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A theore tical analysis is made of the effect of antenna s ize on parameters such as gain, 
bandwidth, and efficiency . Both near-zone and far-zon e direct ive gains are considered . It 
is found that t he maximum gain obtainable from a broad-band antenna is approxima tely 
equal t o that of the uniformly illumina ted aper t ure. If higher gain is desired , the antenna 
mus t necessarily be a narrow-band device. In fact, th e input impedance becomes frequency 
sensitive so r apidly that, for large antennas, no significant increase in gain over tha t of the 
uniformly illuminated aper t ure is possible. Also, if t he antenn a is lossy, t he efficiency falls 
rapidly as the gain is increased over that of the uniformly illumina ted aperture. 

1. Introduction 

As a practical mat ter , the maximum direc tive gain (direc tivity) of an antenna depends 
upon its physical size compared to wavelength. The uniformly illuminated aperture type of 
antenna has been found to give a higher gain in practice than other antennas, at least for large 
apertures. However , the uniformly illuminated aper ture docs not represent a theoretical limit 
to the gain. Higher direc tive gains appear to be possible, but analyses of projec ted "supergain" 
antennas reveal extreme frequency sensitivity at bes t, excessive losses at worst. This paper 
gives a theoretical trea tment to the general problem, from which quantitative bounds to an
tenna performance may be ob tained. The analysis considers both the ncar-zone and the far
zone gain of antennas. 

Let the spherical coordinate system be defined as in figure 1. The directive gain as a func
tion of distance from an antenna is defin ed as the ratio of the maximum density of outward
direc ted power flux to the average density. In equation form this is 

47rT2R e(S r)max 
Re (P ) 1 

G({3r) (1) 

where S, is the radial component of the complex Poynting vector at a distance T, and P is the 
outward-direc ted complex power over a sphere of radius r. 
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FIGURE 1. The spherical coordinate system. 
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The field external to a sphere containing all sources can be expanded in terms of spherical 
wave functions. Th(\ general form is [1] 3 

1 A 

E=-v X (r-J;) + -. v X v X(r-J;) 
JWE 

A 1 
H = v X(r-J;)+-. VX v X(r-J;) 

JWJ1. 

where r is the radius vector from the origin and 

-J;=~ A mnM,2) ({3r)P ,::(cos 0) cos (m 4>+ amn) 
m,n 

~=~ B mnM,2 )({3r)P'::(cos 0) cos (m4>+amn) 
1n.n 

(2) 

(3) 

where A mn, B mn, amn, and amn are coefficients which do not depend on r, 0, or 4>, and {3 = 27r/ wave
length. From the above formulas for the field can be calculated the power over a sphere of 
radius r 

R (p)=47r '" n(n+ l) (n+ m)! (! IA 12+ IB 12) 
e (32 ~ Em(2n+ 1) (n-m) ! 1/ mn 1/ mn (4) 

where Em is Neumann's number and 1/~1207r. The radial component of the power flux density 
in the 0= 0 direction is 

where 

and 

Ez=~ n(~tl) [A ln sin alnFn({3r) - j 1/Bln cos alnF~(f3r) ] 

Ey=~ n(~t l ) [ Aln cos alnFn({3r) + hBln sin al nF~({3r) ] 

Hx=~ n(~:l) [ - BIn sin alnFn({3r)+i A ln cos alnF~ ({3r)J 
n ~ r 1/ 

(6) 

The coordinate axes are to be oriented so the maximum radiation is in the 0= 0 direction. Then 
the ST of (5) is the (S r)max of (1). 

Note that a mn and amn do not enter into the formula for power, (4). Also, from the symmetry 
of (5) and (6) it is evident that the density of power flux in the 0= 0 direction is independent of 
aln and aln. Hence, they may be chosen in any convenient manner. In particular, let aln= 7r/2, 
~ 1n= 7r, which give a field linearly polarized in the x direction. With this choice, the gain (1) 
becomes 

(8) 

3 Figures in brackets indicate the literature references at the end of th is paper. 
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where 

(9) 

Equation (8) is a general formula for directive gain . 

