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The difference between any eigenvector u, of a linear operator A and its Rayleigh-Ritz
approximation w, is bounded in terms of the differences between the eigenvalues X\; of A and

their Rayleigh-Ritz upper bounds «;.
approaches zero with x,—N\,.

1. Introduction

The most common method of approximating the
eigenvalues A <N < . . . of asymmetric linear oper-
ator A is the Rayleigh-Ritz method [1,5,19]. This
reduces an eigenvalue problem on a space of a large
or even infinite number of dimensions to an eigen-
value problem on a space of relatively few dimensions.

If the desired eigenvalues \; are characterized as
minima, the Rayleigh-Rifz approximations «, give
upper bounds for them.

Along with the upper bounds «; for the eigenvalues
the Rayleigh-Ritz method yields associated vectors
w;. It 1s to be expected that these vectors approxi-
mate the eigenvectors of A in some sense. Further-
more, it is to be expected that the better the eigenvalue
N\: is approximated by k; the better will be the
approximation of w,; to the corresponding eigen-
vector.

Indeed, this is easily seen in the case of the first
eigenvector. If the unit vector w, is expanded in
terms of the normalized eigenvectors u; of A, we have

Wy =2 AU, (1.1)
and
> Nai=x. (1.3)
Subtracting \; times (1.2) from (1.3) and noting that
ANa<N:< ... we find that
)\O—Kl
2> 7=
al__)\2_>\1 (1.4)
or equivalently
1 P K1—\
[1-5 =) [ 21-220 5)

In general the N\, are unknown, and we must express

1 Figures in brackets indicate the literature references at the end of this paper.

The bound for the difference between u, and w,

our results in terms of the x; and any lower bounds

X; for the \; that may be available. Such bounds

can be obtained by various methods (see for example

[1,2,3,4,5,6,10,11,12,13,14,19,20,21,22,23 24,25, 26]).
If N\;>X,, the inequality (1.5) leads to

! 2 =X
[1"—5 (wl—ul,wl—u]):l 21—;\% )\-1-. (16)

2 N1

This inequality shows that if the maximum error
Kk —Ag 18 small compared with the interval X,—X;, the
difference w,—u; 1s small in norm. The bound (1.6)
is sharp in the sense that equality is attained when
N=X\; and a,=0 for 7>>2. The inequality (1.6) is
trivial for x; >N\,.

In this paper we generalize the bound (1.6). We
give a bound for the norm of w,—u, in terms of the
given bounds x; and X;. This bound is again sharp
in the sense that equality may be attained. The
bound for (w,—u,w,—u,) is small if the maximum
error k,—\, 1s small relative to both X,,;—«, and
Np—Kp_1. 1t becomes trivial if x,>X,; or k,_; >X,.
The case p=1 gives an improved but more compli-
cated version of (1.6).

If N, is multiple eigenvalue, we can only expect
w, to approximate one of the associated eigenvectors.
Hence 1f N\, lies near to several other eigenvalues we
must expect w, to approximate not %, but a linear
combination of the eigenvectors corresponding to
the mnearby eigenvalues. This approximation is
established in section 3.

It is possible to find a bound for (w,—u,w,—u,)
by determining to what extent w, satisfies the
eigenvalue equation. Such bounds, which involve
(Aw,—k,w, Aw,—r,w,) have been found by several
authors [12, 20, 23]. Our bound, however, involves
only the k;, and the lower bounds X,. It should be
particularly useful in the case of differential opera-
tors where the Rayleigh-Ritz trial functions may
not be sufficiently differentiable to give a finite
value of (Aw, Aw,). Our bounds are established
by algebraic means for the case when A4 is an N XN
matrix. They are independent of N. Consequent-
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ly, the bounds also hold for infinite-dimensional
operators A whose first p eigenvalues and eigen-
vectors are approximated uniformly by those of a
sequence Ay of NXN matrices. This is certainly
the case if A is completely continuous. It also
holds under the weaker condition that A have p
discrete eigenvalues defined by a minimum maxi-
mum principle. These must lie below any contin-
uous spectrum. Thus A may be a Schroedinger
operator corresponding to both bound and unbound
states.

The fact that the eigenvalues \; are stationary
values of the Rayleigh quotient tends to make the
approximation of the eigenvectors worse than that
of the eigenvalues. In fact, the bound (2.41) shows
that the square of the norm of the error w,—u, is
of the order k,—N\,.

