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Sequence Transformations Based on
Tchebychelf Approximations
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Let P=\{p,} be a real sequence and define the transformed sequence  (P) as follows:
Consider the segment, P, Pm+t, Pmiz, Pmis of P and determine a,, b,, and ¢, so that

max\amb; +cn— pn!y

n=m, m-+1, m+2, m-+3 is minimized.

The mth term of (C (P)

n
is taken to be ¢,. The effect of the transformation (¢ on sequences of the type

k k l
Po‘f"zai)\?, A (=1b) "E ai"i/z b:n?,

i=1 i=1 i=1

shown to be very effective in accelerating convergence or decelerating divergence.

an”, . :
and po+——is considered. In each case ( is
n

For

example, if the second sequence behaves as an® as n—o, then the transformed sequence

behaves as ank=3.

two types of transformations is made.
of C and “D on various sequences.

1. Introduction

Let P={p,n=1,2, . . .} be a real sequence and
let T be a sequence transformation with

Q:T(Z)) - {tn(pl:p‘a

A large variety of such transformations have been
studied, many in the modified form of summability
methods for infinite series, which are designed to ac-
celerate or induce the convergence of the sequence P.
Such transformations may be based on approximat-
ing a segment of /” by a function of a given form. As-
sume that p, behaves approximately as f(A,n) where
A represents some parameters to be determined.
Consider a segment {p,|i=1,2,. . ., m} of P. The
parameters A,, may be determined so as to minimize
the error of the approximation in some sense. Since
f(A,,n) is a known function of n we may set

. D= 15258 S

tn(P1,p2, « .« ., Pm)=Lam f(A,,n).
n—r o

The transformations of this paper result from as-
suming p, to behave as ab”-+c or ab™ cos (0-+n¢)-tc.
The transformations are denoted by ( and D, re-
spectively.  The approximation to give the mth
term of C(P) and “D(F) is based on four or six, respec-
tively, terms from £. The parameters are determined
so as to minimize

max|ambn+cn—pal, n=m, m+1, m—+2, m+3
n
or
max|a,by cos(0,+nem) +cn—pal, n=m, ..., m+5
n
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done under a National Research Council-National Bureau of Standards Post-
doctoral Research Associateship.

A similar transformation D is defined by approximating in the Tcheby-
cheff sense a segment of P by ab, cos (8-+n¢) -+ c.
of the above type and also for py+Z.£,a,\ cos (0;+ne;).
are similar in nature to Aitken’s é-process and its generalization.

The effect of “D is studied for sequences
l 1 .

These sequence transformations

A comparison of the

Several examples are given to illustrate the effect

If b,,<1, then Lim f(A4,,n) is just ¢,; if b, >1 then

n— o
this limit does not exist, but the value ¢,, is still taken,
¢,, being the antilimat.

Explicit formulas for ¢,, in terms of the p, have been
obtained in [5].? These formulas are not linear in the
p: and the transformations exhibit some marked dif-
ferences from the classical linear transformations. In
many cases  and D are much more powerful and in
other cases P may converge quite rapidly and the
transformed sequence may be identically infinite. Al-
though ( and "D are not regular they do have a prop-
erty of joint convergence, namely that if both 7 and
the transformed sequences converge then they have
the same limit.

It 1s not surprising that ¢ and “D are effective for
sequences of exponential type

k
= {1)0+§ aNtn=1, 2, .. } (1)

If N[> [Niga| then C(P) converges or diverges as
(N\2)" mstead of (A\)"”. “D(P) behaves as (N\;)" or
(N3/N)". D s effective for sequences of the more
general type

k
PZ{I"”LZ“” cos (Bt ng)|n=1,2, . . } (@)
=1

and ('is useful for such sequences in some cases.
These transformations are also very powerful for
alternating rational sequences:

k1 k2
I’={p0+(—1)"§aini/§bini]n:1, 2, e .}' (3)

2 Figures in brackets indicate the literature references at the end of this paper.
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It is shown that ( accelerates the convergence by a
factor of 1/n®. That D accelerates the convergence
even more can be seen from the examples although
the actual factor of acceleration has not been deter-
mined. An example shows that (" and D are very
effective for a sequence of the form

P:{(;l#m:m,...}- @

The basic principle of these transformations is the
same as that of Aitken’s é-process and its generali-
zations. ( is the direct analog of the &*-process.
Shanks [8] has given the most complete account of
this theory. ( and D have many properties in com-
mon with these transformations. The analogs of
and D in Shanks’ work have the same power as (
and “D for sequences of type (1) and (2). For se-
quences of type (3), C and “D are definitely more pow-
erful. Aitken’s &§°-process accelerates the conver-
gence of (3) by a factor of only 1/n%
much more effective for the sequence (4). There are
sequences for which the §-process and its generali-
zations are more effective, but as a general guide C
and D are as effective or more effective than their
analogs in Shanks’ paper.