2 . Maximum Gain 

If all orders of spherical wave functions are permitted there is no limit to the gain of an 
antenna. However, a definite limit to the gain exists if wave functions are restricted to orders 
n:5:N. Only the AI" and B In contribute to the numerator of (8), so the gain can be increased 
by setting 

A mn= Bmn=O (10) 

Furthermore, the gain formula is symmetrical in a n and bn so the maximum gain will exist under 
the condition 

(11) 

Equation (8) has 110W been reduced to 

Re [(£ an Un) (£ an un)*] 
G= n= 1 n= 1 

N 1 
4 ~ [a,,[2 2n+ 1 

(12) 

where 

(13) 

The numerator of (12) can now be in creased without changin g the denominator by seLLing 

(14) 

in whi ch case (12) become 

(15) 

Finally, the [ani are adjusLed for maXImum gain by requiring oGjo[ai[= O for all ai. The result is 
N 

G(f3r)max= t~ (2n+ 1 ) [u n (f3r) [~ 
n= 1 

which is the maximum directive gain obtainable using wave functions of order n :5: N. 
maximization procedure also resulLs in the relatlOl1ship 

From (13) it follows that 

I ~:I (2n+ 1) [u ,,[ 
(2i+ 1) [u i[ 

[u ,,(f3r) [2= W:'(f3r) [2+ Wn(f3r) [2+2. 

As f3r-'HX> , [un [2--i>4, so in the far zone (16) reduces to 

N 
G( CD )max=~ (2n+ 1)=N2+2N 

n=1 

which ha been previously published [1]. 
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(16) 

The 

(17) 

(18) 

(19) 



G(~r) 
cr-;;J 

The lu,,12 functions, which enter into (16) and also into later formulas, are shown in figure 2. 
The maximum directive gain for various {3r and various N has been calculated. Figure 3 shows 
the ratio of the near-zone gain to the far-zone gain for several N. Note that the maximum 
near-zone gain is essentially the same as the maximum far-zone gain unless (3r<N. Keep in 
mind that the excitation of the antenna is changed as (3r is varied so that it is always adjusted 
for maximum gain at the given radius. One can think of the antenna as being focused at the 
distance r. 

I L-~ __ ~ __ ~ __ ~~ __ ~ __ ~ __ ~~ __ ~ __ ~ __ ~~~~ __ ~ __ ~~~~ __ ~ __ ~~ __ ~ 
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FIGURE 2. The functions lun (Br)12. 

4 

FIGURE 3. Ratio of the maximum gain at a distance r to the 
maximum gain at infinity, using wave functions of order 
n::;N. 
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3 . Quality Factor 

So far the antenna structure has not been mentioned. An ideal loss-free antenna of 
radius R is defined as one having no energy storage r< R, which is the same as Chu's defini
tion [2]. The quality factor 

1
(' 2w Welect 

Q-l Re(P) 
2w Wmag 

R e(P) 

(20) 

for this ideal antenna must be less t han or equal to that for any other loss-free ant.enna fitting 
into the sphere r= R, since any field r < R can only add to the energy storage. In (20) the 
energies Ware those obtained by subtracting the radiation field from the total field. If the Q 
of an antenna is high, it can be interpreted as the reciprocal of the fractional bandwidth of 
the input impedance. If the Q is low the antenna has broadband potentialities. 

Because of the orthogonality of the spherical wave functions , the total electric energy, 
magnetic energy, and power radiated is the sum of the corresponding quantities associated 
with each mode. The Q can therefore be found by treating the field of each spherical wave 
as if it existed on a "spherical waveguide" isolated from all other waves [2 ,3]. The energy 
and power formulas of tran mission line theory apply Lo each spherical waveguide if a vol tagc, 
current, and characteristic im.pedance are defined for each TEmn wave as 

and for each Tlv!mn wave as 

j TIt=A",n 
Inll (3 47rn(n+ 1) (n+m) ; jF~ ((3r) 

7) Em(2n+ 1 )(n- m). 

7) 47r11(n + 1) (n+m) ! Fn((3r) 
Em (2n+ 1) (n-m)! 

Zi:.~1 = jF~ ((3r) iFn((3r). 

(21) 

(22) 

An antenna adjusted for maximum gain has equal excitation of TE and TM waves. It is 
therefore convenient to define modal quality factors 

2w W elect 2w Wmag Q mn mn 

n Re(P mn) Re(P mn) ' 
(23) 

where the TVmn and Pmn are the sum of the energies and powers of both the TEmn and Tlv!mn 
waves. Note that the Qn's are independent of m since the characteristic impedances, (21) and 
(22), are independent of m. These are the same Qn's defined by Chu for circularly polarized 
omnidirectional antennas [2] . Abstracting from Chu's work, one has 

Qn((3R) =!lFn((3R) 1 2f3RX~(f3R) 
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where R is the radius of the spherical antenna and 

X n (/3R)=Im [Z~f[({3R) l. (25) 

These Qn are approximately one-half those calculated by Chu for linearly polarized omnidirec
tional antennas. A plot of some Qn is given in figure 4. 