The error bounds in sections 2 and 3 are in the
sense of the norm. If A is a differential operator,
its eigenvectors u; are functions. It is often of
interest to approximate the value of the funection at
a particular point. An adaptation of the method
of Diaz and Greenberg [7, 9] which leads to such a
pointwise approximation is presented in section 4.

2. Separated Eigenvalues

Let A be an hermitian N XN matrix. It is a
linear operator on KEuclidean N-space. Let the
usual scalar product between two vectors u and »
on this space be denoted by (u,2).

Let the eigenvalues of A be N <N< .. . <\
The corresponding eigenvectors are denoted by

Uy, . . .y so that the equations
Aui=Nu, i=1,.. ., N (2.1)
are satisfied. The u; are normalized so that
(ws u;) =04 df=llg o o o Ak (2.2)
Then (2.1) implies
(Awiu;) =Nidyy j=1,.. ., N. (2.3)
We suppose that the Rayleigh-Ritz method
[1, 5, 19] is applied to find upper bounds
Ka = Na a=1,.. M (2.4)

for the first M< N eigenvalues of A. This is done

by choosing M linearly independent vectors
vy, . . ., oy and finding the roots ki <k, < . . . <ky
of the secular equation

det [(Avq vp) — k(04,08)]=0 afB=1,. .., M (2.5)

Associated with each of the «, i1s a linear combination

M
We=" O (2.6)
B=1

of unit length such that the M linear equations

(Awayvs) =ka(Wayvg)  B=1, . . ., M. (2.7)
are satisfied. Then
(WeayWs) = bas (2.8)
and
(AW, Wp) = Kadag af=1, . .. M. (2.9)

We assume that in addition to the upper bounds
ke we have determined some lower bounds \; such that

This means that we have at least some idea of the
degree of approximation of the «, to the eigenvalues A,
We seek to determine from this degree of approxi-
mation of the x, to the eigenvalues the degree of ap-
proximation of a particular Rayleigh-Ritz eigenvector
w, to the eigenvector u, of A.
We assume that A1 <N p<Np41 and  that the

bounds «, ;, &, N\, and X\, are sufficiently good that

"p<5‘-p+1 (2.11)

and
Kp-12 Npe (2.12)

Our problem is the following: Given the M vectors
wy . . ., wy satisfying (2.8), find the largest value
of the deviation (w,—wu, w,—u,) of w, from the pth
normalized eigenvector of any matrix A satisfying
the eq (2.9) and having eigenvalues \; satisfying
(2.10).

If the eigenvalues \; of A are given, A is completely
specified by prescribing its normalized eigenvectors.
These eigenvectors u;, . . . , uy form a basis, so that
the w, can be written as linear combinations of them.
Let

.

W=7 aiu; a=1,..., M. (2.13)
i=1

Since the u; satisfy (2.2) and (2.3), the eqs (2.8)
and (2.9) become

N
> =0 (2.14)
i=1
and
N
SO N@ias=rkadesg  af=1,... M. (2.15)
i=1
On the other hand,
(Wp—Up, Wy—Up)=2(1—ad). (2.16)

If u, satisfies (2.2) and (2.3), so does —u,. We
choose the sign to make @} non-negative. Thus, our
problem of maximizing (w,—wu, w,—u,) is reduced
to that of minimizing (a%)* under the constraints
(2.14), (2.15), and (2.10).
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We first keep the eigenvalues \, fixed and unequal.
If @' is the minimizing set of coeflicients, we find by
direct differentiation that the equations

M

argé,-,,éaz,—{—ﬁz,‘l (rag+NiSap)ap=0 i=1,...,N (2.17)
M

&y

g=lly o o

must be satisfied. The 7,5 and s.s are Lagrange mul-
tipliers, and are symmetric:

728 —lia0 (2.18)

Sap=Sga-

To solve the eq (2.17), we multiply by @} and sum
with respect to 7. Using (2.14) and (2.15) we find
that

BP0yt ay T KySay=0. (2.19)

Interchanging « and y and using (2.18), we find
Pay=— (Ka—Ky) "k p@B[aBd0,— A28, ],
Say— (Ke—Ky)B 05[A2 00— 02075 aFy. (2.20)
In particular, 7,, and s,, vanish unless a=~ or either

a or vy is p.
Letting a=v in (2.19), we find

].aa+ KaSaa=— — (ag )26011)-
We substitute (2.20) and (2.21) in (2.17) to obtain

aFp
(2.22)

