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The difference between any eigenvector u" of a linear operator A and its Rayleigh-Ritz 
approximation w" is bounded in t erms of the differences between the eigen values Ai of A and 
their Rayleigh-Ritz upper bounds Ki . The bound for the difference between u" and W p 

approaches zero with K p- A". 

1. Introduction 

The most common method of approximating Lhe 
eigenvalues XI ::; X2 ::; •• • of a symmetriclinear oper­
ator A is the Rayleigh-Ritz method [1,5 ,19P This 
reduces an eigenvalue problem on a space of a large 
or even infinite number of dimensions to an eigen­
value problem on a space of relatively few dimensions. 

If the desired eigenvalues Xt are characterized as 
minima, the Rayleigh-Ritz approximations K t give 
upper bounds for them. 

Along with the upper bounds Kt for the eigenvalues 
the R ayleigh-Ritz method yields associated vectors 
W t . It is to be expected that these vectors approxi­
mate the eigenvectors of A in some sense. Further­
more, it is to be expected that the better the eigenvalue 
Aj is approximated by Kj, the better will be the 
approximation of W i to the corresponding eigen­
vector. 

Indeed, this is easily seen in the case of the first 
eigenvector. If the unit vector WI is expanded in 
terms ofthe normalized eigenvectors U j of A, we have 

wI=~ajUj , (1.1) 

~ai= l, (1.2) 

and 
~AiaI= KI ' (1.3) 

Subtracting Al times (l.2) from (l.3) and noting that 
A2 ::; A3::; . . . we find that 

(104) 

or equivalently 

(l.5) 

In general the Xi are unknown, and we must express 

I Figures in brackets indicate the literature references at the end of this paper. 

our results in terms of the K j and any lower bounds 
Xj for the Aj that may be available. Such bounds 
can be obtained by various methods (see for example 
[1 ,2,3,4,5,6,10,11,12,13,14,19,20,21 ,22,23 ,24,25,26]). 

If Xj~ }::j, the inequality (l.5) leads to 

(1.6) 

This inequality shows that if the maximum error 
KI - XI is small compared with the interval }:2-X I , the 
difference W I - U l is small in norm. The bound (1.6) 
is sharp in the sense that equali ty is attained when 
Aj=}:j and at= O for i>2. The inequality (1.6) is 
trivial for Kl ~X2 ' 

In this paper we generalize the bound (1.6). We 
give a bound for the norm of W p-U p in terms of the 
given bounds Kt and }: j . This bound is again sharp 
in the sen e that equality may be attained. The 
bound for (w p-up,w p-u p) is small if the maximum 
error Kp- }:p is small relative to both X p+!- Kp and 
X p- Kp_I' It becomes trivial if Kp~ XP+I or Kp_l ~ X p . 
The case p = l gives an improved but more compli­
cated version of (1.6) . 

If Ap is multiple eigenvalue, we can only expect 
Wp to approximate one of the associated eigenvectors. 
Hence if Ap lies near to several other eigenvalues we 
must expect W p to approximate not U p but a linear 
combination of the eigenvectors corresponding to 
the nearby eigenvalues. This approximation is 
established in section 3. 

It is possible to find a bound for (wp - u p,w p- u p) 

by determining to what extent W p satisfies the 
eigenvalue equation. Such bounds, which involve 
( AWp- KpW p,Awp- KpW p) have been found by several 
authors [12, 20, 23], Our bound, however, involves 
only the Kj and the lower bounds };i ' It should be 
particularly useful in the case of differential opera­
tors where the Rayleigh-Ritz trial functions may 
not be sufficiently differentiable to give a finite 
value of ( Awp ,Aw p) ' Our bounds are established 
by algebraic means for the case when A is an N X N 
matrix. They are independent of N. Consequent-
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ly, the bounds also hold for infinite-dimensional 
operators A whose first p eigenvalues and eigen­
vectors are approximated uniformly by those of a 
sequence A N of N X N matrices. This is certainly 
the case if A is completely continuons. It also 
holds under the weaker condition that A have p 
dis ere te eigen val ues defined by a minimum maxi­
mum principle. These must lie below any contin­
uous spectrum. Thus A may be a Schroedinger 
operator corresponding to both bound and unbound 
states. 