A comparison of this paper with Shanks’ will indi-
cate that ¢ and "D have many properties which have
not been developed. The main purpose here has
been to establish these transformations as tools of
numerical analysis and not of analysis. When read-
ing Shanks’ paper one has the feeling that much
remains to be done in the study of these transforma-
tions and that a complete understanding of their
behavior for sequences of real and complex functions
will require a penetrating analysis.

It is typical but somewhat disappointing that these
transformations may be most effective for easy
problems and least effective for difficult problems.
If one is solving three simultaneous linear equations
by Gauss-Seidel iteration and the characteristic
values determining the rate of convergence are .95,
.5, and .1, then these transformations increase the
rate of convergence dramatically. But if one has
100 equations with 10 characteristic values between
99 and .995, then the elimination of even the five
largest ones is not very significant. On the other
hand if the largest characteristic value is .995 and the
others are, say, less than .9 the transformations are
very effective in accelerating the convergence.

2. Derivation of the Transformations
2.1. Preliminaries

Sequences are denoted by P, ¢, . . . and their ele-
ments by pu, ¢, . . . . A sequence transformation
is denoted by a script letter as ¢ and “D. Braces,
{ 1}, denote a sequence or set and {z| . . .} is read
“the set of x such that . . .” We denote by O(x)

2818583+ 84(8¢82 —81) — 5485 —$3

C and D are |

and o(x) two functions such that

Lim 2& ¢

15w L

and, for z sufficiently large,

}M‘ < constant.
7

Let P be a sequence of real numbers. A trans-
formed sequence Q={g,n=1,2,. ..} of P, is ob-

tained as follows: Take a segment, {p;i=m, .. .
m—+Fk} of P, and approximate the values p, as a
function of n by ab,+c¢ or ab,cos(f-+n¢)+c. The
corresponding ¢ value is then assigned to g,,.

For these particular transformations to be effective,
the sequence P must, in some sense, behave ex-
ponentially. As an example of such sequences
consider the real k-vectors defined by

Unt1 :Avn;
where A4 is a real £ )<k matrix. Let »* be the solution

of
(A—TI)v*=0.

Then v, —v*=A,(v,—0*). The sequence of vectors
defined will converge to v* if A™(vy—0*) tends to zero
as n tends to infinity. If A is a normal matrix with
characteristic vectors %, and distinct real character-
istic values \;, then

k
A*We—0*) =27 a\fu
=1
If the A;r are complex then
An(Y)O'—Q)*) :E Olip\iln COS (01+n¢>1)ui
2.2. Tchebycheff Approximations

We wish to approximate a segment of P by ab”-}c.
The use of least squares approximation appears to
be impossible due to the difficulty of the nonlinear
equations involved. In [5] the theory of approxima-
tion by ab’+c¢ in the Tchebycheff sense is developed
in detail. The following result is given. Let p,,
Dmt1y Pz, and p,5 be four consecutive values of P
to be approximated. Then ¢, of the best approxima-
tion, a,,(b,)"+c,, is given by

:(pm+pm+l) (pm+2+pm+3)_(pm+l+pm+2)2 (5>
2(Pm—Pm+1— Pmt2t Pm+s)

Let 9y, . . ., puss be consecutive values from P
to be approximated by ab"cos(6+n¢)+d. The theory
of Tchebychefl approximation by ab“cos(8+x¢)-+d is
not complete and an explicit formula for d,, of the
best approximation has not been rigorously estab-
lished. However it is conjectured that the following
formula is valid. Set s, =% (puii+Pmyin), 1=0,1,
4. Then

Cm

21

U — A .
285 (So281— 385+ 283+ 84) — 2(S1— S3) 2—4 (8184 So83) +28:84

(6)
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This formula is based on the assumption that the
best Tchebychefl approximation is characterized by
the alternation five times of the error function.
See [6] for a discussion of the characterization of
best Tchebycheff approximations.

Note that (6) may be written in a much simpler
form. Let si=(s;—s,), 1=0,1,3,4; then

85 (1) * 456 (83)*

So—
* sosi— (s1—s8)*—2 (sisi+s380)

d m—

2.3. The Transformations ( and D

Let P be given, then a new sequence ) is found as
follows: For each m such that the denominator of (5)
IS nonzero ¢,=cy; if the denominator of (5) is zero
and the numerator does not vanish then we assign
¢m= o ; if both the numerator and denominator are
710 (n=7Pn. This transformation of P into ¢ may
be written in operator form as

Q=C(P).

A transformation D is defined in a similar manner
by (6).

The repeated application £ times of ¢ and D is
denoted by C*(P) and D*(P).

