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Experiments are made with the Markov chain presented by the children’s game of

Chutes and Ladders.

Statistics, such as the average length of play, are computed on the
IBM 704 from 2! simulated plays of the game.

These Monte Carlo results are then com-

pared with the “exact solution” obtained by powering the matrix of transition probabilities.
Convergence is shown to obey the familiar “N-12" Jaw,

1. Introduction

Since Monte Carlo methods are generally applied
to problems that are too difficult for other types of
analysis there is seldom opportunity to compare
their results with “exact solutions.” 1In this paper
experiments are described with the Markov chain
presented by the children’s game ol Chutes and
Ladders.! In particular, the calculation of the aver-
age length L of a play of this game is considered.
An exact value for L is found according to Markov
chain theory. The Monte Carlo calculation for L
involves 2 simulated plays of the game. Further-
more, the probabilities of being in a given state by
a fixed number of throws are computed theoretically
and experimentally.

It is shown that well-known theorems of statistics
imply that the Monte Carlo results should converge
to the true solutions by “N *” laws. Numerical
values are shown to follow these laws.  All work was
carried out on the IBM 704 computer.

2. Description of the Game

First the game of Chutes and Ladders is described
in detail. The game is considered to be played in its
solitaire form. The game involves a playing piece,
one die, and a playing board which has squares
numbered from 1 to 100. Certain pairs of these 100
squares are connected by “chutes” and others are
connected by “ladders.”  The purpose of the chutes
is to delay the game by forcing the player to return
to the square at the bottom of a chute if he should
land on the square at its top. On the other hand, the
ladders speed up the game by permitting a player to
advance directly from the square at the bottom of a
ladder to the square at its top, and thus bypass the
squares in between. There are 10 chutes connecting
the pairs of numbered squares (16,6), (47,26), (49,11),
(56,53), (62,19), (64,60), (87,24), (93,73), (95.75).
and (98,78). However, nine ladders connect the
squares (1,38), (4,14), (9,31), (21,42), (28,84),
(36,44), (51,67), (71,91), and (80,100).

1 Copyright Milton-Bradley Co.

Since the playing piece can never remain at either
the top of a chute or the bottom of a ladder, there
are only 81 squares at which it can stop.

The playing piece is off the board at the start of
the game and the player tosses the die so as to deter-
mine a number from 1 to 6. He then moves his
playing piece through the same number of squares as
the number on the die.  Should his playing piece stop
at the bottom of a ladder he must immediately move
to the top of the ladder. He then repeats the throw
of the die and moves accordingly. If at any time
helands at the top of a chute he must proceed directly
to its bottom before the next die toss. The game is
concluded when the playing piece reaches square 100.
The board actually has two winning positions,
since there is a ladder from square 80 to square 100.
One requirement is that square 100 be reached by an
exact throw of the die.

3. Theoretical Solution

The game can be interpreted as a finite Markov
chain with 82 states. These states are indexed by
1=0, 1, . . ., 81, where the state =0 corresponds
to the starting position and the state 7=81 corre-
sponds to the playing piece being at square 100. All
squares except those at the top of a chute or the
bottom of a ladder have a corresponding state in
the chain.

Let X;(n), =0, 1, . . ., 81 represent the prob-
ability of being in state 7 after n throws of the die.
Then X;(0)=1 and X;(n)=0 for = >0. Also,
81
> Xi(n)=1 for every n>0. Let p,; be the condi-
=0
tional probability of moving from square 7 to square 7
on one die toss whenever square 7 1s occupied. We
see immediately that

Prob of state
7 on 7 tosses

s1 [ Prob of transition
>l from state 7 to

‘ Prob of state z]. (3.1)
i=0 state 7 on one toss

on n— 1 tosses
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In other words, the elements X,(n) satisfy the
relations

81 0<5<81
X;n)=2p,;X.(n—1), (3.2)
=0 =1l 2.5
0, 1<i<81
where X,;(0)= If we let X(n) be a
=)

row vector whose components are X;(n) we can
write (3.2) in the form

X(m)=X(n—1)P=X(0)P" 3.3)

where X(0) is the vector whose components are

X0(0), X;(0), . . ., X5(0) and P*is the nth power of

Poos,  Pory

P:

- Pogst

Psi,0,  Psiiy oy DPsisi

The matrix elements p,; will be called the transition
probabilities; certain of them are given in table 1.