The fact that the eigenvalues Ai are stationary 
values of the Rayleigh quotient tends to make the 
approximation of the eigenvectors 'worse than that 
of the eigenvalues. In fact, the bound (2.41) shows 
that the square of the norm of the error Wp-U p is 
of the order Kp- A~. 

The errOl" bounds in sections 2 and 3 are in the 
sense of the norm. If A is a differential operator, 
its eigenvectors Ui arc functions. It is often of 
interest to approximate the value of the function at 
a particular point. An adaptation of the method 
of Diaz and Greenberg [7 , 9] which leads to such a 
pointwise approximation is presented in section 4. 

2 . Separated Eigenvalues 

Let A be an hermitian N X N matrix. It is a 
linear operator on Euclidean N-space. Let the 
usual scalar product between t wo vectors U and v 
on this spare be denoted by (u,v). 

Let the eigenvalues of A be AI::::; A2::::; ... ::::; AN. 
The corresponding eigenvectors are denoted by 
UI, ... ,UN so that the equations 

i = l , . .. , N (2.1) 

arc satisfied. The U i are normalized so that 

i ,j = l, ... , N. (2.2) 

Then (2.1) implies 

i,j= l , . . . , N. (2.3) 

We suppose that the Rayleigh-Ritz method 
[1, 5, 19] is applied to find upper bounds 

of unit length such that the }.i[ linear equations 

(AWa,VIi) = Ka(Wa,VIi) (3 = 1, ., J;£. (2.7) 

are satisfied . Then 

(Wa,WIi) = Oali 
and 

(2.8) 

(AWa,WIl) = KaOall a,{3 = l , ., J;£. (2.9) 

We assume that in addition to the upper bounds 
Ka we have determined some lower bounds}:. i such that 

i= l , ... , N. (2.10) 

This means that we have at least some idea of the 
degree of approximation of the Ka to the eigenvalues Aex 

We seek to determine from this degree of approxi­
mation of the K" to the eigenvalues the degree of ap­
proximation of a particular Rayleigh-Ritz eigenvector 
Wp to the eigenvector U p of A . 

W e assume that AP_I< Ap< AP+I and that the 
bounds Kp_I, Kp, );p, and );P+I are sufficiently good that 

(2.11 ) 
and 

(2.12) 

Our problem is the following : Given the .j\;[ vector 
WI , . .. , WAf satisfying (2.8), find the largest value 
of the deviation (wp-u p, wp-u p) of Wp from the pth 
normalized eigenvector of any matri.\: A satisfying 
the eq (2.9 ) and having eigenvalues Ai satisfying 
(2.10). 

If the eigenvalues Ai of A are given, A is completely 
specified by prescribing its normalized eigenvectors. 
These eigenvectors UI , . .. ,UN form a basis, so that 
the w" can be written as linear combinations of them. 
Let 

N 

w,,=~ a~ui 
i=1 

a = l , .. . ,M . (2.13) 

Since the U i satisfy (2.2) and (2.3), the eqs (2.8) 
and (2.9 ) become 

N 

~ a~a~= o"li 
.= 1 

(2.14) 

a = l, .. . ,}.i[ (2.4) and 

for the first M < N eigenvalues of A. This is done 
by choosing M linearly independent vectors 
VI , . . . , v}.[ and finding the roots K[::::; K2::::; • • • ::::; K,lf 

of the secular equation 

a ,{3 = l , ... , M. (2.5) 

Associated with each of the Ka is a linear combination 

M 

wa=~ C~VIi 
Ii = l 

(2.6) 

N 

>-= Aia~aJ= K"Oall 
1= 1 

a,{3= 1, ... , }.;£. (2.15) 

On the other hand, 

(2.16) 

If up satisfies (2.2 ) and (2.3 ), so does -Up. We 
choose t he sign to make a~ non-negative. Thus, our 
problem of maximizing (wp-u p, w p-up) is reduced 
to that of minimizing (a~)2 under the constraints 
(2.14), (2. 15), and (2. 10). 
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vVe firs t keep the eigenvalues Ai fixed and unequal. 
If a~ is the minimizing set of coefficients, we fmd by 
direct differentiation tha t the equations 

i= l , . . . , N (2.17) 

a= l , •. . , !l1[ 

must be satisfied. The T all and Sail are Lagrange mul­
t ipliers, and are symmetric: 

(2.18) 

.To solve the eg (2.1 ~ ), we multiply by a; and sum 
wI th respect to '/" Usmg (2.14) and (2.15) we find 
that 

(2.19) 

In terchanging a and 'Y and using (2.18), we find 

(2.20) 

In part:icular , Tay and Say vanish unless a= 'Y or either 
a or 'Y IS p . 