FIGU RE 4. 1Il0dai quality jactors for u'ave functions of ordel> 11 . 

The Q of an ant.enna having equal excitation of TE and T.M waves is given by 

Q m,n 

.L:; R e(P ,nn) 
(26) 

m,'T! 

since it is merely necessary to add the energies and powers of the individu al waves. For maxi
mum gain all Pmn= O except P In, n:::; K. It follows from (9), (11 ) , (2 1), and (22 ) that 

(27) 

so the formuJa for Q becomes 

(28) 



Finally, from (17) one has 

(29) 

as the quality factor for an ideal antenna of radius R, adjusted for maximum gain at a radius r, 
using wave functions of order n<.5.N. For an antenna adjusted for maximum gain at infinity 

N 
~ (2n+ l )Qn({3R) 

Q-t n-,--=_l_c;-o;;;-:---c~~_ 
PH"" fV2+ 2N 

(30) 

Figure 5 shows the Q of antennas focused at infinity for several N. (The dashed lines represent 

FIGURE 5. Q1wlity factors f or ideal loss-free antennas 
adjusted for maximum gain at infinity , using wave 
functions of order 11 :::; N (dashed lines sho w the e.Oect 
oj losses). 

the effect of antenna losses, considcrcd below.) CalculaLions for antcnnas focuscd at othcr l' 
show that the Q is substantially independent of the radius of focus. No appreciable changc in 
Q occurs until l ' is almost equal to R, that is, the field poin t is almost at the antenna surface. 
When r=R , the Q of the antenna is close to the Qn of the highest order wave prcsent. When 
{3R> N, all Qn are of the order of unity or less, and the quality factor is 

Q<.5. 1 (31) 

In this case the antenna is potentially broad band. 

4 . Effect on Antenna Losses 

To obtain quantitative results for the effect of conduction losses on antenna performance 
an idealized model is again postulated. Intuitively one 'would expect the losses on a metal 
antenna to be smaller the more effectively the sphere is utilized. Therefore, for the ideal lossy 
antenna is postulated a spherical conductor of radius R excited by the magnetic sources 

(32) 



on its surface. So long as the sphere is a good conductor the source of (32) will generate the 
desired field [4] . If the conductivity of the sphere is poor, (32) can be modified to allow for 
a field internal to the conductor. 

The above postulated ideal lossy antenna is particularly simple to analyze because the 
wave functions are orthogonal over its surface. The effect of the spherical conductor is that 
of a discontinuity in the characteristic impedance of each "spherical waveguide" at the radius R. 
The effect of t he source M is that of a voltage source in series with each waveguide at the 
radius R. The waveguides are matched in each direction, so the equivalent circuit for each 
mode is a voltage source in series with the two characteristic impedances, T< R and T> R. For 
T< R the characteristic impedances for the various modes are 

Z;"1f.=~[Fn(kJ')/ jF~(kJ') ] * "'" 1/c/1/ 
1/ ' 

(33) 

where k and 1/c are the wave number and intrinsic impedance in the conductor, 

(34) 

The characteristic impedance T< R is extremely small for good conductors, so T1mn ",=,O, l'< R. 
The current 1mn must be continuous at T=R. Hence for any mode the ratio of power dissi
pated to power radiated is given by 

11mnl 2 Re(Zm-n) 
11",,,1 2 Re(Z,';n) 

(35) 

where the superscripts + and - refer to l'> R and l'< R, respectively. Dissipation factors Dn 
are defined for the case of equal TEmn and TMmn excitation as 

(36) 

The Dn are independent of m because the Zmn are independent of m. Using (21) and (22) 
one has 

Dn(~R)= R~~1/c) [JF~(~R) 12+ JFn(~R) 12] 

=R~~1/c) [Jun(~R)J2-2] 
(37) 

where the lun l2 are plotted in figure 1. Note that the D n are essentially proportional to the 
JUn l 2 when ~R<n. 