3. Analysis of the Transtormations
3.1. Algebraic Properties of (¢

The study of the properties of these transforma-
tions begins with a simple algebraic property of (.

If P={p,} then aP+bis defined as {ap,+bln=1,2,

. .}. The following result may be established by
direct computation from (5).

C (aP+b)=a( (P)+b.
Itis not true that C (P,+P.)=C (P1)+C (P,).

THEOREM 1:

3.2. Transformation of Exponential Sequences by (

Let P be a real sequence of the form
c n
{pn:p0+; ai)\i‘n=1,2, .. .}

with [N/ >[Nial. If [N >1, P does not converge but
diverges from po. In such a case p, is the antilimit
of P. This sequence is of an exponential type and
C should be effective in increasing the rate of con-
vergence or decreasing the rate of divergence.

Let P’=P—p,; then

C(P)=C(P")+po

The general term of C(F’) may be explicitly com-
puted to be

2 e (M) (LA (14H8) (=)

i
s (1—)\1—>\%+)\?H—§ a1 (N/M)™ (L—=N— X))

The denominator of this expression may have only a
finite number of zeros as a function of n. We may
write the denominator as

o (1—N—M+A) +o(1)
since [A;/\|<1 for 7 >1.

The largest term in the numerator is 7.
among the larger terms are

Others

A5, (Aaha/N)™

Thus ( is seen to eliminate the largest exponential
term from F’.

The repeated application of ¢ will eliminate the
largest remaining term. The largest term in C*(/”)
1S A%,

The above analysis has cstabklished:

THEOREM 2: Let P={po+2 a:\%}, [N >|Aial;
i=1
then

¥
A3 Z d; (#i)"

i=0

1+o(1)

=1

)= <1,

Pot 1>1.

Thus (C i1s seen to have a desirable effect on se-
quences of this type, which was to be expected. In
the next section it 1s seen that (C is effective for
some sequences of a completely different nature.

3.3. Transformations of Alternating Rational
Sequences by (

Let P be a sequence of the form
ka

k1
{pn=po+ =1 g am/i/ZO b }

i=

We shall consider C (P).
First take the special case

P={po+(—1)"an*}.

The nth term of € (P) is

(0t — (DB (142 — (0+3)H (1) E— (n-2) B2,
A=) (FF (e D)~ i+ 2 F— (T 3)¥)

mt+a
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After some manipulation this term is seen to be of the

form
an?k‘-ik.? (k_ 1)
Do g (1) et

b o)

P, may be

+0@)
or
pota(—1)"n*

Now consider the general situation.
written as

pn:po+a6nk+2 a{’nk_i k:kl—kg
i=1

for n sufficiently large. Tt is clear that the denomi-
nator of ¢, is 8(—1)"kn*"'-+O0(n*~?) since it is linear
in the terms of . The denominator of ¢, has only
a finite number of zeros as a function of m. The
terms in the numerator are of the form

alaifnt=i— (n+ 1) 42— (n+3)+)
+ o[ — (n+ DS (n42)P — (n+3)
—2alafl(n-+ 1)t (D ()P — (n+2).

By direct calculation it is seen that this term is
O(an—i—j—‘l).
Thus we have established:

THEOREM 3: Let P={po+ (—1)"> % oam’/2 5 obin'};
then for m sufficiently large the mth term of C
(P) us

pot > ai(—1)"m*
i=1

where k=k,—ks, ao=ayk(k—1)/8bs,.

Examples of sequences which are approximately of
this type are given by the partial sums of alternating
infinite series of rational functions of n. One can
consider such sequences directly and establish an
analog of theorem 3.

3.4. Regularity and Joint Convergence

A transformation T is said to be regular if the

existence of Lim p, implies Lim ¢,=Lim p, where
n— o n— o

n—r o
Q=T (P). Since ( is a transformation designed to
accelerate or induce convergence one would like for
C to be regular. That C is not regular is seen by
the following example:

P={pulpun=1+1/k, prpn=1+1/k}

Every other term of C(P) is infinite, yet P con-
verges. Although (is not a regular transformation
it does have the property of joint convergence. A
transformation T is said to have the property of
joint convergence if the convergence of £ and T(P)
imply that £ and T(P) have the same limit. The
proof of the following theorem will be given in section
5.1 (see theorem 10).

~~
v

TaEOREM 4: If both P and C(P)=Q converge then
Lim p,=Lim ¢,

n—r

3.5. Properties of the Transformation D

The following theorem gives algebraic properties
of “D similar to those of C. The proof is by direct
evaluation.

TraEOREM 5: D(aP-+b)=aD(P)+b.