Letting a= 'Y in (2.19), we find 

(2.21) 

We subst it ute (2.20) and (2.21 ) in (2.17) to obtain 

and 

= 0, i= l , . . . , N . 

ar£p 
(2.22 ) 

(2.23) 

If the value a~ = 0 is compatible with the con­
. traints (2.14) and (2.15), the minimum value of (a~)2 
IS clearly zero . We suppose for the moment that this 
is not the case, so that 

a~ r£ o. (2.24) 

Then we can solve (2.23 ) with i = p for Spp in terms 
o~ th~ a~. We can also elinlinate Saa between (2.22) 
wIth ~=p and any other value of i to obtain 

a:apa~ (Ai- Kp) ('>\p-KIl) at (a") 2 

(Ap- Kp)(Aj-KIl) p fJ • 
(2.25) 

Substitu ting thi and Ithe value of Spp in (2.23) we 
obtain 

= 0, ir£p . (2.26) 

Suppose now tha t exactly L of the coefficients a~ 
are nonzero : 

for {3 = {31. {32 .... , {3L 

{31 < {32< ... < {3L' (2.27 ) 

By (2.24) on e of the {3v= p. The term in braces in 
(2.26) times the product of the (Aj-KIl) with /3vr£p 
is a polynomial of degree L in Ai' Hence it vanish e 
for at most L values of i . Consequently, a; r£ o for 
L ~L valu es of ir£p. 

From (2.22) it follows that a; = 0 implies Saaa~= O 
for all a. But Saa = O implies a~= O. H ence a; = O 
implies at = O. Thus our vector Wa split in to two 
subsets: Th e subset Sl consis ts of L or thonormal vec­
tors wf3l . ... , Wf3L (including w p ) havin g only com-

ponenLs in th e L+1 directions UtI .. . , Ut - +· The • I. 1 

subset S2 consis ts of lvI - L - l vector or thogonal 
to Up . 

It follows that L must be either L or L -l. In 
th e lat ter case, the L vector wllv in th e first set will 
be the eigenvectors Ut i ' . . . , UjL th emselves. In 
particular, Wp is Up so tha t the cOl'l'esponding maxi­
mum of (w p - u 11 • w 1I-u p ) is zero. Thi occurs if and 
only if K 1)= Ap • The more interestin g ca e is t.ha t in 
which 

(2.2 ) 

The term in the braces in (2.26) vanishes for 
i = i l.i2 .... , iL+l(i l < i2< .. . < iL+l) excep t when 
iv=p . This represen ts a set of L lin eal' equations in 
the L unknowns (a~ll ... ,( af3f) 2. It can b e solved 
explicitly to y ield 

(2.29) 

(This res ult can be checked by the Lagrange in ter­
polation formula [17] . A similar solution of a closely 
r elated equation was given by K. Loewner, :Math . 
Z . 38, 180- 181 (1934) .) 

We now let {3= {3~ in (2.25), multiply by a;, and 
sum. By (2.14) we have 

(2.30) 

Again, we can solve explicitly for the L unknowns 
(a;')2,iT r£p. Using (2.25) and (2.29), we find that 

(2.31) 
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The solution (2.31) formally satisfies the conditions 
(2.14), (2.15), and (2.17 ). (The square roots must 
be chosen so that a {3~: is (Ai.- K~J-l times a function 
of i. only times a function of (3v only. ) In order to 
be admissible, the coefficients must be real. It is 
easily seen that this is the case if and only if 

AIJ< K~I<At2< ... <K~L<A iLH' (2.32) 

The vectors w~ in the subset 8 2 are orthogonal to 
W~l ' • .. , W~L and Up. It follows from (2.31) that 
they are orthogonal to U i l • •.• , U tL+I ' This is pos­
sible if and only if to each i with i,t.i1 , ••• , i LH 
there corresponds a separate Kfj with {3,t.{3I , .. . , {3L 
such that K~ ;::: Ai. 