We now consider the average length, L, of the
game. This may be computed from the expression

I:ﬁln[xgl @)— X1 (n—1)], (3.4)

where the term Xy (n)— Xg(n—1) represents the
probability of reaching the final square on die toss
number 7.

An alternative expression which can be used for
computing L is given as follows. First introduce the
truncated matrix 7, formed by crossing out both the
last row and the last column of P. Then form the

matrix
T={I—Pp™ (3.5)

TaBLE 1. Partial listing of matrix elements p;;

0 1 2 3 4 5 6 7 8 9 10 11 12 13
0 1/6 1/6 1/6 1/6 1/6
1 1/6 1/6 1/6 1/6 1/6 1/6
2 1/6 1/6 1/6 1/6 1/6
3 1/6 1/6 1/6 1/6 1/6
4 1/6 1/6 1/6 1/6 1/6
5 1,6 1/6 1/6 1/6 1/6
6 1/6 1/6 1/6 1/6 1/6
7 1/6 1/6 1/6 1/6 1/6 1/6
8 1/6 1/6 1/6 1/6 1/6 1/6
9 1/6 1/6 1/6 1/6 1/6
10 1/6 1/6 1/6 1/6
11 1/6 1/6 1/6
12 1/6 1/6
13
14
1
66
67
68
69
70
71
72
73
74
75
76
i
78
79
80
81

14.:7. 69 70 71 72 73 74 75 76 77 78 79 80 81

1/6
1/6

1/6
1/6
1/6
1/6

1/6
1/6
1/6
1/6
1/6

1/6
1/6
1/6

1/6
1/6
1/6

1/6
1/2

1/6 1/6
1/6 1/6
1/6 1/6
5/6 1/(15
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with elements 7%;. It is shown on p. 329 of Kemeny,
Snell, and Thompson ? that L is given by

_ 80
LZETM’ (3.6)
j=

which is simply the sum of the first row of the matrix
=]

Epo=L

Equation (3.3) shows that a direct numerical
solution by successive matrix vector multiplications
can be used to calculate the vectors X(n). This
solution may not be feasible for full matrices or for
chains with a large number of states, since powering
the matrix may be subject to space and time limita-
tions and roundoff error. However, for Chutes
and Ladders only 476 of the 6,724 transition prob-
abilities do not vanish. The X(n) were easily cal-
culated on the IBM computer by taking the sums in
(3.2) over the nonvanishing elements. The time
required for each matrix vector multiplication was
about 2 seec. To illustrate the results we have
presented the vectors X(7) and X(31) in table 2.
The vector X (7) is of interest since the computations
showed that Xg(n)=0 for n< 7, so that the game
cannot be completed in fewer than seven throws; the
vector X (31) 1s of interest since X (31) has also
been computed by Monte Carlo.

TaBLE 2. The vectors X (7) and X (31)

i Xi(7) Xi(31) i Xi(7) Xi(31)
0|0 0 41 . 15936 X101 . 62209X10-2
1|0 0 42 . 88735 X102 . 370651072
2|0 0 43 . 16175 X101 . 74137X102
30 0 44 . 95950 X102 . 42890 X102
4 . 19740 X101 . 32552102 45 | .79733X10~2 . 37599X102
5| .47725X10-2 . 56622X10-3 46 [ .71266X10-2 . 33331 X102
6| .60942X10-2 . 66476103 47 | .81697X10-? . 39130 X102
7| .76982X10-2 . 78046 X103 48 | .78589X10-2 . 39497 X102
8| .28607X10-1 . 81893 X102 49 | .92057X10-2 . 73498 X102
9| .14518X10-! . 23394 X102 50 | .50654X10-2 . 38812X102

