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Let P = \ Pn I be a r eal sequence and defin e the transform ed sequ ence C ( P ) as follows: 
Consider t he segment, Pm, Pm+l , Pm+2, Pm+3 of P a nd determine am, bm , a nd Cm so t hat 
m ax lamb::'+ cn- Pnl, n = m, m + 1, m + 2, m + 3 is minimi zed . The mth term of C (P ) 

n 
is taken to be em. The effect of t he transform ation C on sequences of t he type 

Po+ ±aiA7, Po + ( - 1) n ± ain i/± bin i, a nd Po+ a).,n is considered. In eac h case C is 
i~ j i~ j i ~ j n 

shown to b e very effective in accelerat ing converge nce or decele rating div ergence . For 
examp le, if t he seco nd sequence behaves as an k as n ro , t hen t he t ra nsformed sequ ence 
behaves as an k - 3• A simi lar t ra nsformation '7) is defined by approximating in the T cheby
ch eff sense a segment of P by abn co (O+ nq,) +c. The effect of '7) is studied for seq uences 
of t he above type and a lso fo r PO + ~~,a i).,~ cos (Oi+ nq,i). These sequ ence t ransformations 
are similar in nature to Aitk en's 1i2-process a nd i t s generalization . A compa rison of t he 
t wo types of transformations is m ade. Several examples are given to illustrate t he effect 
of C and 'D on various sequ ences. 

1. Introduction 

Let p = {Pni n = 1,2, . . . } be a real sequence and 
let T be a sequence transformation with 

Q=T(P)= { tn (P1!P~ ' . . 'J Pn) in = l , 2, . . . J. 
A large variety of such transformations have been 
studied, many in the modified form of summability 
methods for infinite series, which are designed to ac
celerate or induce the co nvergence of the sequence P . 
Such transformat ions may be based on approximat
ing a segment of P by a function of a given form. As
sume that Pn behaves approximately as j(A,n) where 
A represents so me pantllleters to be determin ed . 
Consider a segment {Piii = I,2, ... , m} of P . The 
parameters A m may be determin ed so as to minimize 
the error of the approxim ation in so me sense. Since 
f(Am,n) is a Imown function of n we may set 

tm(Pl,P2, .. 'J Pm)= Lim j(Am,n ) . 
n-) a> 

The transformations of this paper res ult from as
suming p n to behave as abn+ c or abn cos (8 + n</» + c. 
The transformations are denoted by C and 'D, re
spectively. The approximation to give the mth 
term of C(P ) and 'D (P) is based on four or six, respec
tively, tenns frOln P. The parameters are determined 
so as to minimize 

m axiamb;:+cm-Pni, n = m , m + 1, m + 2, m + 3 
n 

or 

maxia mb;;, cos(8m+nlOm) + cm-Pni , n = m, . .. , m + 5 
n 

1 l:)rcsent address, General Motors Corp., Warren. Mich. 'r his work was 
done under a Nation al Research Coun cil·); aiional Hureau of Standards Post· 
doctoral Hescarch Associatesbip. 

If bm< l , then Lim j(Am,n) is just Cm; if bm> 1 then 
n-) a> 

this limit does not exist , but the value Cm is still taken, 
em being the antilimit. 

Explicit formulas for Cm in terms of the Pi have been 
obtained in [5).2 These formulas are not linear in the 
Pi and the transformations exhibit some marked dif
ferences from the elassicallinear transformations. In 
many eases C and 'D are much more powerful and in 
other cases P may converge quite rapidly and the 
t ransformed sequence may be identically infmite. Al
though C and']) are not regular t hey do have a prop
er ty of joint convergence, namely that if both P and 
the transform ed sequences co nverge then they have 
the same limit. 

It is not surprising that C and']) are effective for 
seq uences of exponential type 

If iAii>i Ai+l i then CCP) converges or diverges as 
(A2)n instead of (Aj)n. 'D (P ) behaves as (A3)n or 
(AVAI) n. 'D is effective for sequences of the more 
general type 

and C is useful for such sequences in some cases. 
These transformations are also very powerful for 

alternating rational sequences: 

(3) 

2 Figures in brackets indica te the literature references at tbe end of this paper. 
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It is shown that C accelerates t he convergence by a 
factor of 1/n3• That 'D accelerates the convergence 
even more can be seen from the examples although 
the actual factor of acceleration has not been deter
mined. An example shows that C and 'D are very 
effec tive for a sequence of the form 

{ (_ l )n" n } 
p = 11. In= l , 2, . . . . (4) 

The basic principle of these transformations is the 
same as that of Aitken 's o2-process and its generali
zations. C is the direct analog of the o2-process. 
Shanks [8} has given the m ost complete account of 
this theory. C and 'D have many proper ties in com
mon with these transform ations. The analogs of C 
and 'D in Shanks' work have the same power as C 
and 'D for sequences of type (1) and (2). For se
quences of type (3) , C and 'D are defini tely more pow
erful. Aitken's o2-process accelerates the conver
gence of (3) by a factor of only 1/n2. C and 'D are 
much m ore effective for the sequence (4). There are 
sequences for which the oZ-process and its generali
zations are more effective, but as a general guide C 
and 'D are as effective or more effective than their 
analogs in Shanks' paper . 

A comparison of this paper 'with Shanks' will indi
cate that C and 'D have m any properties which have 
not been developed. The m ain purpose here has 
been to es tablish these transformations as tools of 
numerical analysis and not of analysis. When r ead
ing Shanks' paper one has the feeling that much 
rem ains to be done in the study of these t ransforma
tions and that a complete understanding of their 
behavior for sequences of real and complex functions 
will r equire a penetrating analysis. 