(K,D_Ka) (xi_Ka)'*aaaL+ ()\1_ Kp)“gagazl; :0
and

o Ni—k ;
a:(sz'p+ [ ()\i—l\'l,>'9,,,,-' (a;)zJ(l; _ Z T a’ﬁ“ﬁ"’;ﬂ
B#p Kg—Kp

—0, i=1,...,N. (2.23)
If the value a7 =0 is compatible with the con-
straints (2.14) and (2.15), the minimum value of (a?)?
is clearly zero. We suppose for the moment that this
is not the case, so that
a3 #0. (2.24)
Then we can solve (2.23) with i=p for s,, in terms
of the az. We can also eliminate suq between (2.22)
with 7=p and any other value of i to obtain

_(\i—ky) (\y—kp)

o ()\I’_Kﬂ) ()‘i_"ﬂ) (2.25)

arajay a, (a3)*.

Substituting this and ithe value of s,, in (2.23) we
obtain

M . M )\p—Kﬁ .
NGRS Ol )

al { Ni—kyp
el e
Ny—Kp

—0, i#p. (2.26)
Suppose now that exactly L of the coefficients a}
are nONZero:

5231, 62, Y Bz
BBl . . . <Bi.

By (2.24) one of the g,=p. The term in braces in
(2.26) times the product of the (\;—xs,) with B, #p
is a polynomial of degree Z in X;. Hence it vanishes
for at most L values of 7. Consequently, a, #0 for
L <L values of i1 #p.

From (2.22) it follows that a} =0 implies seate=0
for all a. But see=0 implies a2=0. Hence a,=0
implies aj, —=0. Thus our vectors wa split into two
subsets: The subset S; consists of L orthonormal vec-
tors ws,, . . ., wg, (including w,) having only com-
ponents in the L1 directions Uy, o+ o Wiy The

subset S, consists of M—TL—1 vectors orthogonal
to u,.

It follows that L mast be either L or L—1. In
the latter case, the L vectors ws, in the first set will
be the eigenvectors w;, . . . , Ui, themselves. In
particular, w, is u, so that the corresponding maxi-
mum of (w,—u, w,—u,)is zero. This occurs if and
only if x,=\,. The more interesting case is that in
which

aj #0 for
(2.27)

L=L.

The term in the braces in (2.26) vanishes for
=002, . .« + n@<0< . . . <iz41) except when
i,—p. This represents a set of L linear equations m

. D \2 > n Y 7O
the L unknowns (a3)* . . ., (agr)2. It can be solved

explicitly to yield

L\ — o I 0 )\,
(ag,)’= 10 M8, Up K M 2.9
Bu e e iy (2.29)
vFEp ﬁ“ By i,7%p & '

(This result can be checked by the Lagrange inter-
polation formula [17]. A similar solution of a closely
related equation was given by K. Loewner, Math.
7. 38, 180181 (1934).)

We now let f=28, in (2.25), multiply by a;, and

sum. By (2.14) we have
5 2T P )=
ir7p Ni,— K8, @ Ny —Kgu P T OB p=1,..., T
(2.30)

Again, we can solve explicitly for the L unknowns
(@)%, #p. Using (2.25) and (2.29), we find that

Ni,— K8, Lﬁ'l K3, — N

L

at )= II iy

(a5.) e e (2.31)
vFEu P V g% 7

hy
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The solution (2.31) formally satisfies the conditions
(2.14), (2.15), and (2.17). (The square roots must
be chosen so that a Bl is (N, —kg,) " times a function
of 7, only times a function of B, only.) In order to
be admissible, the coefficients must be real. It is
easily seen that this is the case if and only if

)\11<K31<)\12< L <K3L<)\,—L+1. (2.32)

The vectors ws in the subset S, are orthogonal to
wg,, ., wg, and u,. It follows from (2.31) that
they are orthogonal to u;,, y Wiy, This is pos-
sible if and only if to each 4 with 75£7; S D
there corresponds a separate kg with 38, . . ., Bz
such that xg>N\,.