We now consider the possible minima of (a~) 2 . 
Choosing a particular set of {3v and i., we find from 
(2.31) tbat 

Because of (2.32) 

(Ap-K(3,) (Kp-A;J 

(Kp- K(3,) (Ap-Ai,) 

(2.33) 

(2.34) 

for iv> p or {3v<p . 
Thus, the right-band side of (2.33) is increased 

by dropping any pair Aiv, K~v. This means that its 
minimum will be attained when the sets i l • • • ., 

i L+1, {31, . . ., {3L are maximal with respect to the 
properties required of them. We further note that 
the right-hand side of (2 .33) is an increasing function 
of AiT for iT ,t. P and a decreasing function of K~. for 
/3,,t. p. 

Keeping these facts in mind, we construct the 
sets il . . . . , iL+I, /31, .. . , {3L which minimize 
(a:)2 for fixed unequal At as follows . 

Let 

(2.35) 

Let 

(2.36) 

Let 

(2.37) 

Then inductively, let 

(2.38) 

Because of (2.11 ) the set of {3v includes p. If p is 
not included in the i", we can easily construct a 
solution of the eqs (2.14) and (2.15) with a:=O. I 

To do this we define the (a~~)2 by (2.31). Then 
a:=(wp,up)= O. 

Conversely, if (2.24) is violated so that tbe mini­
mum of (a: )2 is zero , we can consider the problem of 
minimizing a coefficient (a~)2 with q< p under the 
constraints (2.14), (2.15) , and a;=O for some set of 
i< p includingp. Since Kp< Ap+l, not all tbe a~ can 
vanish. Therefore this minimum problem will have a 
non-zero solution for some q and some set of i5:p. 
The minimizing conditions again lead to the deter­
mination of sets i" and {3v by (2.35), (2 .36), (2.37), 
and (2.38). The integer p is included in the /3v but 
not in the i". 

Thus, a: ,t.O if and only if p is one of the i". It 1 

follows from the construction of the ia that this 
will be the case if and only if there is a K{3 such that 
Ap_I<K{3< Ap. This is assured by (2. 12) for any At 
satisfying (2.10). Condition (2. 12) is therefore 
n~c~ssary and sufficient for (a: )2 to have a nonzero 
mmnnum. 

The minimum value of (a:)2 is now given by 
(2.33). It is a continuous nondecreasing function 
of the eigenvalues Ai' Hence its minimunl with 
respect to the At satisfying (2.10) will occur for 
At=}:t. We may remove the assumption that the 
Ai are unequal by a limiting process. This will alter 
the inequalities in (2.37) and (2 .38) slightly. 

As we pointed out in the introduction, we can 
replace the matrix A by a symmetric operator on a 
Hilbert space. We need only assume that A has 
at least p discrete eigenvalues defined by a minimum 
maximum principle [1,5 ,1 9]. For then the first N 
eigenvalues of. A and their. corresponding eigen­
vectors are umformly approxImated by those of an 
!i' X N' matrix AN' for N' sufficiently large. If 
At i = 1, . . . ,N are lower bounds for the first N 
eigenvalues of A , there is an EN' which goes to zero 
as N ' --7oo such that }:i- EN' are lower bounds for 
tbe first N eigenvalues of AN" Also, }:N- EN' is a 
lower bound for the higher eigenvalues of AN'. 
We let N' --7r:t:J for fixed M and N. Using (2.33) 
and (2.34), we obtain the following theorem. 

THEOREM 1. Let KI5: K2:<:; . . . :<:; KJ>f be the 
Rayleigh-Ritz upper bounds for the first M of the 
eigenvalues Al :<:; A2:<:; . . . of a symmetric linear 
operator A . Let}:l:<:; ' . . :<:;}:N be lower bounds 
for the first N eigenvalues of A , N;:::M. 