Consider the real sequence

P:{il a;\t cos (0;+ne;) }

with [N;| >[N, Expression (6) may be directly
evaluated as the ratio of the following two terms:
aiajal<)‘i)\j)\l/>\%)n
li—jIHT=21>0
X cos [0;+0,10,+n(¢:i+d;+¢) | H i

k

Z {liajo\i)\j/)‘%) nGm

and

i=1,j=

where ;;, and G;; are functions of the X\’s, #’s, and
¢’s that are independent of n. I ;; and G, are
trigonometric functions with coeflicients depending
on powers of the \’s.

An examination of the above expression and a
simplification of notation leads to the following
theorem.

TaEOREM 6. Let P={po+> %_1a N} cos (0;+né,)},

INi| >[Nial. Then the nth term of “D(P) is
NS ;0 biu} cos (a;+nB;) po=1
pet L0l <1, i>1

except for possibly a finite number of terms.
One may also establish the following result:

k
TraeOREM 7: Let PZ{ZJO‘{—iZ_Iai)\?}, [Ae| >N gl
Then the nth term of “D(P) is

po=1
Iﬂ'i!<1; 7/2 1
N = max (A;, NJ/\r)

Pot (V)" 23bant
C 1te(m)

except for possibly a finite number of terms.

No attempt has been made to analyze the effect
of D on alternating rational sequences; however the
examples indicate that D is quite effective for in-
creasing the rate of convergence.

It is a simple matter to construct sequences for
which “D is not regular. It is probable that D has
the joint convergence property, but this has not been
established.



4. Comparison With Aitken's é*-process and
its Generalization

The transformations ¢ and D are similar to a
family of sequence transformations first studied by
Aitken [1,2]. These transformations have been stud-
ied since by Lubkin [4], Samuelson [7], and Shanks
[8]. The most general and complete treatment is
by Shanks. A brief outline of these transformations
will be given.

Let P be given and set

Ai)n:[)n 11— Pn-

n=Fk, k+1, ...}

From P new sequences (.= {qx,,
are formed by

])n—lr ])n»—l 1)11

AP . APy Apy

A])n—l.‘fl (RO Al'/l A])I/H

o n—1 . e e A])NM'HJ o
Ton=""1"1 L 1

A))u—k . A/’/1—] A,“u

Aj)/l k=1 « « o A})n, A])u]l

Al)u 1 A/)uﬁkfl

This defines a set of sequence transformations &, by
Qr=&x(P)

Shanks studies in some domil_ the transformations
Ekygf;glz{pqu12)q{%)7 SR (11 ’= G }) and
== O =001, & o o qm (leno(mlho nth term of
EEP).  qinis given explicitly by

Dr— i —Vi
" ])lz+1+[)r1—l 2])11

which defines Aitken’s §°-process.

These transformations are derived heuristically as
follows: Given a segment Qf I (s c ey Dutk
assume that this segment is exactly of the form
k
>habite. The basic
i=
principle is the same as for ¢ and ‘D, but the

determination of the approximation is different.
If S={s,|s,=%(®n+pri1)} then it is seen that

C(P)=&(S).

Then define ¢y,, to be this ¢.

562759—60—3

Likewise, a straightforward calculation shows

D(P)=E(S).
The reason for this relationship is simple. &, has
been found by solving eq (8) for ¢:
k
> ad?te=pn, m=n—k, .. .,n+k. (8)

=1

The fact that best Tehebychefl approximations are
characterized by the alternation A1 times of the
error function leads to the following equations:

o n+2k42

m=nmn,

k
Z(l ib'irb+c:1)m%* (— 1) "l(‘v
i=1

where ¢ is the error of the best approximation. If
one averages the mth and (m-+1)st equations, then

Z(1(1—}—())

i=1

b”‘+(** G D)
o AR BRIl

=
These equations are of the same form as (8) except /°
has been replaced by S.
Aitken considers the application of & to sequences
of the form P={p,+> % _1a N} and ustnl)llsh(-s:

L «; )\m

i=1

TaroreM 8 (Aitken): Let P={py

N >N a5 then
)™ _3(/,,11, po=1
é‘ I’)—" ,,,’ i
1 ( /.‘1 " 14 o(1) <1 i>1.
\

Thus for sequences of this type & and ( are equally
effective in order of magnitude. The coefficients of
(A" for & and ( are, respectively

a1a>(1+)\ )()\I—)\ )
C(1—n)?

& appears to be slightly superiorif X\, >0. Kxamples
indicate that either & or C may be better but in any
case the difference in the rates of convergence is
small.

For alternating rational sequences the two trans-
formations are no longer similar in effect. Shanks
has established:

Trrorem 9 (Shanks): Let

{1)0+(—1)"Za i [2oba }

ala»(7\1~)\)
(I—N)*

)

a, #0, by, #0 and k=k\—k,. Then the nth term o)
& (P) s

) a"lk(_l)n b3

Po T_—I_O( )
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with possibly a finite number of exceptions.