We now consider the possible minima of (a}).
Choosing a particular set of 8, and 7,, we find from
(2.31) that

=5,

)\ —K K
(a2)?= Co] (2.33)
B, ;sp Kp—Kg, i,p )‘P_)‘ir

Because of (2.32)

(Ap— kg,) (kp—N;,) _
(kp—*s,) Mo—Ns,)

for 7,>p or B,<p.

Thus, the rlght-hand side of (2.33) is increased
by droppmg any pair \;, kg,. This means that its
minimum will be attained when the sets 7;, .
Tr41, B, ., Bz are maximal with respect to the
properties required of them. We further note that
the rlght-hand side of (2.33) is an increasing function
of N\, for 7,#p and a decreasing function of &z, for
B, #

ngplng these facts in mind, we construct the
sets 1, . 11, By, - BL which minimize
(az)? for fixed unequal N\ as follows.

_ (kp—Np) (ks,—Ni,)
(kp—x8,) (Ap—N,)

<1 (2.34)

Let
=1l (2.35)
Let
tp=min {7|HB D N <kg<N;}. (2.36)
Let
Bi=max{B|ksg<Ny,}. (2.37)
Then inductively, let
Ty =min{[Hxs D Ny, k<N, }, (2.38)

ﬁ,.:nmx{B|:<g<)\,-y+1 }.

Because of (2.11) the set of 8, includes p. If p is
not included in the 7,, we can easily construct a
solution of the eqs (2.14) and (2.15) with a2=0.
To do this we define the (az7)* by (2.31). Then
ap (wm ) O

Conversely, if (2.24) 1s violated so that the mini-
mum of (a3)* is zero, we can consider the problem of
minimizing a coefficient (af)? Wlth ¢<p under the
constraints (2.14), (2.15), and a:=0 for some set of
1< p including p. Since K,,<>\p+1, not all the a2 can
vanish. Therefore this minimum problem will have a
non-zero solution for some ¢ and some set of 7<p.
The minimizing conditions again lead to the deter-
mination of sets 4, and g8, by (2.35), (2.36), (2.37),
and (2.38). The integer p is included in the B, but
not in the 7,.

Thus, a2 0 if and only if p is one of the 7, It
follows from the construction of the 4, that this
will be the case if and only if there is a «z such that
Np1<kg<N,. This is assured by (2.12) for any X\,
satisfying (2.10). Condition (2.12) is therefore
necessary and sufficient for (a2)* to have a nonzero
minimum.

The minimum value of (a%), is now given by
(2.33). It is a continuous nondecreasing function
of the eigenvalues X\;,. Hence its minimum with
respect to the \; satisfying (2.10) will occur for
N:=X\;. We may remove the assumption that the
\; are unequal by a limiting process. This will alter
the inequalities in (2.37) and (2.38) slightly.

As we pointed out in the introduction, we can
replace the matrix A by a symmetric operator on a
Hilbert space. We need only assume that A has
at least p discrete eigenvalues defined by a minimum
maximum principle [1,5,19]. For then the first N
eigenvalues of A and their corresponding eigen-
vectors are uniformly approximated by those of an
N’ XN’ matrix Ay for N’ sufficiently large. If
Noi=1, . , N are lower bounds for the first N
eigenvalues of A, there is an ey» which goes to zero
as N’—o such that N\;—ey are lower _lbounds for
the first N eigenvalues of Ay.. Also, \y—ey+ is a
lower bound for the higher eigenvalues of Ay:.
We let N'—« for fixed M and N. Using (2.33)
and (2.34), we obtain the following theorem.

TarorEM 1. Let xi<,< . . . <ky be the
Rayleigh-Ritz upper bounds for the first M of the
etgenvalues M <A< . . . of a symmetric linear
operator A. Let < . . . <Ny be lower bounds
for the first N eigenvalues of A, N> M.

Let

Kﬂ—1<xp<’<p<)rp+1-

Deﬁne the numbers
n<ln<l . .. <izp,

7:1:1

(2.39)

Bl<62< LTS <ﬁL by

dy=min{i]X>x}
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Bi=max{B|ks < X,-z}
1= min {i[ TN, g Ny}

B,=max Blks <X, (2.40)

v+1}

Then if w, is the normalized Rayleigh-Ritz eigen-
vector corresponding to the bound x, and w, is the
normalized eigenvector of A corresponding to the
ergenvalue N,

1 2
l:l ) (W,—uyp, wp_up):l

> 1__Kp—)\p_ fr (K,,—X.,,) (’iﬁjv"‘zi,)
N | g2 (ko—*s,) (As—Ds,)

