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Magnetic Polarizability of a Short Right Circular
Conducting Cylinder"
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The magnetic polarizability tensor of a short right circular conducting cylinder is calcu-
lated in the principal axes system with a uniform quasi-static but nonpenetrating applied
field. One of the two distinet tensor components is derived from results already obtained in
connection with the electric polarizability of short conducting cylinders. The other is calcu-
lated to an accuracy of four to five significant figures for cylinders with radius to half-length
ratios of 14, %4, 1, 2, and 4. These results, when combined with the corresponding results for
the electric polarizability, are applicable to the problem of calculating scattering from eylin-
ders and to the design of artificial dispersive media.

1. Introduction

This article considers the problem of finding the magnetic polarizability tensor 8, of a
short, that is, noninfinite in length, right circular conducting cylinder under the assumption
of negligible field penetration. The latter condition can be realized easily with available con-
ducting materials and fields which; although time varying, have wavelengths long compared
with eylinder dimensions and can therefore be regarded as quasi-static. The approach of the
present article is parallel to that employed earlier [1]? by the author for finding the electric
polarizability of short conducting cylinders.

The magnetic polarizability tensor relates the induced magnetic dipole moment m; to the
inducing field B; according to the equation

77?/1-:6”1;]', (1)

with the cylinder situated in free space. The centered coordinate system of principal axes
used in [1], in which the z-axis coincides with the axis of rotational symmetry, is also employed
here. In this system, the equal transverse components 3,, and 8,, are denoted 3,, and the longi-
tudinal component 3.. is denoted 3,;. In agreement with other conventions of [1], @ represents
the radius of the cylinder; b, the half-length; and ¢, the half-diagonal or distance from center to
edge. Rationalized M.K.S. units are used throughout.

The method deseribed has been used successfully for calculating 8,, for cylinders with a/b
ratios of ¥, %, 1,2, and 4. For the calculation of 8;; the following relation, proved in appendix
A, is invoked:

Lay,
#oﬁzz='—é707 (2)

where «,, is the transverse electric polarizability treated in [1]. It is interesting that eq. (2)
is valid not only for circular ecylinders but for all conducting solids of revolution. Both 8,
and B, are negative, indicating that an artificial medium composed of short cylinder elements
arranged in a lattice will be diamagnetic.

In the transverse case, where no simple relationship such as (2) is known to exist, the prob-

1 This invited paper is based upon a portion of a thesis which has been accepted by the faculty of the California Institute of Technology in
partial fulfillment of the requirements for the degree of Doctor of Philosophy.

2 University of California, Riverside.

3 Figures in brackets indicate the literature references at the end of this paper.

199



lem which presents itself is that of finding, in the external space, a static magnetic field which
has no normal component at the surface of the cylinder and which reduces to a uniform field at
infinity. With such a field there is associated physically a surface current density j on the cylin-
der and a field free condition in the interior. This surface current is related to the field values
at the surface by:

#Oj:enXB’ (3)

where e, is the outward normal, and 1t gives rise to the induced magnetic dipole moment:
1 .
m=—fr><_]ds- (4)
2J s

As with the corresponding problem involving electric polarizability, there is no known coordi-
nate system in which a short cylinder can be treated by the conventional method of separating
Laplace’s equation and a different method, involving arbitrarily good approximations to the
current distribution function, must be employed.

In a manner analogous to that of [1], let the cylinder be regarded merely as a geometrical
construct to which the surface current distribution is firmly affixed. If the uniform (applied)
component of the magnetic field is subtracted, the remaining field will be that due to the cur-
rent system on the cylinder acting alone; it will be characterized by a dipole-like external field
and a perfectly uniform internal field which is equal and opposite to the applied field. The prob-
lem may therefore be restated in terms of finding, on a finite cylindrical surface with closed
plane ends, a surface current distribution which, when acting alone, generates a uniform mag-
netic field in the interior. The technique employed here makes use of this viewpoint and con-
sists in setting up, on the surface, a current density function which is completely determined
by a finite number of parameters, then solving for the values of these parameters so as to obtain
maximal uniformity of the current field or, alternatively, maximal cancellation of the applied
field, within.