Thus & accelerates the convergence by a factor
of 1/n* whereas (C accelerates it by a factor of 1/n

The comparative effectiveness of & and D may
be judged from the examples given later.

Theorem 10 shows that & has the property of
joint convergence [4].

Traeorem 10 (Lubkin): If both P and & (P)=(@
converge, then

Lim p,=lim ¢,
(=100 71— ©

If P converges then so does S={}4(p,+p,1) } and
Lim p,=Lim s,
n—> o Nn—> ©

Thus theorem 4 follows directly from theorem 10.

5. Examples

Some examples are given which illustrate various
characteristics of C (m(] “D. In some cases com-
parisons are made with & and &. For more
general comparisons see [4] where & is compared
with several classical linear sequence transforma-
tions for a large number of examples.

The first two sets of examples illustrate the general
behavior of ¢ and “D for various exponential and
alternating rational sequences. Some comparisons

are made with & and & here. The next set of
examples shows the effect of increasing the largest
A in exponential sequences. The following two sets
show the effects of lower order terms and the loss of
significant figures. Detailed comments are given
with each set of examples.

All of these examples were computed using double
precision arithmetic with about 20 significant decimal
digits.

5.1. Effect of (' and “D on Exponential Sequences

The following five examples are considered:

{2*+(1.2)"+(.9)"+(.8)"},
{(98)11+(90) +(.5)"+(.2)*},
{(.98)"+(.95)"},

{(.9)"+(.8)" cos (.1n)},
{(.9)" cos (1.5n)+ (.5)" cos (.25n)}.

Table 1 gives results of C, C*, C?, C*, and D for
33 terms of P,. P, diverges quite mpl(llv and C ()
diverges at a much slower rate. The factors in
C(P)) larger than .5 are 1.2, .9, .8, .72, and .54.
C*(P)) converges as can be seen from the list of
factors in C2(7)) larger than .5. They are .9, .8,
72, .68, .6, and .54. The four largest factors of
C; (P,) are .8, .72, .71, and .68 are the largest factor
of C*(P,)is .72.

H

TasrLe |
i C(Py) i C:(P) C3(Py) C(Py) “D(Py)
4. 9000000000000 2.9151478 2. 7270889 2. 7433842 2.7029023 | 2. 6785648
6. 8900000000000 2. 7741418 2. 7426402 2, 8R08482 30727475 | 2. 7348679
10. 9690000000000 2. 7169114 2. 6757849 3.2921161 69.180737 | 2. 7088105
19. 1393000000000 2. 7430500 2. 5368629 4. 8080981 72818042 | 2. 6047836
35. 4064900000000 2. 8532800 2. 3466523 140. 43599 —. 54172894 | 2. 4392636
67. 7795690000000 3. 0509855 2. 1287500 —2.4381772 —. 04037382 | 2. 2345869
132. 271192900000 3. 3426610 1. 9033466 —. 76363656 L 04995813 2. 0125094
260. 898056330000 3. 7381380 1. 6847333 — . 28755651 L 06710598 1. 7902083
517. 681418569000 4. 2508558 1. 4814607 —. 09493555 - 06620907 1. 5791104
1030. 64778904490 4. 8982545 1. 2976421 —. 00731646 . 06136882 1. 3855556,
2055. 82979364889 5. 7023160 1. 1344196 . 03331326 . 05701478 1. 2121566
4105. 26724946147 6. 6902694 . 99116645 . 05084351 . 05513287 | 1. 0591391
8203. 00848270213 7. 8954805 . 86633340 . 05650783 . 05808964 . 92537882
16397. 1119330351 9. 3585517 . 75798632 . 05602878 . 07372670 . 80910184
32783. 6480970788 11. 128667 . 66412067 . 05246752 . 17953296 . 70831457
65554. 7018754061 13. 265229 . 58282968 . 04750712 —. 11327597 . 62104494
131094. 375400883 15. 839833 . 51238289 . 04208180 —. 03107621 . 54546427
262170. 791442315 . 938651 . 45125306 . 03670509 —. 01478933 . 47993879
524320. 097496628 22. 665309 . 39811524 . 03164886 —. 00839710 . 42304196
1048614. 47070579 27. 144335 . 35183192 . 02704444 —. 00521395 k 4352
2097198. 12376227 32. 525314 . 31143263 . 02294119 —. 00341676 . 33037177
4194359. 31199968 38, 987872 . 27609212 . 01934122 —. 00231783 . 29269020
8388674. 34190501 46. 747669 . 24510968 . 01622020 —. 00160176 . 25998290
16777295. 5813360 56. 063584 . 21789028 . 01353993 —. 00114340 . 23010570
33554527. 4717843 67. 246349 . 19392818 . 01125615 —. 00081105 . 20587142
67108978, 5430931 80. 668906 . 17279283 L 00932342 —. 00056122 . 18756025
134217865. 431120 96. 778842 15411687 | . 00769611 —. 00044434 . 14815635
268435620. 898931 116. 11330 13758611 | . 00633423 —. 00029985 . 12460304
536871109, 862244 I . . 00001497 | _
1073742061. 41994 S, } S | B —
2147483932. 89072 R IR
4294967637. 85702 .
8589935002. 21781 S -
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[t is seen that the first
erratically as k inereases.
function of n for small n. Thisis the typical behavior
and indicates that care must be exercised in using
repeated applications of .