It is ty pical but somewhat disappointing that these 
transformations m ay . be most effective for easy 
problems and least effective for difficult problems. 
If one is solving three simultaneous linear equa tion s 
by Gauss-Seidel iteration and the characteristic 
values determining the r ate of convergence are .9S, 
.S, and .1 , then these tr ansformations increase the 
rate of convergence dramatically. But if one has 
100 equa tions with 10 characteristic values between 
.99 and .99S, then the elimination of even the five 
largest ones is not very significant. On the other 
hand if the largest characteristic value is .99S and the 
others are, say, less than .9 the transformations are 
very effective in accelerating the convergence. 

2 . Derivation of the Transformations 

2.1. Preliminaries 

Sequences are denoted by P , Q, . . . and their ele
ments by pn, qn, . . . . A sequence transformation 
is denoted by a script let ter as C and 'D. Braces, 
{ }, deno te a sequence or se t and {xl .. . } is read 
" the set of x such that . .. " W e denote by O(x) 

• 
and o(x) two functions such that 

Lim o(x) = O 
x-t'" x 

and, for x sufficiently large, 

I O~x) I::; constan t . 

Let P be a sequence of real numbers. A t rans
formed sequence Q={ qnl n = l , 2, .. . } of P , is ob
tained as follows: T ake a segment, {Pil i= m, ... , 
m + k } of P , and approximate the values Pn as a 
function of n by abn+ c or abncos(O+ n<t» + c. T he 
corresponding c value is then assign ed to qm. 

For these particular transformations to be effective 
the sequence P m ust, in some sense, behave ex~ 
ponen t ially. As an example of such sequences 
consider the real k-vectors defined by 

where A is a real k X k matrix. Let v* be t he solution 
of 

(A - J )v*= O. 

Then vn+l- v*= A n(vo - o*). The sequence of vectors 
defined will converge to v* if A n(vo-v*) tends to zero 
as n tends to infinity. If A is a normal m atr ix with 
charac teristic vectors U j and distinct real character
istic values A t, then 

k 
An(vo-v*) =~ atAfu t' 

i=l 

If the Atr are complex then 

A n(vo-v*) = ~ a tl Ailn cos (Ot+n<Pt)Ui. 

2 .2 . Tchebycheff Approximations 

vVe wish to approximate a segmen t of P by abn+ c. 
The use of leas t squares approximation appears to 
be inlpossible due to the difficulty of the nonlinear 
equa tions involved . In [S) the theory of approxima
tlOn by abx+ c in the T chebycheff sense is developed 
in detail. The following result is given . Let Pm, 
Pm+! , p m+2, and PmH be four consecu tive values of P 
to be approximated . Then Cm of t he best approxima
tion, am(bm)n+ cm, is given by 

Cm (Pm+ P; +J)( Pm+2+ Pm+3) - (Pm+l + Pm+z) 2. (5) 
~ (Pm - Pm+! - Pm+2 + Pm+3) 

Let Pm, ... , PmH be consecutive values from P 
to ? e approx~ated by.abnc.os(O+ n<t» + d. The theory 
of f chebycheff approxlilla tlOll by abXcos(O+ x<t» + d is 
llOt complete and an explicit formula for dm of the 
best approximatio.n h as n.ot been rigorously estab
hsl.lcd. 1;I0WC:'U It IS conJe~tured that the fol~owing 
fOllnula l~fhvahd. Set Si=}2(Pm+ t+ Pm+i+l), ~= O , 1, 
. .. , 4. . en 

d 281 82S3+ 84(8r.8z-8D-808~-8~ 
m 2 82(80+ 2 81-382+ 2 83 + 84) - 2 (81-8a)i- 4 (8184+ 8083) + 2 8084' 

(6) 
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This formula is based on the assumption that the 
best Tchebycheff approximation is characterized by 
the alternation five times of the elTOl' fUDction. 
See [6] for a discussion of the characterization of 
best T chebycheff approximations. 

Note that (6) may be written in a much simpler 
form. Let s: = (S i-S2), i = O,1,3,4; then 

2.3. The Transformations C and 'J) 

Let P be given, then a new sequence Q is found as 
follows: For each m such that the denominator of (5) 
is nonzero qm=Cm; if the denominator of (5) is zero 
and the numerator does not vanish then we assign 
qm= <Xl ; if both the numerator and denominator are 
zero qm=Pm. This transformation of Pinto Q may 
be written in operator form as 

Q= C(P ). 

A tran formaLion 'J) is defined in a similar manner 
by (6). 

The repeated application k times of C and 'J) is 
denoted by e(p) and 'J)k(P ). 

3 . Analysis of the Transformations 

3.1. Algebraic Properties of C 

The study of the properties of these transforma
tions begins with a simple algebraic property of C. 

IfP={Pn} then aP+ bis defined as {apn+ bln = 1,2, 
. .. }. The following result may be established by 
direct computation from (5). 

THEOREM 1: C (aP + b) = aC (P ) + b. 

3.2. Transformation of Exponential Sequences by C 

Let P be a real sequence of the form 

{ Pn=Po+;tatA7In = 1,2, . . . } 

with IAtl>I Ai+11. If IA11>1, Pdoes not converge but 
diverges from Po. In such a case Po is the antilimit 
of P. This sequence is of an exponential type and 
C should be effective in increasing the rate of con
vergence or decreasing the rate of divergence. 

Let P'= P - PO; then 

C(P)=C(P')+po. 