The research reported here, like that related to the electric polarizability, was performed
under the direction of Prof. W. R. Smythe. The author is indebted to him for many valuable
discussions and to the personnel of the California Institute of Technology Computing Center
for their cooperation.

2. The Transverse Problem

In this problem, let a uniform magnetic field of magnitude B be applied in the positive
y-direction. The induced surface current density j may be regarded as equal to J& where £ is
the thickness of an infinitesmal surface layer in which the current is confined and J is the
value of the conventional current density vector averaged over the thickness of this layer.
In the quasi-static case, J is solenoidal and can be regarded as the curl of an equivalent aver-
aged magnetization M which is also confined to the infinitesmal surface layer and which is
normal to the surface at all points. On the side of the cylinder, let

ko (fp)sine, 5)
and on the upper end,
IJ’OMZE_ 'G :
—g — (p/a)sin > (6)

where /' and G are dimensionless functions as yet to be determined. The configuration just
described constitutes a nonuniform magnetic shell, that is a magnetic shell [2, p. 261] associated
with a distributed current system.
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Evidently the surface currents on the side are given by

ﬂ(l.//'ZS_ (2
~jTHT(Jb) Ccos ¢, v
fij].;is:—% F’(z/b)sin ¢, v

where the prime denotes differentiation with respect to the dimensionless argument z/b. The
surface currents on the upper end are

/‘_ﬂéﬂ:_%G(p/a») cos ¢; i
L{‘]J%:G'(P/a)sin ¢ v

The current distribution on the lower end is equal and opposite to that on the upper end.
Typical forms for the functions involved in eqs (7) through (10) are illustrated in figure 1; a
sketch of the actual lines of current flow is presented in figure 2.

G(p/a)
i z
f, ———————
_A ,D/O
I
F(z/b) (a/p)G(p/a)
—>p/a y
-(a/b)F'(z/b) G'(p/a)
z/b p/a
I I g
Ficure 1. Typical forms for the functions describing the equiv- FicUre 2. Skelch of the current system.

alent magnetic shell and the current system.

The asymptotic behavior of current and field near the edge of the cylinder is determined
by the fact that, locally, the edge resembies a configuration consisting of two infinite perfectly
conducting planes intersecting at right angles with the field restricted to the outer (larger) of
the two angular domains. Such a configuration is a familiar one in two-dimensional potential
theory. In the case at hand, two mutually perpendicular components of magnetic field are
distinguished: (@) the component which is everywhere parallel to the edge, and (b) the com-
ponent which bends around the edge. Each of these field components has associated with it
a surface current obeying eq (3). The component of magnetic field parallel to the edge is
locally uniform in the outer space and is of no further interest in the present discussion. The
surface value of the component which bends around the edge, however, increases as the edge
is approached and is in fact proportional to /7% where [ is the perpendicular distance from
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the edge to the surface point in question. This dependence, which is the same as that of the
electrostatic charge density on a similar freely charged configuration, is obtained by means of
the Schwarz-Christoffel transformation. The associated component of surface current is, of
course, parallel to the edge and everywhere proportional to the field. On the cylinder, then,
the ¢-components of current, and hence the functions /7 and G’ must be asymptotic to con-
stants times /7' as / tends to zero. This, in turn, imposes certain requirements upon F and
G, Quantitatively,

F(z/b) ~Ci+Cy(b—2)%3 as z—b; (11)
G(pja) ~C5—Cy(a—p)*®  as p—a; (12)

@ —; 2 -
-—514 (z/b)~7}a(,2(b—z) Le as  z—b; (13)
, 2 _ :
G (p/a)'\'f;a(]‘l(a—p) WE as  p—a. (14)

It is seen that two edge conditions, C5=0C; and ;= (), must be satisfied. The former of these
insures continuity of current flow across the edge of the cylinder, the latter that the ¢ com-
ponents on side and end match one another as both tend to infinity at the edge.