The largest factor in “D()) is .9 and hence “D(F))
converges.

Only selected values

ralues of C*(P,) behave
C*'(P,) is a very erratic

from the other examples are

given. In table 2 it is seen that  is not very effec-
tive in increasing the rate of convergence of /P,.

TarLe 2
Py={(.98) +(.95) "+ (.5)n+(.2) ]

n ‘ /8 ‘('(l’z) ‘CZ(PQ) D(Py)

1| 2.6300 |1.6876 |3. 0466 1. 2528
10 | 1.4168 | . 32965 | . 20621 . 21299
20 | 1.0261 | .18278 | _______ 02770

This 1s due to the closeness of the two largest factors,
In the next table it is seen that even with the lower
order term deleted the convergence is quite slow
even tor (*(,).
TABLE 3
Py={(98)+(95)]

n Py | C2(Py) C(P3) | CUPy) D(P3)
B ‘ - L
1 1. 93 EHOTI6 T —. 07864 )
25 . 8R0S § —. 04624 . 36843 | L0
40 . 57421 l(llhﬂ —. 02795 . 00322 .0
60 . 34362 L05175 | —. 01084 1)“’ . 00004 .0

The next table shows that 7D is fairly effective on
P, 1Ttis to be noted however that convergence is no
longer monotonic even in the large range considered.
The denominator has a zero between the 67th and
68th terms of “D(F,). This same phenomenon is
present in “D*(1y).

'l‘.-\ RLE 4

n ‘ Py C(Py) ‘ 'D(1’|) D2(Py)
|

1 1. 6960 .02354 | . 08971

8 . 54735 .07107 11293 —
10 . 40669 . 06085 —1.8972 =
20 . 11678 01132 —. 00282 s
30 . 04117 —. 00036 —. 00051 =,
35 . 02465 —. 00042 —. 00151 . 00005
50 00516 —. 00002 3X10-6 2X10-7
60 00180 4X10-8 5X10-7 3X10-7
67 . 00086 3X10-8 3X10-6 6X10-7

The final table shows that D is very effective for
Ps, while ( is not.
TABLE 5
={(.9)ncos(1.5m)+ (.5) ncas(.25n) |

n Ps C(Ps) ’D(l’ ) D P5)
1 . 54812 — dhlrgl . 10538 —. 00135
5 . 21454 —. 21059 - 00017 —1X10-¢
10 —. 26567 3.2919 —. 00022 —6X10—%
15 —. 17083 . 07227 —5X10-6 5X10-11
20 . 01875 . 06441 1X10-7 6X10-14
25 . 07037 —. 04624 AL SR

5.2. Effect of ( and "D on Alternating Sequences

Consider the sequences of partial sums of the follow-
ing series:

@ (7])/ 1
Sy 3.1415926,

=1 21—1

® (1)
ma=3""1"— 6031472,

=1

© _l)n)l
In :hT : -1.098612.

=

i=

These sequences are denoted by A, A, and A
respectively.

The first two examples are alternating rational
sequences and tables 6 and 7 show the results for ¢
and & to be as predicted by theorems 3 and 9.
D(A), D(A,), &(AY), and &(A,) converge much