10 | . 13064X10-1 . 21801 X102 51 .40509X10-2 . 39027 X102

11 . 14489 X101 . 24607X10-2 52 | .20898X10-2 . 33210102

12| .16036X10-! . 27729X10-2 53 | .12610X10-2 . 32115102

13 | . 17811X10-1 . 31194X10-2 54 . 12867 X101 . 74863 X102

14 . 17300 X101 . 22388 X102 55 | .21219X10-2 . 31170102

15| .22630X10-! . 61242102 56 | .24970X10-2 . 36590 X102

16 | .21066X10-! . 20082102 57 | .27328X10~2 . 36162X102

17 | .19726X10-1 . 25041 X102 58 | .31579X10-2 . 36672X10-2

18 | . 24366X10-1 . 28399102 59 | .71766X1072 . 11658 X101

19 | .30696X10-1 . 12958 X101 60 | .26578X10-2 . 44668 X102

20 . 26285X10-1 . 47659 X102 61 . 55870 X102 . 12502 X101

21 . 50694 X101 . 12747X10-! 62| .25184X102 . 62322 X102

22 | .27156X10-! . 62357X10-2 63| .21960X10-2 . 66853 X102

23 | .26149X10-! . 68824 X102 64 . 30328 X102 . 14594 X107

24 . 24306 X101 . 75654102 65 . 18754 X102 . 97370X102

25 . 20653 X101 . 74122 X102 66 . 82519103 . 86279X10-2

26 | .22534X10-L .70915X10-2 67 . 42867X10-3 . 79559 X102

27 | .18558X10-! . 61091 X102 68 | .26792X10-3 . 82531 X102

28 | .17693X10-1 . 60876 X102 69 | .30950X10-! . 15841 X101

29 | .20294X10-1 . 71449 X102 70 | .42081X10-2 . 87403 X102

30 . 16547 X101 . 58783 X102 71 .47404 X102 . 85657 X102

31 . 14025X10-1 . 56122X10~2 72| 539051072 . 85535 X102

32 | .12767X10-1 . 53557X10~2 73| .61050X10- . 86556 X102

33 | .11956X10-1 . 52252102 74 . 68837102 . 87243 X102

34| .11335X10-! . 50757X102 75| .67873X10-2 . 11733 X101

35 . 33790 X101 . 77028 X102 76 . 38437 X102 . 80086 X102

36 | .17929X10-! . 60554 X102 77| .35044X10-2 . 79118 X102

37 | .38334X10-1 . 13278 X101 78 | .24934X10-2 . 96411 X102

38 . 22394 X101 . 74177X10~2 79 . 16932102 . 13428 X101

39 . 23827X101 L T7759X10-2 80 .41795X10-3 . 34892 X101

40 . 23309 X101 . 73372X10-2 81 . 15111 X102 . 48004

2J. Kemeny, J. Snell, and G. Thompson, An introduction to finite mathe-
matics, (Prentice-Hall, Inc., New York, N.Y., 1957).

The number L was computed from eq (3.5) and
gave

L=39.22 (3.7)
as the average length of the game. The same result
was obtained by summing the series in (3.6). The
machine computing time was 12 min for the former
calculation and 15 min for the latter.

4. Simulations

The random element in the game of Chutes and
Ladders arises from the toss of a die at each move.
This was simulated in our work by employing the
pseudo-random number generator of Taussky and

Todd ®. That is, a sequence of pseudo-random num-
bers t,, t,, , where 0<¢,<1, were generated by
the rules

41 =2
et ; Ty } (41)
7341=>5", (mod 2%), r,=1.

The unit interval was divided into six equal sub-
intervals and the result of the jth die throw was iden-
tified with the subinterval (first, second, . . ., sixth)
in which ¢, fell. The game was then played N times
on the calculator. The total number of throws
necessary to play these N games was recorded as
> 1Ly, where L; denotes the length of each game.
The average length of the game was then computed
as (1/N)>3%-11L,.  Furthermore, the fraction of these
games which finished in 31 or less throws was com-
puted. For N=2" the computing time was about

45 min. The results of these calculations are given
in table 3.
TarrLe 3. Results of the Monte Carlo calculations
N Fraction of
N % Z L; games
| finished by
31 throws
37. 469 . 56250
36. 969 . 57813
36.117 . 55469
39. 480 . 46484
38.701 49414
39. 521 47168
39.032 . 49072
39. 288 47974
39. 469 47693
39. 420 . 47406
39. 224 . 48004