The functions /' and G are represented by finite weighted sums involving the unknown
coefficients £y, f,n, ¢, and g,, and the y,, functions defined in [1]. Note that the parity para-
meters are chosen so as to make /' even and @ odd and that the parameter which controls the
singularity is given the value 2/3.

Thus,
[ Nl -1 2
fb+ Z,fnz‘//m<§’0’§’5>’ ' Zl S b;
I’W(Z/b):4 m=0 (l 5)
o, 12>,
and
[, Nl - 2
,(]b_+ Zglrt¢lrl<lyl’.—’_> PSa’
G(p/a)=< a  m=0 3a (16)
L 0 p >a.
The constant terms
- /1 Z _
~f[;:‘fzﬂp(;<§70}0}5>} (l l)
gb(%:gbi((] s 1 :0:3): (1 8)

are called the “basic” terms as in [1]. Together they constitute a very simple current system
in which the flow takes place in plane rectangular loops around the cylinder, the plane of each
loop being parallel to the zz-plane of figure 2. Superposed upon this basic flow pattern is
another pattern described by the nonbasic (summed) terms in (15) and (16). The addition
of this pattern gives a gentle curvature to the current lines and introduces the necessary singular
behavior at the edges. Clearly the first edge condition demands that g,=7, and henceforth
the single symbol f, will be used as the coefficient of the basic term in both /" and 6.

In relating the self field of the current system to Mg, a magnetic scalar potential U, defined
such that B=—VU, will be used. The boundary conditions at the magnetic shell are the
duals of the corresponding boundary conditions for the electric potential at a charged surface,
that is, the normal gradients on the two sides of the shell are equal but the potential values
differ by the local intensity of the magnetization. Quantitatively, if I and 11 are two adjoining
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regions separated by a magnetic shell, and if e, is a unit vector pointing from I into II, then

oy Ol

on on =0; ()

Uni— Ui=puo M ,£. (20)

Application of these boundary conditions and of other well-known procedures of potential
theory leads to the following expression for the potential in the interior of the cylinder due to
the current system on the side:

U(fg’2> —a f [ f Bt o d>]ka1{l lee T e i ain (21)

The Fourier cosine transform of the /' function, enclosed in the square brackets above, is easily
expressed in terms of Bessel functions with the aid of eq (A9) in [1]. The function /,(kp) cos
kz sin ¢, which is regular in a neighborhood of the origin, may be represented in a spherical
harmonic expansion about the origin.  Thus (21) becomes

Us(rp,0) & —ab (2\* ([ Jiz(kb) (D" Sam1s2: (kD)
Catn =t Q) [ S ]

p=0 m

/ (=D .
kaK|(ka) (ke)? ' dlk —— 2p19)! 2 ) 11(cos ) sin ¢, (22)
Here and elsewhere, the singularity parameter »” for the nonbasic terms is understood to be
equal to 2/3.  The spherical harmonic expansion of (22) converges for all »<Za.

With reference to the ends of the cylinder, the interior potential generated by the current
distributions on the two ends is given by

U (51?’ i f I: J Qo' Ja) Ju(kp") ' l]p:llm(‘ @7, (kp) cosh kzdk sin ¢. (23)

This, in turn, may also be expressed as an expansion in spherical harmonies which converges

for all »<7b:

U.(r0,0) a Jotka) | NS (=D Sonta s (ka)
C[f —‘Z f [10 7 v)+ Z I (k(l/)H»v’ ]

m=0

kD (10) 2 1 Vo g
a6 (k0 dk 7 (E) PL ., (cos 0) sin 6. (24)

Evidently the sum of (22) and (24) constitutes an expansion of the interior potential due
to the total current distribution, convergent within the largest sphere which can be inseribed
in the cylinder. Such an expansion may also be expressed in the form

Urod) <[, Nl Nt i .
c,B7 :ZO JoZ+ ZO Ini+oZy+ ZO {/mef":I <;> Pi, . 1(cos 0) sin ¢, (25)
/ p= m= m=

where the Z’s are obtained from (22) and (24) by integrating (3, p. 137] over k. These Z’s
become the matrix elements in a system of simultaneous equations which may be solved for
the f5, fn, and g,, such that the coefficient of (r/c)??*'P,, ., (cos 6) sin ¢ will be unity for p=0 and
zero for as many p_>0 as possible. The second edge condition, also included in the system ot
simultaneous equations, is simply