(2.41)

The right-hand side of this inequality approaches
zero if either k, approaches X, O Kk, approaches \,.
It is near one if the error x,—N\, is small relative to

the approximate spacing \;, 1My and if the prod-
ucts of errors (k,—X\,) (Kﬂy_-xi") are small relative to
the products of approximatespacings (x ,,—Kﬁy)(f,,—f, )

If lower bounds X, are not given for all the eigen-
values \;, we can always use a lower bound for any
particular eigenvalue as a lower bound for a higher
eigenvalue. In particular, we can let Ni=N\pq fori>p
and \;=\; for 1<p. If p>1, (2.39) requires that
kp-1<Ap. Then L=2, i,=1, Bi=p—1, ta=F=p,
13=p-+1. This leads to the simpler bound

1 2
[1 —3 (wWp—u, w,,~u,,)]

K —X (K —X ) (K _1—-)_\.1)}
> 1~_”*’=—}{1— e 2.42
—{ )\p+1—)\p (Kp_Kp—l) (Xp—)\l) ( )
Even though this bound has fewer factors than (2.41),
it is, in general, smaller.
For p=1 we can take \;=N\; for:>2. Then L=1,
n=p=1, 1,=2, and (2.41) reduces to (1.6).

Ezample. We apply the Rayleigh-Ritz method to
the matrix

11 0
A=|1 3 1 (2.43)
0 1 23

using trial vectors with vanishing third component.
This amounts to finding the eigenvalues and eigen-
vectors of the 22 matrix obtained by striking out
the third row and column of A. We obtain

Ki=2—~2, kg=2++2 (2.44)

with the corresponding vectors
1 =1/2 1
i~ (5242, 5 2—2),0)
(520" 5@ 4D%0)  (245)

If the first two coordinate directions are Vreplaced
by the w, and w, directions, the matrix A ‘becomes

- 1)
K1 0 _5 Kll/'
A*=| 0 o —%sz (2.46)
L oy 1 2 o
L 2K1 2K2 23 y

We now obtain lower bounds forJthe eigenvalues
by means of Hadamard’s theorem ion {determinants
[16].

- 1
2
M=Kk1—5 K11/ )

[}

(2.47)

For \; we use the fact that the largest eigenvalue
must exceed the largest diagonal element. Then

N=23. (2.48)

Substituting these values in (2.41) we find that

(wy—uy, wy—u,) <0.08025,

(wy—uy, wy—1u3) <0.09980. (2.49)

In this problem one can, of course, determine the
eigenvalues and the corresponding eigenvectors ex-
plicitly. We find that

(wy—uy, wy—u,) =0.000328,

(wg'_/bb’ ?,U2'_'U/2):0.002238 (2.50)
Thus, the error bounds (2.49) are a good deal larger
than the errors themselves. _

Our error bounds depend upon the lower bounds \;.
These were chosen rather crudely and could be im-
proved in various ways (see, for exarpple [51). In
order to determine the effect of such an improvement,
we replace the X\, by the eigenvalues \; in (2.41).
We then obtain the bounds

(wy—uy, wy—uy) <0.000330,
(2.51)
(wy—, Wy—1uy) <0.002243.
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These are very close to the actual values (2.50).
The simpler bound (1.6) gives

(w;—uy, wy—u,) <0.195136 (2.52)
if the values (2.47) of X, are used, and

(wl_/u'l, wl_ul> 30.002364 (2.53)
if they are replaced by the X\; themselves. In both
cases we see that the bound (2.41) is significantly
better than the simplified bound (1.6).

3. Neighboring Eigenvalues

The condition (2.39) implies that the eigenvalue \,
is simple. If this is not the case, the corresponding
eigenvector u, is not uniquely defined. In fact, if X,
has multiplicity m, %, may be any element of an
m-space. If m >1, there will always be such a u,
orthogonal to w,, so that the minimum of (w,,u,)
is zero.

We must reformulate our problem. We seek the
minimum value of (w,u,)* when u, is taken to be
that element of the m-space which best approximates
w,. 'This u, is the projection of w, into the m-space
of eigenvectors corresponding to \,.

The condition (2.39) implies not only that X\, is
simple, but that our bounds «,_y, «,, N,, and X, are
good enough to reveal its simplicity. That 1s, the
error in our bounds is smaller than the separations
between X, ;, \,, and \,,;. If this is not the case,
we cannot distinguish between a simple and a mul-
tiple eigenvalue.