The general term of C (PI) may be explicitly com
puted to be 

L:; aiajAf (Aj/A1 ) n (1 + At) (1 + Aj) (Aj-Aj)2 
i<j 

The denominator of tills expression may have only a 
finite number of zeros as a function of n. We may 
write the denominator as 

since [Aj!A1 1<1 for j > 1. 
The largest term in the numerator is A~. Others 

among the larger terms are 

Thus C is seen to eliminate the largest exponential 
term from P'. 

The repeated application of C will eliminate the 
largest remaining term. The largest term in C (PI ) 
is ;W. 

The above analysis has e tablished: 
k 

THEOREM 2; Let P = {po+ .L:;a tA~}, IAtl>I At+t/; 
i= l 

then 

fJ.o= l 

Thus C is seen to have a desirable effect on se
quences of this type, which was to be expected. In 
the next section it is seen that C is effective for 
some sequences of a completely different nature. 

3.3. Transformations of Alternating Rational 
Sequences by C 

Let P be a sequence of the form 

We shall consider C (P). 
First take the special case 

The nth term of C (P) is 

(n k- (n + 1) k) ((n+2) k_ (n+3l k) - «n + 1) k_ (n + 2) k)2 
po +a 2(-1) n(n k+(n+l)k-(n + 2)k - (n+3)k) • 
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1- AfLe, wme manipulation I,hi, ,,,m i, ,cen to be of the 
I form 

an2k - 4F(k- 1) 
Po+ 8(- 1)nknk-l +O(nk- 4

) 

or 

Now consider the general situation. Pn may be 
written as 

'" 
Pn=Po+a~nk+"6 a;nk- i 

i= 1 
k= kt - kz 

for n sufficiently large. It is clear that the denomi
nator of Cm is 8( - l)nknk- 1+ O(nk - 2) since it is linear 
in the terms of P. The denominator of Cm has only 
a finite number of zeros as a function of m. The 
terms in the numerator are of the form 

a;a;tnk-l- (n+ 1)k-i][(n+2)k-1- (n+3)k-1] 

+ a;a;[nk-i- (n+ 1)k-i] [(n+2) k-t_ (n + 3) k-i] 

- 2a;a;[(n+ l )k-i_ (71 + 2)k-i][(n + l)k- J- (n+2)k-i]. 

By direct calculation it is seen that this term is 
O (n2k-i-j-4) . 

Thus we have established: 

'THEOREM 3: Let P = {Po+ (-1) n~~I_oaini/~1:' ob in t}; 
then jor m sufficiently large the mth term oj C 
(P ) is 

'" Po + ::8a;( _ l) mmk- i- 3 

;=1 

where k = k1- k2, a~= aklk (lc- 1 ) /8bk2' 
Examples of sequences which are approximately of 

this type are given by the partial sums of alternating 
infinite series of rational functions of n . One can 
,consider such sequences directly and establish an 
.analog of theorem 3. 

3 .4. Regularity a nd Joint Convergence 

A transformation T is said to be regular if the 
.existence of Lim Pn implies Lim qn=Lim pn where 

n ---:;co n---.:;<X1 n---.:;co 

Q=T (P). Since C is a transformation designed to 
,accelerate or induce convergence one would like for 
C to be regular. That C is not regular is seen by 
the following example : 

Every other term of C(P) is infinite, yet P con
verges. Although C is not a regular transformation 
it does have the property of jO'int convergence. A 
transformation T is said to have the property of 
joint convergence if the convergence of p. a~d T (P) 
imply that P and T (P) have the same hilllt. The 
proof of the following theorem will be given in section 
.5 .1 (see theorem 10). 

THEOREM 4: Ij both P and C(P) = Q converge then 

Lim Pn= Lim qm· 
n---.:;oo m---.:; co 

3 .5. Properties of the Transformation '1) 

The following theorem gives algebraic properties 
of '1) similar to those of C. The proof is by direct 
evaluation. 

THEOREM 5: '1) (aP + b) = a'1)(P) + b. 
Consider the real sequence 

P = { tt a iA~ cos (8i+n¢ t) } 

with IAil>IAi+tI. Expression (6) may be directly 
evaluated as the ratio of the following two terms: 

~ a ia jal(A tAiAt/AD n 
li-jl+lj- ~ I>o 

X cos [8 t+ 8j+ 81+ n(¢t+ ¢ J+ ¢ I)]FIijl 
and 

k 

~ a ia j(A iAj/AD nGiil 
i= 1,j=1 

where FIiil and Gij are functions of the A'S, 8's, and 
¢'s that are independent of n . FI jil and Gtj are 
trigonometric functions with coefficients depending 
on powers of the A'S . 

An examination of the above expression and a 
simplification of notation leads to the following 
theorem. 

THEOREM 6. L et P = {Po+ ~1_1a iA1 cos C8 i+ n¢t)}, 
IAil>IAHll. Then the nth term oj'1)(P) is 

J.1.o= l 

lJ.1. il< l, i?,.l 

except jor possibly a finite number oj terms . 
One may also establish the following result : 

k 

THEOREM 7: L et P={po+~atA7}, IAtl>I At+ll . 
1=1 

Then the nth term oj'1)(P) is 

J.1.o= 1 

lJ.1. d< l , i?,. 1 
1+ 0(1 ) A' = max (A3, A~/Al ) 

except jor p ossibly afinite number oj terms. 
No attempt has been made to analyze the effect 

of '1) on alternating rational sequences; however the 
examples indicate that '1) is quite effective for in
creasing the rate of convergence. 

It is a simple matter to construct sequences for 
which '1) is not regular. It is probable that '1) has 
the joint convergence property, but this has not been 
established . 