Let 

Kp_I<~p<Kp< }:'P+I ' 

Define the numbers 
il<~< ... < i L+I. {31 < {32<'" < /3L by 

i l = l 

i2=min{ i l~i> KI } 

220 

(2.39) 



.81 = max{ i3 IKII ~ ~iZ } 

i'+1 = min {i l ~i33X j, < KII < }::j} 

.8,=max{i3 I KII~ }: ip+1 } (2.40) 

Then if Wp is the normalized Rayleigh-Ritz eigen­
vector corresponding to the bound Kp and Up is the 
normalized eigenvector oj A corresponding to the 
eigenvalue Ap, 

(Kp-~p) (Kllv -~,) } 
(Kp-KII,) (Ap-Ai,) 

(2.41) 

The right-hand side of this inequality approaches 
zero if either Kp approaches ~P+l or Kp-l approaches ~. 
It is near one if the error Kp-~p is small relative to 
the approximate s.e.acing }:iL+l- ~P and if the prod­
ucts of errors (Kp - ).. p) (KII, - }; i,) are small relative to 
the products of approximate spacings (Kp- KII.) (}::p- };I,) . 

If lower bounds }; j are not given for all the eigen­
values Aj. we can always use a lower bound for any 
particular eigenvalue as a lower bound for a higher 
eigenvalue. In particular, we can let Xj= Xv+l for i> p 
and "Xj= }:1 for i < p . If p> l , (2.39) requires that 
Kp_l<X p, Then L = 2, i1= 1, i31= p-1, i 2=i32=P, 
i a= p + 1. This leads to the simpler bound 

Even though this bound has fewer factors than (2.41), 
it is, in general, smaller. 

Forp= l we can take Xi= ~2 fori;:::2 . Then L = l, 
i1 = i31 = 1, i2=2, and (2.41) reduces to (1.6). 

Example. We apply the Rayleigh-Ritz method to 
the matrix 

A= [ ~ ; : ] 

o 1 23 

(2.43) 

using trial vectors with vanishing third component. 
This amounts to finding the eigenvalues and eigen­
vectors of the 2X 2 matrix obtained by striking out 
the third row and column of A . We obtain 

(2.44) 

with the corresponding vectors 

WI ",(~ (2+ 2//2, ~ (2_{2)1/2, 0) 

W2"'G(2- "/2//2,~(2+ ~2)1/2 , 0) (2.45) 

If the first two coordinate directions are :replaced 
by the WI and W2 directions, the matrix A ~.become 

Kl 0 _~'Cfi l 
A*= 0 

1 '''J 
(2.46) KZ - - K2 

-!. Kll /2 +"" 2: 2 

We now obtain lower bounds for1the 'eigenvalues 
by means of Hadamard's theorem iOn Jdeterminants 
[16] . 

(2.47) 

For X3 we usc the fact that the largest eigenvalue 
mu t exceed the largest diagonal element. Then 

(2.48) 

Sub tituting these values in (2.41 ) we find that 

(WI-Ul, WI-Ul) ~0.08025 , 

(W2-U2 , W2 - U2) ~0.09980. (2.49) 

In this problem one can, of course, determine the 
eigenvalues and the corresponding eigenvectors ex­
plicitly, We find that 

(WI- Ul , WI - Ul)= 0.000328 , 

(wz -uz, W2-UZ) = 0.002238 . (2.50) 

Thus, the error bounds (2.49 ) are a good deal larger 
than the errors themselves. 

Our error bounds depend upon the lower bounds }::j. 
These were chosen rather crudely and could be im­
proved in various ways (see, for example [5]) . In 
order to determine the effect of such an improvement, 
we replace the ~i by the eigenvalues Aj in (2.41 ). 
We then obtain the bounds 

(WI - Ul, WI - Ul) ~0.000330, 

(W2-U2, W2 - U2) ~0.002243 . 
(2.51) 
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These are very close to the actual values (2.50). 
The simpler bound (1.6) gives 

(WI- UI, wl-uI):::;0. 195136 

if the values (2.47) of }:t are used , and 

(WI- UI, WI - UI):::; 0.002364 

(2.52) 

(2.53 ) 

if they are replaced by the At themselves. In both 
cases we see that the bound (2.41) is significantly 
better than the simplified bound (1.6). 

3. Neighboring Eigenvalues 

The condition (2.39) implies that the eigenvalue Ap 
is simple. If this is not the case, the corresponding 
eigenvector Up is not uniquely defuled . In fact, if Ap 
has multiplicity m, Up may be any element of an 
m-space. If m> l , there will always be such a Up 
~nthogonal to W p , so that the minimum of (wp,u p ) 

IS zero. 
We must reformulate our problem. l iVe seek the 

minimum value of (Wp,Up)2 when Up is taken to be 
that elemen t of the m-space which best approximates 
Wp. This Up is the projection of Wp into the m-space 
of eigenvectors corresponding to Ap. 