The dissipation factor for an antenna having equal excitation of TE and Tkl waves is 
defined as 

(38) 

m,n 
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'where P mn is P;;'~ + P;;'~f. The second equality of (38) follows from the orthogonality property 
of the modes. For maximum gain all Pmn= O except P in, n:5.N, which are given by (27). 
U ing this and (17) one has 

N 
~(2n+ 1 ) jun ({31') j2D n ((3R) 

D=n.:...=--,l'---<N~-----_ _ (39) 
~(2n+ 1 ) jUn ((31') j2 
n=l 

as the dissipation factor for an ideal lossy antenna of radius R, adjusted for maximum directive 
gain at a radius 1', using wave functions of order n:5.N. For an antenna adjusted for maximum 
gain at infinity 

N 

~ (2n+ 1)D n ((3R) 
D--t n_=_l_~:-;-::-c;-;--_ 

(3H ., N2+ 2N 
(40) 

Figure 6 shows the dissipation factor of antennas focused at infinity for several N. Oalculations 
for antennas focused at other values of r show that D is essentially independent of the radius 

100000 

~o 
Re ( ~c ) 1000 

of focus, except when r~R. 
highest order wave present. 
tion factor is 

FIGURE 6. Dissi pation factors (D) for ideal lossy antennas 
adjusted for maximum gain at infinity, u sing wave functions 
of order n:=:;N. 

When 1'= R, the D of the antenna is approximately the D n of the 
If (3R > N, all D n are approximately Re(T]c)/T] , and the dissipa-

(41) 

and the antenna has very small loss. The efficiency of the antenna is 

% efficiency 

524214- 59--2 

100Prad 

Prad + PdlsB 

9 
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The antenna remains reasonably efficient until D is of the order of unity. The dissipation 
also changes the effective Q of the antenna, defined as 

(43) 
wmag > W elect 

Because of the orthogonality of energy and power, P rad + Pd;'s is simply the sum of the cor
responding quantities for each mode, that is, 

P rad + P dI SS= ~ (P mn) rad (1 + Dn). (44) 
m,n 

Thus, for an antenna containing only the 1, n modes, n5:.N, one has instead of (28) 

(45) 

Finally, if the antenna is adjusted for maximum directive gain, the an are given by (17 ) and 

N (46) 
~ (2n+ 1) [un({jr)!2[l + D n(f1R)] 
n= l 

If the antenna is adjusted for maximum gain at infinity this becomes 

N 
~ (2n+ 1) Qn (fjR) 

Q n =l 
ell ~ - N...---------

6r-7 00 ~ (2n+ 1) [l + Dn(fjR)] 
(47) 

n= l 

The dashed lines in figure 5 show the effective Q for various N assuming Re('7c)/2'7 = 10-4, 
which corresponds to good conductors in the vicinity of 10,000 Me. Further calculations 
show that the effective Q is essentially independent of the radius of focus, just as in the loss
free case. For large antennas, the maximum effective Q is of the order of that for a good 
spherical resonator constructed of the same metal. 

'iVhile the directive gain of an antenna is unaffected by dissipation (assuming that the 
current distribution is unchanged), the overall gain 

g(fjr) 
41lf2 Re (Sr)max 

Prad + Pd'BB 
(48) 

is affected. This is the gain usually of primary interest for antenna evaluation. One can 
quite simply go back and maximize g, since the P dlBS of each mode is related to the Prad of each 
mode by (35). The only difference in the equations for G and those for g is that the factor 
1/ (2n+ 1) is replaced by (I + D n)/ (2n+ 1). Hence, (16) becomes 4 

1 N (2n+ 1) 2 

gmax=4~ l + D n(fjR) [Un (fjr) [ (49) 

I This procedure is slightly in error since dissipation factors for TEand TMmodes alone are not quite equal. T he correction is small, how
ever, until the dissipation factors become quite large. 
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and th e wave amplitudes, related previously by (17), are related by 

lanl (l + D t ) (2n+ l )lun l 
latl (1 + D n) (2i + 1) Iuil (50) 

N ote that the maximum gain is now a function of R (antenna size) as well as r (field point). 
If the antenna is focused at infinity (49) r educes to 

(51) 

So long as DN< l the overall gain g is substantially equal to the directive gain G. If DN> 1 
the maximum gain depends upon the surface r esistance of the metal , R e(17c)' However, the 
lun l2 functions, which enter into Dn according to (37), rise very rapidly . For good conductors 
the "cut-off" of the summation of (46) occurs at approximately the same value of n as that 
for which the Qn level ofl'. 