\r~l —2/3 N,—1
> t(}) 2 =0 (26)

m=
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If one makes use of the fact that —kaK, (ka)=kaK,(ka)-+K;(ka), the expression for the
matrix element Z;" becomes

/i m+p L
Zin= ab<2)l 2(2p1_*)_‘))'f kaKo(ka)—{—Kl(ka)]J_z;g)zl*'—/;Jr(ff,@(kc)2p+1dk. @7

Integration yields the following result:

,,,,_(—1)rn+112211+1—v/P(m+p_{-%)r(m+p+ )012 b om+2
“e T ()T 2p+3)T2m+3+") ( ) |:<m+p—|-2>

'. 3, ,.b
By (ot m—pto's 2t S SV B (et gty m—p 140 amt S ) |

The matrix element Z3" is simpler: (28)
2 . m © A .
2= e, e (29)

This becomes

o (—1)m22+1=v'T (m+p+3 )I‘(m—l—p—{—")b( >2m+4
! (3T 2p+3)T(2m+3+4»")

2Fl(m+p+ m—p+14v'; 2m 434+ %) (30)

The basic matrix elements, Z," and Z.’, are obtained by setting both m and »" equal to

4
zero in the preceding formulas.
Thus,

L= 1)"22"+1F(Z’+3)I‘(Z)+2)a2b
a—— (a1

R - T A=Y (A SRt T4 D

w_ 27T T (p4-3) T (p+2) a'd 5 Y
Zy= IrG)r2p+3)re) ra 2F1<P‘|‘27 p+1; 3; 02) (32)

Using the appropriate formulas for analytic continuation [4, p. 108], one obtains

5 a? r3)r(—1%) 3 b
2 o) 1; y 2 )= 1 1 ’ Y9 2
F‘<p+2 P13 F(—pﬁ)r(pw)?F(pJr iy )

e r@3)r)
bT(p+3)T(—p+1)
(=3 _—E=DTp+d).
I'(—p-+3%) INC))

1 b°
B (—ptyrtyE) 6
By [4, p. 3],

(34)

The second term in (33) vanishes unless p=0, in which case the hypergeometric function is

easily summed :
118 = JENF
o (5’ 5 2: 2) ( ) =<6> . (35)

Let the symbol é,, be equal to unity for p=0 and to zero for p><0; then

o« (1)PPHT(pL DT (p+]) ath 5 3. b
2= = T DT Ep+IT® 2Fl<p+ 1’“’2’02)

204

(36)



In (25), the total coefficient of f, is the sum of Z and Z;. This sum is denoted by Z” and is
given by

- (=127 (p4-3) ' (p+3) a‘b ; 8
Bttt e L) B (s rii)

3 b2 SE i
b (p+y—r+1 5 5 )% ()8 (43— 15 )] (37)
Using the third Gauss relationship, as listed in [4, p. 103]:

o (ST DT (p+Y) 5. .80 ‘
S e o SUN G et ) &)

This has an even simpler form, obtained by an elementary transformation of the hypergeo-
metric function and a simplification of the gamma function multiplier:

( 1)pr<[)‘l'2) b 1 _ me £ E)
ZP 601) 2F( )F([)—LQ)C <P+27 pz ‘3’7 Cz (39)

The three formulas, (28), (30), and (39), contain the information necessary for a numerical
calculation of the matrix elements. 1If both the electric and the magnetic polarizabilities are
being calculated for the same cylinder, much labor can be saved by comparing the expressions

for the matrix elements in this paper with those in [1] and exploiting the similarities.
The magnetic dipole moment, given by eq (4), has only a y-component,

e (P .. . = e : o .
my:ijlbfo (— 2745 SIN p—a ], cOS d:)a(ldxlz—}—ﬁ L b(7pe COS p— J4o SN P)dppdp.  (40)