4. Comparison With Aitken's o2-process and 
its Generalization 

The Lransforma tions C and 'D arc s imilar to n 
family of sequence transforma tiolls first s ludi ed by 
AiLken [1,2J. Tbese tmnsfornutions ha ve been sLud
ied since by Lubkin r41, Samuelson [7 ], and Shttnks 
[8] . The most geneml a nd complete LreaLmenL is 
by Shanks. A bri ef ou tlille of t hese transform aLions 
will be given . 

Let. P be given and se t 

From P new sequences Qk={ (]k, nln = lc , lc + l , .. . } 
are formed by 

P n- k 

6 P n- I:- 1 

6 p ,, __ I_ 

I 

}I n- I PI! 

1::.]1 11 1 k- I 

Tbis defi nes n seL of sequence tmlls fOrl11 l1tions Ck, by 

Shanks stuclies in some deLail the Lransforma tions 
C' C'k C" _ { (2) ( k ) } d Ck,CI/;I - P I ,qJ2, qI3, .. . , 1.1, k+ l, . . . ,an 
C!l=t qk,kl k = 0,1,2, . . . }, q ~~ ) denoLes the n th term of 
Cf(P ). qln is given expli citly by 

which defines Ai tken's 5z-process. 
These transformations are deri ved heuris tically as 

follows : Given a segment of P , pn- k, ... , }I n+ k, 
assume that t his segment is exactly of the form 

k 

~a tb~+ c . Then defin e q k,n to be thi s c. The bas ic 
i= 1 
principle is the same as for C and 'D, but the 
determination of the approximation is different. 

If S = {Sn ISn= !(Pn+Pn+I) } then it is seen t ba t 

562M9- 60- 3 

Likewise, a straightforward calculation shows 

The reason for thi s r elaLionship is simple. Ck has 
been found by solving eq ( ) for c : 

k 

L;a tb'j'+ c= p ,,!) 
i = l 

m = n - !c , . .. ,n+ lc . (8) 

Tbe fac t that . besL T cbebychefr approximaLion s are 
characLerized by t he altern ation lc+ 1 Limes of the 
elTor fun ction leads Lo the followin g eq ua Lions : 

k 

~a ibi'+ c=Pm+ ( - J) rne, m = n, . . . , n + 21c + 2 
l = l 

where e is Lhe error of the bes t appro~-i.mation . If 
one averages the mth and (m + l )s t equations, then 

k a;(l + b;) m 1 tj 2 bi + c= '2 (ZJm+Pm+l) , 

m = n, . . . , n + 2k + 1. 

These equ aLions fl,re of Lbe Sltme Form fl,S (8) excepL P 
h as been l'ephwed b,v S , 

Ai Lken consid ers Lhe appli cttLion of c1 lo sequen ces 
of Lbe form P={p,J + 2:::~= la iAjn } lWe[ es ta blis hes : 

k 

THEORl~M 8 (Aitkcn) : fA P= {Po+ ~a 2Ai' } , 
i = 1 

IAil>I At+II; then 

JJ.o= l 

Tlms for sequcll ces of Lhis ly pe c1 and C arc equ ally 
cfl"ecLive in ord er of magnitude . Thc coeffi cient s of 
(1.2) n for c1 and C fU C, l"espcc Li vely 

0'10'2(1.1- 1.2)2 
(1- 1.1)2 ' 

0'1a 2(l + 1.2) (1.1- 1.2) 2 
( I - AY 

CI appcars to be slightly supcriorif 1.2> 0. E xamples 
indicate that either Cl or C may bc better but in any 
case the difference in t he rates of converge nce is 
small. 

For alternating r iltional sequ ences t hc two t r ans
forma tions are no longer simila,l' in cffect. Shanks 
has es tablished : 

TH EOREM 9 (Shfl,nks) : Let 

ak, ~ O , bk2 ~O and Ic= h - lc2. Then the n th t er m OJ 

CI(P ) is 

a 1c (- 1)"nk - 2 

Po+ k , 4b + o (nk - 3) 

k2 
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with possibly afinite number oj excep60ns. 
Thus CI accelerates the convergence by a factor 

of l /n2 whereas C accelerates it by a factor of l /n3 . 

are made with c[ and C2 here. The next set of 
examples shows the effect of increasing the largest 
A in exponential sequences. Th e follow ing two sets 
show the effects of lower order terms and the loss of 
sign ifican t figures. Detailed comments are given 
wit h each set of examples. 

The comparative effectivelless of C2 and '1) may 
be judged from t be examples given later. 

Theorem 10 shows that c1 has the property of 
joint convergence [4]. 

THEOREM 10 (Lubkin): Ij both P and c[(P)= Q 
converge, then 

A ll of these examples were compu ted using double 
pr ecision ttri thmetic with abo ut 20 significant decimal 
digi ts. 

Lim p,, = Lim g" 
n -'> co 7/ -'> co 

5.1 . Effect of C and '1) on Exponential Sequences 

If P converges then so does S = {?6(Pn+ P,,+I) } and 
The following five examples are considered: 

Lim Pn= Lim Sn 

n -'> co n -'> co 

T hus theorem 4 follows directly from theorem 10. 

5. Examples 

Pj = {2n+ (1.2) "+ (.9) n+ (.8) "}, 

P2 = { (. 98) ,, + (. 95)"+ (.5)"+ (.2) n}, 

P3 = {(.98) "+ (.95)"}, 

P4 = {(.9)"+ (.8) " cos (. In )}, 

P;= { (.9)n cos (1.5n) + (.5) n cos (.25n) } . 