When the overall gain instcad of the directive gain is maximized it affects the dissipation 
and quality factors. The dissipation factor becomes 

N 

~(2n+ 1) / Un ({31') 12D ,,({3R) / [l + Dn({3R) J2 
D-- '_'=_l~~ ________________________ _ 

-- N (52) 
~(2n+ l )/un({3r)J2/ [l + Dn({3R) J2 
,,= 1 

instead of (39). The principal difference between (39) ancl (52) is that in the latter case D 
levels off when the Dn b ecomes greater than unity. This can b e thought of as due to the nOIl

utilization of modes which arc highly dissipative. The quality factor b ecomes 

N 

~ (2n+ 1) IUn ({3r) 1 2Q,, ({3R)/ [l + Dn({3R)F 
n= l 

N (53) 
~(2n+ 1) IUn({3r) /2j[l + D,,({3R») 
n= 1 

instead of (46) . A plot of (53 ) would again give curves similar to the dashed lines of figure 5 . 

5 . Discussion 

To relate the a nalysis to practical an tenna systems, define the mditls 1i of an a ntenna 
system to be the radius of the smallest sphere that can contain it. The Q of the id eal loss
free antenna must then be less than or equal to the Q of any other loss-free antenna of radiu s 
R, since fields r< R can only add to energy storage. In other words, the Q of figure 5 is a 
lower bound to the Q of an arbitrary loss-free antelwa of radius R. It would be nice if one 
could also prove that the dissipation factor D of the ideal lossy antenna were 11 lower bound to 
the D of an arbitrary antenna of the same material and radius. The a uthor bas not been able 
to prove this . However, it will be assumed t hat t he D of t he ideal lossy ante nna is of the same 
order of magnitude as for other antennas of the same material and radius. Oalculations of t he 
D for some practical antennas support this assumption . 

It is evident from the foregoillg analysis that a marked change in the behavior of an an
tenna of radius R occurs when wave functions of order n > {3R arc present in its field . In the 
loss-free case the Q is large. In addition to th is, in th e lossy case the dissipation is large. In 
both cases the near-field is characterized by extremely large field intensities. The normal gain 
of an antenna is defined to be the maximum gain obtainable using wave functions of order 
n5:.N= {3R. Hence, from (19), the normal gain of 3,n antenna of radius R is 

Gnorm = ({3R)2+ 2({3R) 

11 

(54) 



in the radiation zone. Systems having larger gain than this are called supergain antennas. 
For large {3R the gain of a uniformly illuminated aperture of radius R is equal to the above 
defined normal gain [5]. Therefore, one cannot obtain a gain higher than that of the uniformly 
illuminated aperture without resorting to a supergain antenna. 

It is evident from figure 3 that the maximum near-zone gain of an antenna using wave 
functions n~N={3R is essentially the same as the maximum far-zone gain. Hence (54) also 
defines the normal near-zone gain for all practical purposes. A uniformly illuminated and 
"focused" aperture (phase adjusted so that all elements contribute in-phase at some distance r ) 
has a near-zone gain approximately equal to the far-zone gain of the "unfocused" aperture 
(uniform phase). Thus, a near-zone gain greater than that obtainable from a focused uni
formly illuminated aperture cannot be obtained without resorting to a supergain antenna. 

Having precisely defined the term "supergain," one can now consider the question of how 
much supergaining is possible. If a particular Q is chosen, the possible increase in gain over 
normal gain can be readily calculated. For example, if Q= 106 is taken, the decibel increase in 
gain over normal gain is as shown in figure 7. Note that for small R, substantial increases in 
gain can be achieved, but for large R the increase becomes insignificant. The curve of figure 7 
is relatively insensitive to the particular choice of Q, so long as it is high. This is evident from 
the rapid rise of the curves of figure 5. The choice Q= 106 represents sort of an upper limit to 
practically significant Q's, since the bandwidth becomes absurdly narrow for higher Q's. Also, 
Q= 106 represents the approximate upper limit for antennas constructed of metal, due to 
dissipation. 

O~O --~IO--~10~--l~O--~40~~5~O ---+'60~~7~O ---8~O--~90· 

FlO URl" 7. Maximum increase in gain over normal gain 
obtainable by su pergaining 1j a Q of 106 is allowed. 

It is evident from figure 5 that tIle amount of supergaining possible in large antennas is 
very small. Hence, for practical purposes, the uniformly illuminated aperture gives optimum 
gain. For small antennas, however, a significant increase over normal gain is possible. Per
haps the most common example of a small supergain antenna is the short dipole. The prob
lems of narrow bandwidth and high losses associated with this antenna have been thoroughly 
treated, since it is one of the few antennas that can be used at very low frequencies. 
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