Using expressions (7) through (10),

'uom” f f ( + F’ sin? p—al’ cos? ¢>> ad¢da+ff (-—-G cos? p— G’ sin? ¢o>d¢pdp, (41)
—-bJ 0

by ot [ [« @b —Fyau— [ (@ +uG)d 42
B—~1ra ;‘(U—)u 0(+u Ydu | (42)
By parts,
1 1 1
“—Qg‘—”zm%{[um = f Fdu—[u@] } (43)
0 0 0
The first edge condition requires that F(1)=G(1); hence,
1
f‘%’”’:—zm%f Fdau. (44)
0

The quantity m,/B is the transverse polarizability and the geometrical volume », is easily
recognized. The orthogonality relationships given in [1] aid in the integration of F, yielding
the following formula for the polarizability:

st [t 1]

Do
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3. Results

The two distinct tensor components of the magnetic polarizability are given in table 1.
Actual values of the expansion coefficients for the F and @ functions, which describe the
surface current distribution via the equivalent magnetic shell for the transverse case, are
included in appendix B. These data, upon which the 8,, results of table 1 are based, were
obtained by solving sets of 18 simultaneous equations. Experimentation with fewer equations
has led the author to the conclusion that the accuracy is not quite as good as that obtained
for the electric polarizability in [1]. In other words, the 8,, figures have a probable error of
about 2 units in the least significant digit for a/b equal to unity and about 10 units in this
digit for a/b equal to 4 or to %. The 8;; figures, on the other hand, were obtained from the
electric polarizabilities simply by the application of eq (2), and therefore enjoy the same
accuracy belonging to the latter.

TABLE 1
a/b noBufvo uoBee/vo
0 —1.0000 —2.0000
b4 —1.1575 —1. 8506
1% —1.3057 —1.7351
1 —1.5853 —1.5795
2 —2.1087 —1.4140
4 —3.0907 —1.2716
© = —1. 0000
vo=2mab

As an additional check upon the numerical calculations in the transverse problem, a
procedure analogous to that employed in [1] was used. Consider the total field B, which is
the sum of the applied field and the field due to the current system on the cylinder. A normal
component B, of the total field at any point on the surface of the cylinder indicates that an
erroris present. If nrepresents distance away from the surface in the outward normal direction
at a particular surface point, one may calculate the displacement of the surface An which, con-
sidering the local value of the normal field gradient, would reduce the normal field component
to zero. In other words, let the following equation be solved for An:

B,,,+a£;" An=0. (46)

This An may then be compared with the gross dimensions of the cylinder. The local field
gradient 0B,,/0n depends upon the current distribution at the point in question and may be
calculated by appealing to eq (3) and to the solenoidal character of B,. To first order, one
has for any point on the side of the cylinder

0B, _ <_l% ?1¢_>

ap Mo a a¢ + aZ ) (47)
0B, Bsing/ ., & .,
=2 (F o F ) (48)

Let the p-component of the field due to the current system alone be denoted B,. Then
B,=B,+Bsin ¢, An=Ap, and one obtains for the latter,

B,
Ap Bsin ¢+1
O (49)
—F+P F”
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The quantities B,, I, I’ and finally Ap/a were calculated for z=0, that is for points on the
“equator’” of the cylinder; hence the term “equator check’ in appendix B.
The same method applied to the upper end of the eylinder yields

Jse O/w" 1 O7w> .
& - — 50
M’< p 0 (50)
oB,, B sin¢>( G’ , G
—_— = | ——— = 1k 51
0z : 1 G +u" (51)
where u represents p/a. Substitution of the expansion Ayu+Azu®+ A+ ... for G, which

is known to be an odd function, gives

0B, B Bsin ¢
a

5 - (—8Au—24A0°+ .. ). (52)

3]

Since both sides of (52) vanish at p=0, that is at the “pole” of the cylinder, one must differ-
entiate with respect to p in order to obtain something useful. Thus,

0*B,, Bjsﬁiniqs _sA )__—43 sin ¢
000z a? ST 32

G’ (0). (53)

Furthermore, for any point on the upper end, B,. is simply B., the field due to the current
system alone.  Finally,

Az 3a*

b 4bG""7(0) 0p (H sin ¢/

(54)

Values of 0B./0p, G’"’, and Az/b were calculated for the pole; data are given under the heading
of “pole check” in appendix B. Generally speaking, the pole checks are satistactory but are
not as good as the corresponding checks in [1].