more rapidly and apparently D accelerates the
convergence better than & by a factor in 1/n.
TarLeE 6
n 1 C(4) Ei(A) D( A1) ‘ Ex(4.)
1 4.0 3. 16 3. 1417367 3.1423423
2 2. 6666667 3.1 3. 1415567 3.1413919
3 3. 4666667 3. 145 3. 1416042 3. 1416627
4 2. 8952381 3. 18 & 3. 1415882 3. 1415634
5 3. 3396825 3. 142 )Al 29 3. 1415946 3. 1416065
6 2 3 i 3. 1408813 3. 1415854
rf 3.2 3.1 H‘v‘l‘lZ 3. 1420718
8 3.0170718 3. 1412548
9 3. 2523659
10 3. 0418396
error of last
term . 099753 0000466 0003378 . 0000020 0000072
TarLe 7
n 1) C(As) Ei(Ay) D(Ay) & (As)
1 1L . 69444444 e . 69318182 . 69333333
2 x . 69270833 . 69047619 . 69313724 . 69308943
3| 083333333 | . 6933333 . 69444444 J»‘ 15068 . 69316940
4 . 69242424 3 14573 . 69313724
5 33323 h‘JdeT‘Zl» . 69358974 . 69314783 . 69315212
6 61606666 | . U3ILTSS | 09RGTI | .6UBLAGS2 | . 0UB4S
7 . 75952379 . 69316576 . 69334732 . . 69314872
8 . 63452379 . 69313490 . 69300331 . 69314621
9 . 74563490 . 69315556 . 69325395 . 69314778
10 . 64563490 . 69314123 . 69306573 . 69314677
11 . 73654400 . 69315149 . 69321067 . 69314719 . 69314745
12 . 65321067 . 69314395 . 69309670 . 69314715 . 69314698
13 v 15()13&1 5 . 69314961 . 69318793 . 69314719 . 60314731
14 5 4()')1/ . 69314529 200311877 | EEm . 69314707
15 : . 69314865 SRR S et e e o e
16 . 66287184 . 69312394
17 . 72169538 R =
18 .66613982 | ___________ . o
error of last
TAFMEST= . 0220074 . 0000015 . 0000232 . 00000001 . 00000010

It is remarkable that = can be found so accurately
from a few terms of the simple sequence A,. Shanks
considers &%(A;) and w is given to 8 places by
the first term of &£{(A4,). It would require ap-
proximately 40,000,000 terms of A, to give the
same accuracy.
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The third example is a “mixed” sequence. All
of the transformed sequences diverge, but they are
semiconvergent or asymptotic [3, pp. 520, 536] se-
quences for /m 3. In this example  and D show
a very marked improvement over & and &. It
appears that round off has begun to affect “D(A,).
Although “D(A,) was computed using double pre-
cision, A, itself was computed to only eight signif-
icant figures.

TABLE 8

n As C(A43) E1(A43) D(A4z) &>(A3)
1 0 14(0) 1.0 1. 0980392 1. 0909091
2 x200) 1.1111111 1. 1428571 1. 0980392 1.1014493
3 0 1. 0952381 1. 0666666 1. 1047618 1. 0970464
4 2. 6666667 | *1.0986667 | *1.1282052 1. 0991870 1. 0997246
5 —1. 3333333 1. 1008547 1. 0666666 1. 0984127 1. 0976744
6 5. 0666667 1. 0938776 it 1. 0986935 1. 0995076
W —5.6 1. 1067668 il *1. 0985975 *1. 0976739
8 12. 685714 1. 0852653 1 3 SN 1. 0996695
9 —19. 314286 1. 1202030 1.0031748 |- . _f..___ .
10 37.574603 | __ 1.2391205 |- oo |
11 AR 2530 7 | S | S S
12 (1218275 1) R O | IS N | S |

error of last

DR oo 120. 254 . 0215908 . 140508 . 0000147 .0010573
*min error___ . 801388 . 0000545 . 029593 . 0000147 . 0008954

The sequence A; may be modified by repeating
each term in the sequence twice. Call the resulting
sequence A{. The application of C, D, & and
& to Al give some unusual results. It is seen
that

&(An) =4
C(Il{):{a’nldrt:wy n=1,2, .. }

E,(A]) is of the same type as A{ with
repeated twice. The odd terms of “D(A]) agree with
those of &,(A7), but the even terms do not. The
even terms of &(Aj) converge much more rapidly
than the odd ones, by a factor of approximately
1/n.  Both &(A]) and D(A]) converge more slowly
than &(A4,) and D(A,).

ach term

5.3. Three Related Sequences
The following three sequences are considered:
Py={(.98)"+(.95)"},
Py={(1.96)"+(.95)"},
P;={(1.96)"+ (1.9)"}.

The purpose is to investigate the following two
questions. Is it advantageous to increase the largest
term in an exponential sequence before applying
C? Is it advantageous to keep the larger terms
away from 1 at the expense of increasing them?
The answer to the first question appears to be some-
times and the answer to the second appears to be
no.

The limit or antilimit of ecach of these sequences
is zero. The first converges quite slowly and the
other two diverge (see table 9).

TasLe 9. Behavior of Ps, Ps, and Py

n P Py P
10 1.416 837.3 1450
25 JSR08 | 2.025X107 2,955 107
50 . 4411 4. 1X1015 4. 9671015
75 211 S | S S
P, C(Py), (C*(Ps), and (*(Ps;) all converge

slowly. There is an improvement by a factor of
approximately 2 in the range considered for each
further application of (.