Some examples are given which illustrate vano us 
characteristics of C and '1). In some cases com
parisons are made with c[ and C2. For more 
general comparisons see [4] where c[ is compared 
with several classical Ii nem' sequence tr ansforma
tions for a large number of examples. 

Tlt efirst two sets of examples illustrate the genen,l 
behavior of C and '1) for various exponential and 
alternating rational sequences . Some compari sons 

Table 1 gives resul ts of C, [2, [3, [4 , and '1) for 
33 terms of Pl' PI diverges quit e rap id ly and C (PI) 
diverges at it m uch slower rate. The factors in 
C(P1) larger than .5 are ] .2, .9, .8, .72, and .54. 
C 2 (P 1) con verges as Cttn be seen from the lis t of 
factors ill C2(P 1) larger than .5 . Th ey are .9, .8, 
.72, .68, .6, itnd .54. Th e fo ur largest factors of 
Co (7-'2) are .8, .72, .71, fi nd .68 fire t he largest factor 
of C(p[) is .72. 

TABLB I . 

P I ((JJI) ( '( PI) ( '( PI) ( '( PI ) '])( PI) 

4. 90000000000000 2. 9151'178 2. 7270889 2.7433842 2.7029023 2.6785648 
6. 89000000000000 2. 77414 18 2. 7426402 2 8808482 :3.0727475 2.7348579 

10. 9690000000000 2.7 169114 2. 6757849 3. 292 11 61 69. 180737 2.7088t05 
J 9. 1393000000000 2. 7430500 2. 5368629 4.8080981 72.818042 2.6047836 
35.4064900000000 2.8532800 2.3466523 140. 43599 -. 54172894 2.4392636 

67. 7795690000000 3.0509855 2.1287500 - 2.4381772 -. 04037382 2.2345869 
132.27 1192900000 3.3426610 1. 9033466 -. 76363656 . 04995813 2.0125094 
260.898056330000 3. 7381380 1. 6847333 - 28755651 . 067 10598 1.7902083 
517.681418569000 4.2508558 1. 4814607 -.09493555 . 06620907 1. 5791104 

1030. 64778904490 4. 898254.5 1. 2976421 -.00731646 .06136882 1. 3855556 

2055. 82979364889 5. 7023 160 1. 1344196 . 03331326 . 05701478 1. 2121566 
4105. 26724946147 6.6902694 .99116645 . 05084351 . 05513287 1. 0591391 
8203. 008482702 13 7.8954805 .86633340 . 05650783 . 05808964 .92537882 

16397.1119330351 9.3585517 . 75798632 . 05602878 .07372670 .80910184 
32783. 6480970788 11. 128667 . 66412067 . 05246752 . 17953296 . 70831457 

65554.7018754061 13.265229 . 58282968 .04750712 - .11327597 . 62104494 
131094.375400883 15.839833 . 51238289 .04208180 - .03107621 .54546427 
262170.791442315 18. 938651 . 4512530b .03670509 - .01478933 .47993879 
524320.097496628 22.565309 . 39811524 . 03164885 -. 00839710 . 42304196 

1048614. 47070579 27. 144335 . 35183192 .02704444 - 00521395 . 37354352 

2097 J 98. 12376227 32.525314 . 31143263 . 02294 119 - .00341676 . 330371 77 
4194359.311 99968 38.987872 . 27609212 . 01934122 - .00231783 .29269020 
8388674.34190501 46. 747669 .245 10968 . 01622020 - .00160176 .25998290 

16777295.5813360 56.063584 . 21789028 . 01353993 - .00Il4340 . 23010570 
33554527.4717843 67.246349 . J939281 8 . 01 125615 -. 00081105 . 20587142 

67 108978. 5430931 80.668906 . 17279283 .00932342 - .00056122 . 18756025 
134217865. 43 11 20 96. 778842 . 154 11 687 .00769611 - .00044434 . 14815635 
268435620. 898931 11 6. 11330 . 1375861 1 . 00633423 -. 00029985 . 12460304 
536871109.862244 --- -------- -- -- - ---------------- - -- -- -- ---- ----- .00001497 ----------------

1073742061. 41994 -- - - ---- - - -- - -- ---- --------- -- -- -- -- --------- ----- - - - - ------ - ---- --- - - -- - ---

2147483932.89072 ------ -- -- ----- - ----- -- - - ------ -- - -- - - ---- - - --- --- - -- - --- ------ -------------- - -
4294967637.85702 ----- -- ---- -- --- - ------- - ------- -- - -- -- ----- ---- -------- -- ------ ---------- - - -
8589935002. 21781 ------- --- - ----- ---- - - - -- --- -- -- --- -- -- --- - ----- --- --- -- -- --- --- - - - - - -- - - - - -- ---
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J L is seen 11lnL Lhe firsL values of ( k(P I ) behrwe 
erra Lically HS Ie in creftses. ( 4(F\ ) is a very er!"<Ltj c 
function of n '~or smnll n. This is Lhe Lypic,ti brllH vior 
ewd indicllLes th'lt ('arc musL be e.'\crcjsrci in usin g 
repc,1ted applieHt io lls of C. 

Tllr largesL flleLor ill 'D (P I ) is .9 alld IIt'IlCI' 'D(!)I ) 
co 11 verges . 

Only selecLed values from tite oLher c.'\Hmplc-s HIOt' 
givcn. In Lllble 2 iL is secn LhaL ( is noL vcry efl'ec
tivc ill increeLsing the rfLtc of convcrgcncc of Pz. 