The condition (2.39 ) implies not only that Ap is 
simple, but tha t our bounds Kp_I ' Kp, }:: p, and }::P+I are 
good enough to reveal its simplicity. That is, the 
error in our bounds is smaller than the separations 
between AP_ I' Ap , and AP+I' If this is not the case, 
we cannot distinguish between a simple and a mul­
tiple eigenvalue. 

Suppose now that the upper and lower bounds for 
Ap , Ap+l' .. . , Ap+m-l show these eigenvalues to lie 
close together. Suppose further that 

mmmla themselves are determined by (2.14) and 
(3.2). 

The same situation applies in the case under con­
sideration here. Necessary conditions for a maxi­

p+m-! 
mum of ~ (a;)2 are determined by the constraints 

p 

(2.14), (2.10), and (3 .2). 
Let Up be the unit vector in the direction of the 

projection of Wp into the space spanned by Up, ... , 

(3.3) 

Let Up+I, .. . , Up+m-l be other linear combinations of 
Up, ... , Up+m_1 such that Up, ... , Up+m-l are 
orthonormal. Let Ut=Ui for i~p, ... , p + m - 1 
and put 

(3 .4) 

Then by construction 

i=p + 1, .. . , p + m - 1 (3.5) 
and 

(3.6) 

1I10reove1', 

Thus, if we let 

i=p , ... , p + m - 1 

otherwise. (3.8) 

(3. 1) We have from (3.2 ) and (3.7) that 

so that Ap_l and Ap+m are known to lie away from the 
cluster of eigenvalues about Ap. Then, to our degree 
of approximation Ap behaves like an eigenvalue of 
multiplicity m. We ask how well Wp can be ap­
proximated by a linear combination of unit length 
of the eigenvectors Up, Up+l , • . • , Up+m-l ' 

This problem is equivalent to that of minimizing 
p+m-l 
~ (a;)2 under the constraints (2.14 ), (2.15), and 
p 

(2.10). By (2.20) we have raf3=saf3=O unless ex= (3 
or a or (3 = p. Moreover,ra p+ Kpsap= 0,raa+ Ka8aa= 0 
for ex~p. This means that we would obtain the 
same minimizing conditions by imposing only the 
constraints (2.14) with a= (3 or ex or (3 = p and the 
single constraint (2.15) with a= (3 = p. The latter 
may even be replaced by the inequality 

N 
.6 At(a!)2 :::; Kp. 
i=1 

(3.2 ) 

The other constraints (2.14) and (2.15) determine 
which local minima actually occur, but the local 

(3. 9) 

Since the Ui are orthonormal, (2.14) becomes 

(3.10) 

Our problem is thus reduced to minimizing (a~)2 
under the constraints (3.10), (3 .9), (2.10 ), and (3.5). 
The conditions for local minima are found to be as in 
section 2. However, the constraints (3 .5) together 
with the fact that K p+m-l<~p+m relegate the vectors 
Wp1 1, ..• , Wp+m-I to the set S2 orthogonal to Up. 
Furthermore, the conditions (3.5) eliminate the 
values i = p + 1, .. . , p+ m-1 from the i .. 

Thus we find the following theorem. 
THEOREM 2. L et KI:::; K2:::; . . . :::; KM be the Ray­

leigh-Ritz upper bounds for the first M eigenvalues 
AI:::; A2:::; . .. of an hermitian operator A. Let 
}:l:::; ... :::; }:N be lower bounds jar the first N?,M 
eigenvalues . For a certain p and m let 
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(3. 11 ) 

Define the numbers iI, 1:2 , . .. , iL+I, f3 I, ... , f3L 
by (2.40 ) with r p+l , •• . , >:'p+m-l eliminatedJ rom the 
set oj}.. ;, and Kp+I' ... , Kp+m- l eliminated j rom the set 
oj Ka. 