Theorem 2 states that C(P;) and C(F%) converge
at the same rate while ((P;) diverges. This is
borne out by table 10. (? and (? produce entirely
different effects for each sequence. (C*(P;) con-
verges very rapidly to zero and (?(Ps) converges
even more rapidly. Errors due to the loss of sig-
nificant figures have affected the 24th term of
C*(Ps) and the 14th term of (C?(Ps). All calcu-
lations here were made with 20 decimal digits.

In P;, C(P,), C*(P;), and C3(P;) the first term is
the closest to zero. However it is apparent that the
sequence formed by the nth terms of (*(F;),
k=0, 1, ... converges quite rapidly to the antilimit
of P;.

5.4. Effect of Lower-Order Terms

To illustrate the effect of lower order terms we
consider

which may be compared to P, in section 6.2.

TasLe 10. Effect of C* on the sequences Py={(.98) "+ (.95)"}, e=1{(1.96)"+ (.95)"}, P;={(1.96)»+ (1.9)"}.
n C(Ps) C2(P3) C3(P3) C(Ps) C2(Py) C3(Ps) C(Py) C}(Pry) C3(Py)
1 2991 —.0716 —. 0873 1.024 —. 0671 —. 55X10- . 0059 —.88X10-5 .40X10-7
5 L2708 —. 0684 —. 0923 . 8350 —. 0028 —. 13X10-5 . 0807 —.12X10-3 .54 X106
10 L2384 —. 0638 —. 1032 L6462 —. 5710 —. 7510~ 2.129 —. 0031 13104
15 -2091 —. 0584 —. 1269 - 5000 —.12X10-5 —.12X10-10 55. 83 —. 0769 .32X10-3
20 L1827 —. 0525 —. 2017 . 3869 —. 25X10-7 —.21X10 | 1456 —1.901 L0076
2% L1589 —. 0462 —4.603 2994 . 15X10-8 —.19X10-8 38X 10 —46.27 1726
30 L1376 —. 0399 L1319 L2316 L 15X10-7 —. 3810~ 98X 100 | —1109 ) 3. 852
35 L1186 —. 0337 - 0490 1792 .65 X107 —. 98X 106 25X 108 —.26X10° 84. 02
40 L1016 —. 0279 L0241 L1387 L 94105 —. 1210~ L6410 —. 61X100 1795
45 . 0866 —. 0227 L0131 1073 STEXA0~4 | L 16101 — 14108 | .

234



Tasry 11.

n Py Ps C(P)

1 4. 8426 3. 1625 2. 8810
10 1018. 569885 1018. 119177 4. 8408
20 10, 363, 260. 20 10, 363, 258. 88 26. 826
27 1, 326, 449, 998 1, 326, 449, 997 95. 645

In table 11 it is seen that the lower order terms
disappear rather rapidly in ,, but the 27th terms of
C(P)) and C(Ps) only agree to two digits. Further
C*(P)) and C?(P,) are completely unrelated to (%)
and C*(Ps). Thus it is seen that these lower order
terms are significant even for C(/°) and they affect
the rate of convergence of C*(P), k>1, drastically
and adversely.

5.5. Loss of Significant Figures

It has been seen that terms with a small effect on
P can have a large effect on (C*(P). A related
phenomenon is the loss of significant figures in the
computation of ((P) and “D(P). If P is the con-
stant sequence {p,|p,=1}, then C(P) and D(P)
may be written symbolically as

1.(1—1)

(1—1)

Hence slight inaccuracies in the computation of
C(P) and “D(P) may distort the results badly if 7
is slowly varying. Often it is necessary to use double
precision for the computation of “D(F) even though
P is only given to six or eight digits.

The following table shows where the loss of signifi-
ant figures can occur.  The first column of table 12
defines the sequence P, the second column gives the
approximate size of the terms of 7 in the range that
the transformation is applied and the third column
gives the transformation used. The next four
columns give n, the size of the terms appearing in

Effect of lower order terms

CPy) l Py C2(Py) C3(Py) CH(Py)
. 8205 2. 695 —. 0719 2.711 2X10~4
4. 3071 1. 282 —. 00378 —. 0072 3X10-7
26. 673 —. 00014 . 0267 5X10-9

95.576 |- 5

the numerator, the actual value of the numerator
and the number of significant figures lost from 2.

Tarve 12.  Loss of significant figures

Trans- Size of Signif-

Sequence Size of | forma- n numerical | Numer- icant
terms tion terms ator figures

lost,
(1.96)n4-(.95)n_________| .1X10° 2 25 .01 .43X10~4 20
(.9)n+(.8)ncos (.1m)___| .4X10"! D 30 . 0002 .3X10-10 9
(.9)n+(.8)ncos (.1n) - .5X10-3 D 75 L2X10-0 | .2X10-2! 18
(.999)n+4- (.99 ________ 2 D all 10 10-18 19
(98)n+(.6)n+(4)n____ 1 D 15 1 10-11 11
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