TAB I~E 2 
P,~ I (.U8) ''+(.95)"+(.5) "+C.2) " J 

1 2.6300 1. 6876 3. 0466 
10 1. 4168 .32965 .2062 1 
20 1. 0261 .18278 _______ _ 

1. 2528 
.2 1299 
. 02770 

This is du e Lo the closen ess of Lhe two larges t factors. 
In thc nexL Lable iL i scen LhaL evcn wiL h Lhe lower 
ordcr LerIn delcLcd tllC convergen cc is quiLe slow 
even fo r (4(P3)' 

n P, « P,) 
-------

I 1. 93 . 299 1'1 
25 .88085 . 1,,89 1 
40 .5742 1 . 10 J(iO 
(i0 . :'H362 . 05 175 

T A BL E 3 
P,~ I (.98) "+ (.95) "I 

C'( P,) C'( P,) 

- .07 157 - . 0~i33 
-. 0'1624 -4.0028 
-.02795 .02408 
-. 0 1084 .00256 

C' (P ,) "D( P,,) 
---. 

- .078(;1\ .0 
.0()843 .0 
.00322 .0 
.00004 . 0 

Thc next tnblc s hows th a L 'D is fa irly effc ctive on 
P ol , ] ( is to br noted howeve1' thn,t conve rgen ce is no 
longer monotonic r ven in the Lll'gC range considered . 
The denomin '1.to r has a zero betwecJl the 67t h nncl 
68th terms of 'D (P4)' This sam e phenomenon is 
present in '1J2(P4). 

T AH L IC 4-
P,~ I (. 9) "+ (.8) "cos(. 1 II ) I 

11 P , C(P, ) "D (P,) "D' ( P,) 
-------

I 1. 6960 .0235'1 .08971 .05260 
8 .54735 . 07107 . lJ 293 -.47672 

10 . 40669 .06085 -1. 8972 -.00681 
20 . 11678 .011 32 -.00282 -. 00287 
30 . 04117 -.00036 -.00051 -.00048 

35 .02465 -.00042 -.00151 .00005 
50 .00516 -.00002 3X IQ- 6 2X IO- 7 
60 . 001~0 4X IO-8 5X 10- 7 3XIO- 7 
67 .OOOR6 3XIO-8 3XIO-6 6XIO- 7 

The final tablc shows th a t'D is vcry efrcc ti vc for 
P s, while ( is not . 

TAB L E 5 
P,~ I (.9) "00s( I .5', )+(.5) "cos(.2571) I 

n P, C(P ,) "D (P ,) "D'(P ,) 

1 . 548 12 -. ll 75 1 . 10538 -.00 135 
5 .21454 -.21059 .000 17 - IX IO-6 

10 -.26567 3. 291 9 -.00022 -6X 10-' 
15 -. 17983 . 0 7227 -5X IO-6 5X 10- 11 

20 .0 1875 . 0 6441 1 X 10- 7 6X lO- H 
25 .07037 -. 0 4624 7X lO-' --------------

- ----- - - -

5 .2. Effect of (and '1J on Alternating Sequences 

Cons~dcr tllC seq uences of l)/1r(i'l1 sums of t hr follow
In g sel'l.es : 

OX> ( 1) ,+ I 
- 4 ') 14' r ~),~G 

To - i~ 2i _ I - ' . Ii) - , 

'" ( 1 ) i 
Ln 2= L:-- . = (i9 ;) 147:2, 

i ~ 1 I 

Thcsc sequ cnces li re denoted by AI, A z, 1111(1 A3 
respec ti vely. 

Thc firsL tlVO c.'\ll,mpll's are nJLernat ill g mLiomLl 
seq uellces a nd tables 6 and 7 show t he results for ( 
and Cl to bc as preciieLed by throrems 3 and 9. 
'1J (A I ), '1J (A 2) , c2(A I), and c2(A2 ) converge mudl 
more r apid ly and app'1.I'eJl Lly '1J accelemLl's Lil e 
convergence be tLer t han C2 by II. i'cw tor in 1/'11. 

TA l~ I JE 6 

" . 1, C(. I ,\ C, (. I,) 'D ( A, ) c ,( A ,) 

-----
1 4.0 3. 14GG6BG 3. 16555(;7 3. 14173,,7 3. 1423423 
2 2. G()G(;(;(;7 3. 1'10 10(; 0. 13330:l3 3. 14155(;7 3. 1413919 
3 3.4(;65(;Oi J. i42 15 1f-i 3. 1452381 3. 14 160'12 3. 1410627 
4 2.895238 1 3. 1413351 3. 139n82.) 3. 1415882 3. 14156')4 

" 3.339fi825 3. 1·11i2GH J . 1427 129 3. 14 159'16 3.1 '11 6005 

(; 2.97601(;2 :l, 1'1 J.)J(i;! :1. 1408813 J. 14 15R54 
7 3.2837:l85 3. 14 J{jJ!)2 3. 1 4207 1 ~ 
8 3.0 1707 18 :1. 1412548 
9 3.2523659 

10 3. 0'11839<; 

t'ITol'ofla Sl 
tr rlll _ .099753 . 000(l41iii . 00O:137H . 1\(l0(~)21\ (l00OO~2 

T AB L IC 7 

II ii , C(,I,) c ,(. I,) 'D ( .'1 ,) c ,( A ,) 
--- -------------- -- -

1 1.0 . 69444444 .7 . 693 18182 .69333333 
2 .5 . l i~)2i0833 .69047619 .093 10724 .09308943 
3 .8333333:1 .69033333 .69444444 .693 15068 . 693W940 
4 .58333333 .69305555 .09242424 .093 14573 .693 13724 
5 .783333:13 .69319726 .693589i'l .69311783 .693 15212 

