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In practical engineering or experimental work one often encounters a function F of
many variables, F (z’s, y’s, 2's), represented only by the families of curves obtained by
plotting F against each of the #’s on Cartesian graph paper, against each of the »’s on semi-
log paper, and against each of the z’s on double-log paper. It frequently happens that
these curves are all approximately straight lines over a limited range of interest. On the
assumption that they are all true straight lines, the present note shows how to synthesize
all the graphical representations, for any number of parameters, into the most general
formula possible, expressing /' as the product of a multilinear function of the z’s and the
exponential of a constant-free multilinear function of the y’s and of the log 2’s, the coeffi-
cients in both multilinear functions being independent of the z’s, ’s, and 2’s.

1. Introduction

In an investigation by one of the authors on assemblages of elastic shells, the various
results for certain components of stress and displacement exhibited approximately linear
behavior over the limited ranges of interest of the relevant parameters, when plotted on Car-
tesian graph paper, semi-log paper, or double-log paper. These results, derived from various
numerical calculations and corroboratory experiments, are functions of many parameters, such as
the various geometrical ratios defining shell shapes, the shell thickness, Poisson’s ratio, the num-
ber of coupled shells, and other significant quantities. Rather than to retain these extensive
results in the form of cumbersome families of graphs, it was desirable and useful to combine
them in such a way as to obtain a single explicit formula for each dependent quantity, in terms
of the above-mentioned independent parameters.

The problem of combining such results is, of course, not peculiar to investigations in
elasticity but often arises in experimental or engineering work of any nature. One can very
easily construct simple functions which will exhibit some of these “linear” properties, but the
most general answer to the inverse problem is less obvious, especially when the number of
parameters is large. Then an unsystematic attempt to effect such a synthesis may prove
infeasible or incomplete, and furnish no assurance that one has indeed constructed the most
general function with these properties. Our present note, therefore, formulates the general
problem for any number of variables in a precise manner and derives its most general solution.
For the simple case of only three parameters, the solution is illustrated by a few examples.

2. The General Problem

In the following developments we shall assume that all the pertinent quantities have been
grouped into independent dimensionless combinations, so as to take advantage of whatever infor-
mation is provided by the Buckingham Pi theorem.? Let us then consider a dimensionless funec-
tion Fof the dimensionless independent variables o, @, . . ., Zu Y1, Yoy -« - o Yps 21, 22, -+ -, 245
and u;, %y, . . ., U, such that a straight line results when we plot /" against any z on ordinary
Cartesian graph paper, against any ¥ on semi-log paper, or against any z on double-log paper.
Let the u's denote all other dimensionless variables on which /' may depend, but for which
no such “linear” property exists. It is understood, of course, that in practice such linearity
may hold only approximately, and only for a certain bounded range of the variable used as
abscissa, and only for certain bounded ranges of the remaining variables, which appear as
parameters.  With no loss of generality, however, we relax these restrictions, assuming that
each plot is a straight line for all values of abscissa and parameters.
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We put

Inzi=y,41, Inze=yp4s, ... Inz,=y, (n=p+q); (1)
then F(xy, . . . @ 41, - . . Yu, %) is a function such that the plot of /" against any = or of In#
against any v is a straight line on Cartesian graph paper. Here w denotes the set u;, uy, . . ., u,.
Then

IDF‘:zlkykJer (k:17 2’ . ey n) (2)
where A, and B, are functions of 2, . . . Z,, Y1 - - . Yeet, Yrr1 - - - Yu, and of the u’s. We

then ask: if InZ"is linear in each 7 when the other #’s are all held constant, what is the most
general form for InF, as a function of the ¥’s, that will represent such a property?

To answer this preliminary question, we first recall the definition of a multilinear function
@, of several variables t,, &, . . ., l;, as a function which is the sum of a constant and a linear
combination of all the products of the #’s taken one at a time, two at a time, . . ., sat a time,
without repetition. For example, if s=3,

G (t1,to,ts) = Qo ity + Qoto - @ty +bitots 4 botsty -+ sty - ctitsts. (3)
Any such multilinear function satisfies the differential equations
0*G/ot;=0 U=t 2 o o op G 4)

(When the constant term vanishes, we term G a constant-free multilinear function.) It is
then easily shown by induction that G(t,,t, . . ., t,) is the most general function of ¢, . . ., ¢
which is linear in each .

2.1. The Synthesis for the y's Alone

On applying these considerations to (2), we find that

lang(xl,xg, <y Ty u)+N(Z’u)(y1)y2y 0 o o) yn); (5)
where N*% denotes a general constant-free multilinear function of the y’s, with coeflicients
which are, a priori, functions of z;, . . ., z,, . On placing

exp g:f<x1rx27 oD xmﬂ"): (6)
we obtain
F=f(x,,25, . . ., ZTmyu) exp N®*, (7)

which gives the synthesis of the linearities of In# versus the y’s.