Suppose now that the upper and lower bounds for
Aoy Nty - - o Npimo show these eigenvalues to lie
close together. Suppose further that

KII—I) <<)Tp) Kp+7n~l <<)‘p+m

so that X\, ; and \,.,, are known to lie away from the
cluster of eigenvalues about \,. Then, to our degree
of approximation X\, behaves like an eigenvalue of
multiplicity m. We ask how well w, can be ap-
proximated by a linear combination of unit length
of the eigenvectors u,, w1, . . . Upip_r.

This problem is equivalent to that of minimizing
pt+m—1

23

V4

(2.10). By (2.20) we have 7,5=s.5=0 unless a=p
or e or B=p. Moreover,r,,+«k482p=0, Teat kKaSaa=0
for azp. This means that we would obtain the
same minimizing conditions by imposing only the
constraints (2.14) with a=g or « or f=p and the
single constraint (2.15) with a=g=p. The latter
may even be replaced by the inequality

(3.1)

(a})? under the constraints (2.14), (2.15), and

N i\ 9
20 Mil@;)*< k.

i=

(3.2)

—

The other constraints (2.14) and (2.15) determine
which local minima actually occur, but the local

minima themselves are determined by (2.14) and
(3.2).
The same situation applies in the case under con-

sideration here. Necessary conditions for a maxi-
p+m—1 X . )
mum of >3 (a})?are determined by the constraints

)
(2.14), (2.10), and (3.2).

Let @, be the unit vector in the direction of the
projection of w, into the space spanned by u,, . . .,

71/p+n1—1:
-~ p+m—1 . —1/2 p+m—1
ul,={ Dy (a;)“’} > au,. (3.3)
i=p )
Let @,yy, . . ., @ysm be other linear combinations of
Wpy « - o5 Wprm—y such that &, ..., Upin; are
orthonormal. Let @;=u; for i=p, . . ., p+m—1
and put
o= (Wa, ). (3.4)
Then by construction
=0 i=p+1, ..., p+tm—1 (3.5)
and
PO ptm—1 N .
(@3)*= Z[‘,} (a;)* (3.6)
1=
Moreover,
N - p—1 I . N iy _
2N(@5)* > 2ONi(@;) N, (@) + 25M:(@,)%. (3.7)
i=1 1 p+m
Thus, if we let
. r)\,, 1=p, . . , p+m—1
ki:{
L N otherwise. (3.8)
We have from (3.2) and (3.7) that
N .
SN <k (3.9
i
Since the #; are orthonormal, (2.14) becomes
SLEL =8, (3.10)

Our problem is thus reduced to minimizing (az)?
under the constraints (3.10), (3.9), (2.10), and (3.5).
The conditions for local minima are found to be as in
section 2.  However, the constraints (3.5) together

with the fact that x,.,, ;<\, relegate the vectors
Wyity - + o Wyrmy to the set S, orthogonal to ,.
Furthermore, the conditions (3.5) eliminate the
values i=p+1, . . ., p+m—1 from the %,.

Thus we find the following theorem.

TaEOREM 2. Let 1, <i< . . . <ky be the Ray-
leigh-Ritz wpper bounds for the first M eigenvalues

MINS L. of an hermitian  operator A. Let
M L <\y be lower bounds for the first N>M
eigenvalues.  For a certain p and m let
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"'11—1<7\p:
Kp+m—1<)‘p+m (311)
Define the numbers iy, sy . . . i1, By - - - B

by (2.4_10) with TH,, C ')-\',,+,,,_1 eliminated from the
set of Ny and K,y . . .y Kpimor eliminated from the set
Of Ke.

Let w, be the Rayleigh-Ritz eigenvector that gives
the bound «,.  Then there exists a linear combination of
unit length @, of the eigenvectors w,, . . ., "Wy, 0of A

such that
[l_g(w Uy, W p)] { l'—_—._—}
Nip 1= Ny
: { | =N (=)
v=1 (Kp_

By7#p KB,,) (Xp‘—)‘f,,)

(3.12)

As in section 2 we obtain a simpler but a weaker
inequality by putting Ne=Xpim for i>p+m and
A=A\, for i<<p when p>1.

