E

The details of this development will be reported
elsewhere.

7. Conclusions

By a refinement of the procedure used in the usual
earth-flattening approximation, we have shown that
the problem of propagation around a spherical earth
can be reduced to an exact equation of the same
form. Thereby the earth-flattening procedure be-
comes applicable to arbitrarily large heights and dis-
tances. It is also found that existing solutions of the
approximate equations can be re- —evaluated to vield
the exact solutions for slightly different refractive
index distributions.
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