6 .61666666 .69311 755 .69285712 .69314682 .69314448 
7 .75952379 .693 16576 . (;9334732 .69314734 .693 14872 
8 .63452379 .693 13490 .6930033 1 .6931'1706 . 693 1462 1 
9 .74563490 .693 15-\56 .69325395 .69314723 .693 14778 

10 .64563490 .693141 23 .69300573 .69314713 . 69314677 

II .73654400 .693 15149 . (;9321067 .69314 719 . 69314745 
12 .65321067 .093 14395 .69309670 . 0931'171 t- .69314698 
13 .7:l01 3375 . 69314961 .69318793 .690 14719 . fiP3 1470 1 
14 .65870517 .693 14529 . 693 11377 --------- - .li93 14707 
15 .72537184 . 693 14865 .693 17488 --- ------ ------------
Hi . 66287 184 ------------ .69312394 ---._------- ---------- --
17 .72 1695:18 ------------- -----------. -- --- ------ ------------
18 .666 13982 ------------ ----------- ------------ -------------

e rror of las t 
trrm _____ .0220074 .00000 15 .0000232 .0000000 1 .000000 10 

It is rcmarlmble that To can be found so accurately 
from a few terms of the simple sequencc A I, Shanks 
consiclcrs c~(AI) and 7r is given to 8 placcs by 
the first term of c HAI ) ' It would r cquire ap
proximately 40 ,000,000 terms of Al to give thc 
samc accuracy. 
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The third example is a "mixed" sequence. All 
of the transformed sequences diverge, but they arc 
semiconveTgent or asymptotic [3, pp. 520, 536] se
quences for In 3. In this example [ and '7J show 
a very marked improvement over CI and C2. It 
appears that round off has begun to affect '7J (A2)' 
Although '7J(Az) was computed lI sing double pre
cision, A2 itself was computed Lo only eight signi f
icant fi gmes. 

6 
7 
8 
9 

10 

11 
12 

errol' of las t 

A 3 

0 
*2.0 
0 
2. 6666667 

- 1. 0303303 

5.0666667 
-5. 6 
12.68571 4 

-l9. 31 4286 
37. 57'1603 

-64.825397 
121. 35642 

term _____ _ 120. 254 
' min crrol'- __ .801388 

TABLE 8 

----
1.0 1.0 
1.1111111 l. 1428571 
I. 09.12381 1. 0(;6666(; 

' I. 0985667 ' I. 1282052 
I. 1008547 1. 0666666 

I. 0938776 I. 136812;1 
1.1067668 1. 0493003 
1. 08526.53 1. 1657143 
1.1202030 1.0031748 

- -- - - --- ---- 1. 2391205 

. 0215908 . 140508 

. 0000545 . 029593 

----
1. 0980392 
1. 09R0392 
1.1047618 
l. 0991870 
l. 0984127 

1. 0986935 
* I. Ofl850i5 

-- -- - --- ----
---- - -------
-- ----------

. 0000147 

. 0000147 

1. 0909091 
1.1014493 
I. 09704(i4 
I. 0997246 
1. 0976744 

l. 0995076 
' 1. 0976739 

l. 099669.'; 
------ ------
---- - -- - ----

.0010573 

. 0008354 

The sequence Al may be modified by repeating 
each term in the sequence twice. Call the resulting 
sequence A;. The application of C, '7J, CI and 
C2 to A; give some unusual results. It is seen 
that 

cI (A;) = A{ 

[ (A;) = {anian= 00, n = ], 2, . . . }. 

c2(A;) is of the same type as A{ wiLh each Lerm 
repeated twice. The odd terms of '7J(A{) agree with 
those of c2(A;), but the even Lerms do not. The 
even terms 'bf C (A;) converge much more rapidly 
than the odd ones, by a factor of approximately 
l in. Both c2(A{) and '7J(A{) converge more slowly 
than c2(A1) and '7J (AI)' 

5.3. Three Related Sequences 

The following three sequences are considered: 

P 3= {(.98)"+ (.95) "}, 
P 6= {( 1.96) n+ (.95)n}, 

P7 = {(1.96) n+ (1.9)"}. 

The purpose is Lo in vesLigate the following two 
quesLions. Is it advantageous to increase the largest 
term in an exponential sequence before applying 
C? Is iL advantageous to keep the larger terms 
away from 1 at the expense of increasing th em? 
The answer to the first question appears to be some
Limes and the ans wer to the second appears to be 
no. 

The limit or antilirnit of each of th ese seq llences 
is zero . The first converges quite slowly and the 
other two diverge (sec Lable 9). 

TABLE U. BehavioT oj 1"3, 1"6, and 1"7 

n P 3 p , p , 

10 I. 416 837.3 1450 
25 . 8808 2. 025X 107 2. 955X IO' 
50 .4411 4. 1X IO" 'I. 967 X I0 15 
75 . 2411 --- -- - - - - - - -- -- - -- --------------

Pa, [ (P3 ), (2 (P3), and (3 (Pa) all converge 
slowly. There is an improvement by a factor of 
approximately 2 in the range considered for each 
further application of C. 

Theorem 2 states Lhat [ (Ps ) and [ (P 6 ) converge 
at the same rate while [ (P 7 ) diverges. This is 
borne out by table 10. C and C produce entirely 
different effects for each sequence. C(P6 ) con
verges very rapidly to zero and C (P 6) con verges 
even more rapidly. Errors due to the loss of sig
nificant figures have affected the 24th term of 
C(P6 ) and the 14th term of [3CP6 ). All calcu
lations here were made with 20 decimal digits. 