L et Wp be the Rayleigh-Ritz eigenvector that gives 
the bound Kp. Then there exists a lineal' combination oj 
unit length Up oj the eigenvectors Up, ... , 'Up+m-l oj A 
such that 

(3. 12) 

As in section 2 we obtain a simpler bu t a weaker 
inequality by putting I~= ~p+m for i > p + m and 
}::j= ~I for i<p when p> 1. 
This leads to 

(3. 13) 

For p = 1 we only have to put }.. i=~ p+m for i > p + m to 
ob tain 

(3. 14) 

By the same reasoning we can show tha t there is a 
linear combination up+q of Up, ... , Up+m- 1 tha t 
approximates WP+Q with O< q< m. We eliminate 
Kp, ... , Kp+m-I except for Kp+Q £rOln the Ka and 
}::P+ I' ... , ~ p+m-I from the ~ i in forming the sets 
f3 v and i~. Then we obtain the inequalities (3.12) 
and (3.13) with Wp replaced by Wp+Q , Up by UP+q, and 
Kp by K;+q. 

EXAMPLE. 'Ve consider the vibrations of a uni­
form beam which is free at its end s and which lies on 
an elastic foundation with small linearly varying 
elastic constant. It satisfies the differen tial equation 

(3. 15) 

wi th the end conditions 

U" (0) = u"/ (0) = u" (1) = u" / (1) = 0 (3.16) 

The constant € is positive and sniall . 'Ve in trodu ce 
the scalar produ ct 

(u , v)= i l u vdx (3.17) 

and def-il1e the symmetric opera tor A by the bilinear 
form 

(Au, v)= i l [U"V" + €uv]dx (3. 18) 

If the eigen values AI'::; A2'::; . . . of A are defin ed as 
the successive minima of the Rayleigh quotient 
(A v, v) /(v, v), they coin cide wi th tho e of the problem 
(3.15), (3. 16). 

We are con cerned with the two lowest eigenvalu es. 
For €= o t hey both vanish . Conesponding eigen­
fun ctions arc 1 and 6- I / 2 (1- 2x). vVe u e these as 
t rial fun ctions in thc Rayleigh-Ri tz m ethod . We 
obtain 

wi th:!the corresponding vectors 

WI = 2- 1/2 [1-6- I / 2 (1- 2x) ] 

w2 = 2- 1/2[1 +6-I / 2(1-2x) ] 

(3. 19) 

(3 .20) 

To ob tain lower bounds ~i we no te t ha t (Av, v) lis 
greater for €> O than for €= o. Thus, "the Ai are 
bounded below by the eigenvalu es Ai of the problem 
(3 .15), (3 .16 ) with €= o. These can be found ex­
plicitly. We find 

(3.21) 

Condition (2.3 9) is violated so that we cannot say 
how well WI approximates UI without improving our 
bounds. However , we can use theoreln 2 to sta te 
that th ere are linear combinations ul and U2 of UI 

and U2 such that 

i l (WI-U I )2dx '::; 2[1 - {1- 0.0005912E}I/2], 

i l (W2-U2)2dx '::; 2[1 - {1- 0.0014070E}1/2]. 

(3.22) 

Thus we have shown th at WI and W2 approximate 
linear combinations of UI and U2 in the mean square 
sense. 

vVhen, as in this example, A is unbounded, it is 
often more desirable to have a bound for the devia­
tion (A (wp-up). w p-up) rather than (wp-u p,w p-up) 
In order to obtain such a bound we note that the 
quadratic form (A v,v) + c(v,v) is positive definite for 
C>-XI. 
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Hence we can define a new scalar product 

[U,V] = (Au,v) +c(u,v). (3.23) 
A 

We now define the operator A by 
A 

[Au,v]=-(u,V) . (3.24) 
A 

Then the eigenvectors of A are multiples of those of 
A, and its eigenvalues are - (Ai+C) - I. Applying 
theorems 1 and 2 to A and expressing the results in 

A 

terms of A, we find the following. 
THEOREM 3. Under the hypotheses oj theorem 2 there 

exists jor any constant c> - ~I a linear combination ii oj 
Up,. ., Up+m-I such that 

(3.25) 

When the multiplicity m= 1, ii is a multiple of Up 
and we have the analog of theorem 1. 

Applying theorem 3 to the example (3. 15), (3. 16), 
we obtain the inequality 

50' U"2+ (C+ EX) (WI-,fr)2]dx:::; 

2[c+ 1.704E- CI/2{ c+ 1.704E]!/2{ 1- 0.0005912E]!/2] 
(3.27) 

for any c ~ O. (The function u depends upon c, how­
ever.) 