This leads to

2 .
[1 _l(w”—ﬁp.wp—zlp)] 2{ e )\’i. }
2 )\Ii+m_)\p

{ = EKP—)\I))"(K,)_l—)\]>

—kp-1) A—N1)
For p=1 we only have to put,-):i:;\ﬁm forv >p-+m to
obtain

(3.13)

)\1'

[1—»(101 U, Wy — ul)]>1-—r (3.14)

)\m-H

By the same reasoning we can show that there is a
linear combination @,., of u,, vy Upim—1 that
approximates w,,, with 0<¢<m. We eliminate
o Kpim-1 except for x,., from the k. and
Nptty -« o Npim1 from the N\; in forming the sets
B, and i,. Then we obtain the inequalities (3.12)
and (3.13) with w, replaced by w,,, @, by i,,,, and
kp DY Kpiq

ExamperLe. We consider the vibrations of a uni-
form beam which is free at its ends and which lies on
an elastic foundation with small linearly varying
elastic constant. It satisfies the differential equation

Kpy - -

w4 eru=2>u 0<a<1 (3.15)
with the end conditions
w”’(0)=u"""0)=u""(1)=u"""(1)=0 (3.16)

The constant e is positive and small.  We introduce

the scalar product

(u, v):L1 uvdz (3.17)

and define the symmetric operator A by the bilinear
form

(Au, r):J'][u”z'”—}—ew]dx (3.18)

0

If the eigenvalues A\ <N < . . . of A are defined as
the successive minima of the Rayleigh quotient
(Av, v)/ (v, »), they coincide with those of The problem
(3.15), (3. 1())

We alo concerned with the two lowest eigenvalues.
For e=0 they both vanish. (‘oump(m(hn(r eigen-
functions are 1 and 6 '2(1—2z). We use these as

trial functions in the Rayleigh-Ritz method. We
obtain
a=5(1—61)e
l —-1/2 .
x=5(1+67"), (3.19)
withthe corresponding vectors
;= 2-1/2[1 —6112(1—22)]
w,=2"12[1+6"12(1—2z)] (3.20)

To obtain lower bounds \; we note that (Aw, »)'is
greater for e >0 than for e=0. Thus, ithe \; are
bounded below by the eigenvalues \; of the problem
(3.15), (3.16) with e=0. These can be found ex-
plicitly.  We find

(3.21)

Condition (2.39) is violated so that we cannot say
how well w; approximates %, without improving our
bounds. However, we can use theorem 2 to state
that there are llll(‘(lI‘ combinations @, and i, of wu,
and u, such that

1
f (wy— @) *dw <2[1— {1—0.0005912¢} /2],
0

1
f (wy— i) *da <2[1 — {1—0.0014070€} /2],
0
(3.22)

Thus we have shown that w, and w, approximate
linear combinations of %, and u, in the mean square
sense.

When, as in this example, A is unbounded, it is
often more desirable to have a bound for the devia-
tion (A(w,—1ii,) w,—ii,) rather than (w,—@,,w,—@,)
In order to obtam such a bound we note that the
quadratic form (Aw,v) +¢(v,0) is positive definite for

c>—N.
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Hence we can define a new scalar product

[u,0]= (Au,v) +c(u,w). (3.23)
We now define the operator A by
[Au,v] =— (u,v). (3.24)

Then the eigenvectors of A are multiples of those of
A, and its eigenvalues are —(\;+¢)”'. Applying
theorems 1 and 2 to A and expressing the results in
terms of A, we find the following.

TarorEM 3. Under the hypotheses of theorem 2 there
exists for any constant ¢>—X\, a linear combination u of
Up, o o oy Uprm—y Such that

(At,i) +e(ii,) =« , ¢ (3.25)

and
1 . . N . 2
[K,,—%— c-|—§ { (Aw,— Au,w,—u) + ¢ (w,—u,w,—1u) }:I
> (to®,+o {1-22 ) o

Kp—
i1 M J o=t
{1

)
—X —N
(Kp p) (K_B,, A ,) }(3.26)
(Kp_KB,,) ()\p— )\i,,)

When the multiplicity m=1, % is a multiple of u,
and we have the analog of theorem 1.

Applying theorem 3 to the example (3.15), (3.16),
we obtain the inequality

fo "W (o -ed) (wy— )l <

2e+1.704e—c/2{c+1.704€}V2{1—0.0005912¢}1/2]
(3.27)

for any ¢>0. (The function % depends upon ¢, how-
ever.)