2.2. The Complete Synthesis
Since F'is linear in each z, it follows from the property of multilinear functions that
IT=IPC N by o o o pidnl (8)

where P% % is a general multilinear function of the u’s, the coefficients being functions of the
y’sand the w’s. Then

F:f(xlﬂx?! ) Z,,,,U) exp Ne&w=pw u)(xl)w?; o oo og xm)7 9)

where by (4)
0*N/oy%=0 (k=1,2, . . . ,n) (10)
0*P/oxi=0 =12 o o o @) (11)
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We next show that 7 is a multilinear function of the 2’s.  To do so, put every ¥ equal to
zero in (9). Since N contains no constant term, it then vanishes, so that (9) becomes

Af(l'],ﬁ"rz, 5o oo ,xm,u):J[(")(;ﬂ,,xg, ey ]f,,l). (12)

Here M ™ is simply the expression for 7#* with each coeflicient evaluated at each y=0, so
that it is a multilinear function of the 2’s with coeflicients depending only upon the u’s.
We now show that the coefficients in N** are independent of the z’s, as follows. Insert
(12) into (7), so that
F=M®™ exp N&* (13)

and require that (13) satisfy (11). It follows that

27T
O*N , , OMON M(gN) . 14

o’M
a2 o 2+” oz, O,

where we have omitted the superseripts for convenience. Since M is multilinear in the z’s,
it follows from (4) that

0*M/dx}=0, (15)

so that
2 T 7'
M a:\;qtu oo e 11( N) —0. (16)
or; O o}
If we now differentiate (16) twice with respect to 7, we find with use of (10) that
O*N \?

9N/ - .

J/(amy) 0, (17)
whence

o} N) =02 o oo T
18)
a?/k {A—l,?,...,n. (18)

Equation (18) means that 0N/0x; can be a function only of the 2’s and the »’s. But N and
ON/ox; are constant-free multilinear functions of the y’s, with coeflicients that are, a priori,
functions of the #’s and the w’s. These results are compatible if and only if

ON/dx,;=0 (=12 ) (19)

so that each coefficient in the constant-free multilinear function N must be independent of
the 2’s.
We may thus rewrite (13) as

F=M®™(x, 25, . . . ,2Zn) exp Ny, %, . . . , Yn). (20)

When we return to the original formulation of the problem in terms of the z’s, 9/’s, and 2’s,
it follows that the most general functional form for /' is given by

F=M®™ (2,25, . . . ,Zm) exp N®(y1,%s, . . . ,¥Yp, Inz;, Inz, . . . |Inz), (21)

where M® is a general multilinear function of the 2’s and N™ a general constant-free multi-
linear function of the 7’s and Inz’s, the coefficients in both being functions only of the u’s.

3. Some Elementary Examples

As short illustrations of the general result (21), we append a few cases where /' has linear
plots against only three variables. For each we list the specific form that (21) assumes and
the slopes and intercepts on the appropriate plots. By comparing the behavior of the slopes.

117



and intercepts in the various experimentally given families of curves that define the function ¥
with these listed formulas, one can readily determine which coefficients vanish, if any, and thus
obtain a specific formula for /' in any actual case. Here “In” denotes a natural logarithm
and “log” a common logarithm. For an z or a y the intercept is taken at zero, while for a z
it is taken at z=1. For the logarithmic plots the slopes and intercepts are those of log F.
In the following formulas, it is understood that the constants may be functions of the u’s.

(&) X, Yis ¥2
F=(kx+Fk,) exp(a Y + sy by1ys)

Cartesian plot versus z:
slope S=k, exp(ay,+axy>+byys)
intercept I=k; exp(ayy+asys+byyy.)

Semi-log plot versus

slope S=0.4343(a;+bys)
intercept I=log(kx+k;) +0.4343ayy,
(b) X, Yy z

F: (klm‘l_ kg) qu]/2q2+by

Cartesian plot versus :
slope S=ketzntow
intercept T=lk,emvzmtby
Semi-log plot versus ¥:
slope S=0.4343a,+0b log z
intercept I=log(kyz+k,) +a, log 2

Double-log plot versus z:

slope S=a,+by
intercept I=log(kz+k;) +0.4343a,y
(c) Yis Yo Z

F— Jrem¥i+aatatbsuyv pas+b s +bauy+euv,
Semi-log plot versus ¥, :
slope S=0.4343(a,+b3y2) + (b +cys)log =z
intercept I=log k+0.4343as1,+ (as+byys)log 2z

Double-log plot versus z:

slope S=az+byy+bsya+cyy:
intercept I=log k~+0.4343(a\y: + azy2+ bsyry)
(d) Y Zyy Z

F=Fkenz,t2t0wg,0t00 ]
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where
H— 2 (b3tep)inzy 2 (b3tcy)inzy

Sema-log plot versus y:

slope S§=0.4343a,+b, log 2,+b, log z,+2.303¢ log z log 2,
intercept I=log k+a, log z,+ay log z,+2.303b, log z, log z,

Double-log plot versus z:

slope S=ay+b,y+2.303(bs+cy)log z,
intercept I=log k+0.4343a,y+ (as+byy)log z
Wasninaron, D.C. (Paper 64C2-31)
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