4 . Pointwise Bounds for Eigenfunctions 

When A is a differential operator, theorems 1 and 
3 give bounds for the mean square deviation of the 
approximate eigenfunction Wp from the exact eigen­
function Up. It is often of interest to determine the 
value of Up at a particular point. 

In certain cases a pointwise bound for the devia­
tion IWp-uiat a point comes directly from the bound 
(3 .26) of theorem 3. For example, we show that for 
any 0 :::;.\:::;1 

IWIW-uW I2 :::;G(U) .f [(WI-U) " 2+C(WI-ii)2]dx, 

(4.1) 
where 

X [sinh b cosh b-sin b cos b 

+ 2 sinh b cosh b(I .,.- 2~) - 2 sin b cos b ( 1 - 2~) 

+ (sinh b cos b+ sin p cosh b) sin b (I 

-2~) sinh b ( 1 -2~) + (sinh b cos b 
'. 

-sin b cosh b) cos b (1-2~)cosh b ( 1 -2~) ] 

( 1 )1/4 
b= - c 

4 
(4.2) 

(See, for example, [8]). Thus, (3.27) gives a bound 
for IWIW -uWI. 

In the case of partial differential operators such a 
bound mayor m ay not exist. If i t exists, it is diffi­
cult to find. 

However, one can use the following adaptation of 
the method of Diaz and Greenberg [7,9] )cf. [15,18]) . 
For the sak e of simplicity we present it only for the 
c~se of a special second order operator in two dimen­
SlOns. 

Consider the eigenvalue problem 

- Llu+ r(x, y)u= Aq(X,y)u (4.3) 

on a two-dimensional domain D with smooth bound­
ary O. H ere Ll is the usual Laplace operator. The 
function q is positive and r is non-negative, and both 
are continuous in the closure of D . The boundary 0 
consist of two parts 01 and O2 , and we have boundary 
conditions 

u = O on 01 

au 
on +k(x, y)u= O 

We define the scalar product 

(u, v) = II quvdxdy 
D 

k~O. (4.4) 

(4.5) 

on the linear vector space of functions which are 
piecewise continuously differentiable in D and vanish 
on 01, 

Let Up be the normalized eigenfunction correspond­
ing to the eigenvalue Ap, and let Wp be the function 
corresponding to a Rayleigh-Ritz upper bound 
Kp for Ap. Theorem 1 gives a bound for the deviation 
in norm (wp-u p, wp - u p). 

We wish to approximate the value of Up at an 
interior point of D, which we choose as the origin of 
our coordinate system. We use the fact that Up 
satisfies the differential equation (4.3) with A= Ap and 
the boundary conditions (4.4) . Let r ex, y) be a 
parametrix for the differential equation (4.3) satisfy­
ing (4.4). That is, 

r ex, y)=-(47r) -1 10g (X2+ y2) + <t> (x, v), (4.6) 

where <t> is any twice continuously differentiable 
function such that 
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.or +kr= O on 

on 01 

on O2 (4.7) 

Multiplying (4.3) by r and integrating by part , 
we find that 

Up(O, 0)=11 Up[ - M + (r - Apq)r]dxdy. (4.8 
D 

Replacing Up by Wp and Ap by Kp on the right, we 
obtain the value 

W;(O, 0)= If Wp[-M+(r -Kpq) r]dxcly (4.9) 
D 

which can be computed by quaclratures. Using 
Schwarz's inequality, the normalization of Up, and 
the triangle inequality, we find 

(4.10) 

Thus, the bound (2.41) for (wp-up, wp-up) together 
with the bound Kp - X p for Kp - Ap provides explicit 
upper and lower bounds for u p(O, 0). These bounds 
lie close together if the errol' bounds (2.41) and Kp-"5:p 
are small. 

The same method applies to the function Up of 
theorem 2. If 

p+m-l 
up= ~ aiu t, 

p 

we find from (4.8) that 

(4.11) 

up(O, o) =~aiII Ut[- Ll<t>+(r - Atq) r]clxcly . 
D 

(4.12) 

Hence if we again define the approximate value w; by 
(4.9), we obtain 

/w;(O, O)-up(O, 0)1::; max{ Kp-}::p, Kp+m-l - Kp} 

(4.13) 

This inequality together with theorem 2 
upper and lower bounds for up(O, 0). 

gives 
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