4. Pointwise Bounds for Eigenfunctions

When A is a differential operator, theorems 1 and
3 give bounds for the mean square deviation of the
approximate eigenfunction w, from the exact eigen-
function u,. It is often of interest to determine the
value of %, at a particular point.

In certain cases a pointwise bound for the devia-
tion |w,—|at a point comes directly from the bound
(3.26) of theorem 3. For example, we show that for
any 0<¢<1

(8 — 2 (®) < G f e e
(4.1)

where

G55 :% b-3[sinh?b—sin?h]~!

X [sinh & cosh b—sin b cos b

+2 sinh b cosh b(1—2¢) —2 sin b cos b (1—2£)
+(sinh b cos b-sin b cosh b) sin b (1

—2¢) sinh b(1—2¢) + (sinh b cos b

—sin b cosh b) cos b(1—2¢)cosh b(1—2¢)]

1 1/4
b=<z C>
(See, for example, [8]).
for fw(®—u(®.

In the case of partial differential operators such a
bound may or may not exist. If it exists, it is diffi-
cult to find.

However, one can use the following adaptation of
the method of Diaz and Greenberg [7,9] )cf. [15,18]).
For the sake of simplicity we present it only for the
case of a special second order operator in two dimen-
sions.

Consider the eigenvalue problem

(4.2)

Thus, (3.27) gives a bound

—Autr(r,y)u=Ng(z,y)u (4.3)
on a two-dimensional domain 1) with smooth bound-
ary (. Here A is the usual Laplace operator. The
function ¢ is positive and r is non-negative, and both
are continuous in the closure of ). The boundary ('
consist of two parts C; and (5 and we have boundary
conditions

u=0 on ()
ou
EL—I—Ic(x,y)u:O on (), k>0. (4.4)
We define the scalar product
(4.5)

(u, v) :ff quudady
D

on the linear vector space of functions which are
pieccgwise continuously differentiable in D) and vanish
on Cj.

Let u, be the normalized eigenfunction correspond-
ing to the eigenvalue \,, and let w, be the function
corresponding to a Rayleigh-Ritz upper bound
kp for X,.  Theorem 1 gives a bound for the deviation
in norm (W,—uy, Wpy—Up).

We wish to approximate the value of u, at an
interior point of ), which we choose as the origin of
our coordinate system. We use the fact that wu,
satisfies the differential equation (4.3) with A=\, and
the boundary conditions (4.4). Let T'(z, y) be a
parametrix for the differential equation (4.3) satisfy-
ing (4.4). That is,

I'(z, y)=—(4m) "' log (@*+y) +o(z, v),

where ¢ is any twice continuously differentiable
function such that

(4.6)
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=} on ()

<%—I—lcl‘=0 on (4.7)

Multiplying (4.3) by T and integrating by parts,
we find that

4,(0, 0)= f f wp[—Ad+ (r—N,q) Tldedy. (4.8
D

Replacing u, by w, and X\, by «, on the right, we
obtain the value

) o>=ff wyl—Ab+ (r— ) Tldady  (4.9)
D

which can be computed by quadratures. Using
Schwarz's inequality, the normalization of u,, and
the triangle inequality, we find

(’U):(O, 0)_u1)(0; O)I S (Kp—>\,,) (F; P)I/z

+ (wzr_um wp_up)”2

{ffq‘l[—mwr(r—x,,q)rmmy}.w (4.10)
D

Thus, the bound (2.41) for (w,—u,, w,—u,) together
with the bound «,—X\, for k,—X\, provides explicit
upper and lower bounds for u,(0, 0). These bounds

lie close together if the error bounds (2.41) and x,—X\,
are small.

The same method applies to the function i, of
theorem 2. If

(4.11)

we find from (4.8) that

(0, 0) =330 | [ wl—20-+ (r—Na) ey
! (4.12)

Hence if we again define the approximate value w} by
(4.9), we obtain

lw:(o; 0)_7212(0; O)IS maX{Kp_")‘p: "zz+7n—l_"p}

(P: F)U2+ (wp—am Wy— ap)lm

{Jf ¢ [—Ag+ (r—k,pg) TVdrdy }”2. (4.13)
D

This inequality together with theorem 2 gives
upper and lower bounds for #%,(0, 0).
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