In P 7 , [ (P 7), C (P 7 ), and C (P 7 ) the first term is 
the closest to zero . However it, is apparent that the 
sequence formed by the nth terms of [ k(P7), 

k= O, 1, . . . converges quite rapidly to the antilimi t 
of P 7 • 

5.4. Effect of Lower-Order Terms 

To illustrate the effect of lower order terms we 
consider 

which may be compared to PI in s,"ction 6.2. 

TABLE 10. Effect OJCk on theseq1twces P3= {(.98)n + C. U5 )n), P 6= {(1.96)" + (. 95)n}, P 7= {(1.96)"+(l.9)nl. 

n ( (P ,) ( '(P ,) ( '(P ,) ((P,) ( '(P ,) ( '(P s) ( (P 7) ( '( P7) ( '(P 7) 

1 . 2991 - .0716 -. 0873 1. 02. - . 0671 -.55 X I 0-' .0059 -.88X lO-' . 40 X lO-7 
5 . 2708 -. 0684 - .0923 .8350 -. 0028 -. 13X I0-' . 0807 -. 12 X IO-' . 54 X lO-s 

10 . 2384 -. 0638 - . 1032 . 6462 -.57X lO-· -. 75 X l0-' 2.129 -. 0031 . 13 X lO-' 
15 . 2091 -. 0584 -. 1269 . 5000 -. 12X lO-' -. 12 X 10- 1O 55. 8a -. 0769 . 32 X l0-' 
20 . 1827 -. 0525 -. 2017 . 3869 -. 25 X lO- 7 -. 2l X I0-' 14M - 1.901 .0076 

25 . 1589 -. 0462 - 4.903 . 2994 . 15X lO-s -. 19 X lO-s . 38X 10' - 46. 27 . 1726 
30 . 1376 -. 0399 . 1319 . 2316 . 15 X lO- 7 -. 08X l0-' . 98 X 10' - 1109 3. 852 
35 . 1186 -. 0337 . 0490 . 1792 . 65 X lO- 7 -. 98X 10-s . 25 X lOs -. 26X lO' 84.02 
40 . 1016 -. 0279 . 0241 . 1387 . 94 X l0-' -. 12X 10- · . 64X IO' - . 61 X lO' 1795 
45 . 0866 -. 0227 . 0131 . 1073 . 75 X 10-' -------- -------- . 1G X IO " - . 14X I0s --- -- - - - --- - ----
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TA Br~E I I. Effect oJ lower order terms 

P, Ps C( P ,) 

----
I 4.8426 ~. I ti25 2.88 10 

10 1018. 569885 1018. 11 9 177 4. 8408 
20 10. a6J. 260. 20 10. 36;;, 258. 88 26. 26 
27 1. no, 449. \J98 I, a26. 449, 997 9.>.645 

In table 11 it is seen that the lower order terms 
disappear ratlter mpidly in PI, bu t the 27th terms of 
C(PI ) and C(Ps) only agree to two digits. .F'urther 
[2(Pl) and [3 (P 1) are completely unrelated to [2(Ps) 
ewd [3(Ps). Thus it is seen that these lower order 
terms are significant even for C(P) and they affect 
the rate of convergence of Ck(P), 1e> 1, drastically 
and ad vC'rsely . 

5.5 . Loss of Significant Figures 

It has been seen that terms with a small effect on 
P can have a large effec t on Ck(P) . A related 
phenomenon is the loss of sign ificant6gures in the 
computation of C(P) and m (p ). If P is the con
stant sequence {PnIPn= l }, then C(P) and m (p) 
may be written symbolically as 

1. (1- ]) 
(1- 1) 

Hence slight inn,ccumeies in t ile comp u tation of 
C(P) and m (p ) may distort the results badly if P 
is slowly varying. Often it is necessary to use double 
precisio n for the computation of m (p ) even though 
P is only given Lo s ix or eight digits. 

The following table shows where the loss of signifi
cant fi gurC's can occur. The firs t column of table 12 
defines the sequence P, tlte second column gives the 
approximate size of the terms of P in the range that 
the transformation is appli.ed and tho third column 
gives the transformati.on used . The next four 
columns give n, the size of the terms appeanng ll1 

( ( Ps) C'( P ,) C'( P s) C'( P ,) C'( P ,) 
---------------------

.8205 2.695 -. 0719 2.7 1J 2X lO • 
'I. a07 1 1. 282 - . OO 'liS -. 0072 oX 10- 7 

2(;' 67;; . a'l77 - .00014 .0267 !)X l0- 11 

95.576 ------ ----- --- - ------- .--- ----- .. ------ ----

the numerator, tlto eLet ll al value of t ire 1l1lllH'raLor 
and the number of signi6cantfigllres 10 t from P . 

TA H I, I, 12. l.Joss oJ wignt/icantfigll res 

Tra lls- Size of Sigllif-
Sequence Size of forma- n num erical N Uln cr- ieanL 

term s Lion t(' rlll S aLoI' fig ures 
lost 

------------------- ------
(1.96)"+(.95)" ________ . IX IO' fb 25 . 01 . oJ3XLO-' 20 
(.9) n+(.S)nC08 (. In ) __ . 4X IO-J 30 .0002 . 3 X lO-1O 9 
(.9)n+(.8)nC08 (. I n) __ . 5X IO-3 '7J 75 . 2X I0-' .2X lO-2J 18 
(.999) "+(.99) n ____ _____ 2 '7J all JO JO- IS 19 
(,98) n+(.6)n+(.4) n_ -- J '7J J5 I 10- 11 II 
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