5. Convergence

~ We first show how (1/N YS N T, should converge to
L=39.22. We introduce the distribution function
Jn)=Xg () — X5 (m—1). (5.1)

3 0. Taussky and J. Todd, Symposium on Monte Carlo methods (John Wiley
& Sons, New York, N.Y., 1956).
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The mean of f(n) is simply the average length of the
game L as given by eq (3.4). Furthermore, the
standard deviation for the distribution function f(n)
is given by

U—Z (n—Ly[Xa()—Xa(n—1)].  (5.2)

The value of ¢ for Chutes and Ladders was calculated

according to (5.2) with £=39.224 and the known
values of Xg(n) —Xq(m—1). We found ¢=25.222,

Let L,, L,, . .. Ly be regarded as a random
sample of size N drawn from the population with
distribution f(n) where the moment generating func-
tion of f(n) exists. It is well known * that even
though 7(n) is not normallv distributed, the “sample
mean”’ 1/N>Y.,L; has a populatlon distribution
which applo‘lches a normal distribution with mean

T and standard deviation ¢/4/N as N becomes infinite.
Hence the probability is approximately .95 that the

average length of play computed from the first N

simulations lies in an interval centered at L with
length 40/ N. This bound involves ¢, which has
been computed in the case of Chutes and Ladders.

In figure 1 the theoretical values of L and o are
used to plot the interval (L—2¢/y N, L+20/4/N) as
a function of N. The values of (1/N)> Y.L are also
plotted and it is seen that they lie within our confi-
dence interval.

O MONTE CARLO VALUE

AVERAGE NUMBER OF THROWS

341 ;
- o
= — LE—— {025,222 N
30l VN Jd
30 L 1 ! ! 1 ! ! I

26 27 28 29 210 ol 212 213 14
N (NUMBER OF GAMES PLAYED)

Ficure 1. Convergence to 7 by “N~12 [quw.”

Now consider the probability of completing the
game by a specified number of moves, say 31. If
=X (31), then the first N simulations can be re-
garded as N Bernoulli trials for which the probability
of success in a single trial is p. The probability of
exactly v successes is given by the binomial distribu-
tion

4 W, Feller, An introduction to probﬁbxhty theory and its applications (John
Wiley & Sons, New York, N.Y.,

N!

TNSP AP (p=Xu(E), 0<<N).

(5.3)

For large NV, however, the fraction »/N of successes
is approximately normally distributed with mean
p and standard deviation +p(1—p)/N. Approxi-
mately 95 percent of the area under this normal
curve lies in the interval

p— ‘-’\p( )<A< +~\1’(1 p)

N /N (5.4)

and at least 95 percent lies in the larger interval
L X<pt = 5.5
‘“—/K—,<< <P+\W (5.5)

Thus p can be estimated from »/N, as is illustrated in
figure 2.
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Fi1GUure 2. Convergence to Xs1(31) by “N-12 law.”

6. Existence of the Moments of f(n)

In the previous section it was assumed that the
moments > 2 n [ Xg (n) — Xg(n—1)] exist for all &>
1. If we expand X(n) in terms of the characteristic
values of the matrix P (for example see Montroll,’®
p- 419) it follows that these moments will exist if P
has A=1 as the only eigenvalue with [\[=1. How-
ever, our Markov chain has one absorbing state
which can be reached from any other state. The
probability of reaching this absorbing state is inde-
pendent of the initial state; but, this is a necessary
and sufficient condition (see Gantmacher,® p. 93) that

5 E. Montroll, Markov chains, Weiner integrals, and quantum theory, Comm.
Pure Appl. Math. 5, 419 (1952).

6 F. Gantmacher, The theory of matrices, IT (Chelsea Press, New York, N.Y.,
1959).
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there exist only one eigenvalue with magnitude 1.
Thus, the moments exist; also, the average length of
the game can be defined by eq (3.6).

7. Concluding Remarks

The Monte Carlo calculations are in agreement
with the theoretical results obtained from the matrix

calculations, and the convergence according to the
“NTV27 Jaws is evident from figures 1 and 2. It is
worth noting that the “N~"?” convergence implies
that if an additional significant figure is desired in a
Monte Carlo calculation the computing machine
time requirements are increased by a factor of 100.

(Paper 64B4-36)
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