4. Appendix A: Relation Between the Longitudinal Magnetic and the Trans-
verse Electric Polarizabilities of a Conducting Solid of Revolution

Let figure 3 illustrate a typical solid of revolution formed by rotating the curve p=p(2)
about the z-axis.

Ficure 3. Cross section of a typical solid of revolution
» P showing coordinates and unit vectors.
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Let the unit vectors e, and e, point along the tangent and the outward normal of this curve,
respectively. The variable s, associated with e;, measures distance along the curve and encom-
passes the solid as it varies over the interval 0<s<§S. It is sufficient if p(z) has a uniquely
defined tangent and is normal at almost every point in this interval.

If the applied fields consist of a uniform magnetic field B in the z-direction and a uniform
electric field £ in the z-direction, the following is to be proved:

Mo mz 1 p,

B T 2¢FE ()
In the electric case, the scalar potential satisfies the conditions:
V=—FEfi(p, 2) cos ¢;
fi=0 on the surface of the solid;
(A2)

fi~p at infinity;
V2V =0.
The magnetic case, on the other hand, is analyzed with the aid of the vector potential which,
by symmetry, has only a ¢-component. This component must vanish at s=0, s=S, and at all

intermediate surface points; otherwise there would be a normal component of magnetic field
at the surface. One finds that

B
A:e¢ §f2 (p,Z);

f2=0 on the surface of the solid; } (A3)

fa~p at infinity;

VZA:O. J

Application of the Laplacian operator to either cos ¢ f; or to e,f, yields the same equation in p

and z. In other words,
{5PZ+P % P2+02 }{fl }— =

Since fi and f, obey the same differential equation, have the same boundary conditions at the
surface of the solid, and have identical asymptotic behavior at infinity, it is clear that fi=f,=f.
The surface charge density in the electric case is

c=—¢@, - VV=¢l cos ¢ (€,-Vf), (A5)

and it is easily shown that the z-component of the induced electric dipole moment is
S
D eOE-/rf (e, -vf) pids. (A6)
0
The surface current in the magnetic case as given by (3) is:
1 B
J=—e,X(VXA)=5—e,X(VXe,f). (A7)
Ko 2u

On the surface, where f=0, this reduces to the following:
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and the magnetic dipole moment is obviously

A comparison of (A9) with (A6) shows that the asserted relation (A1) is true.

. B
J:_ﬂ)e¢ (en‘Vf>7

BT (. 27s
M= ML (e vf) pds.

(A8)

(A9)

5. Appendix B: Values of the Expansion Coefficients for the Functions F and G

Values of the expansion coefficients for the functions F and @ and the results of the checking
The notation “A(p)” means

procedure at pole and equator are given in tables 2 through 6.

“A times 107.”

TaBLE 2
a/b=1%
m fm Im
basic +0.13640434 (+1) | oo
0 0. 94335081 (+0) —0. 37183474 (+4-0)
1} -+0. 47094227 (4-0) —0. 18563192 (+40)
2 =+0. 15962976 (-0) —0.97767116 (—1)
3 +0.52222212 (—1) |- ___
4 +0.17272056 (—1) | oo
5 —+4-0. 55233089 (—2)
6 -+0. 16203994 (—2)
7 +0. 41694492 (—3)
8 -+0.90138919 (—4)
9 +0. 15575188 (—4)
10 +0.20048427 (—5)
11 -+0. 17022684 E—G)
12 —+0.71319103 (—8)
Equator
check__ B,/ B sin ¢=—0. 99999999
Ap/a : negligible
Pole d
check._ _ a o (B./B sin ¢)=+-0.11001902
Az/b=+-0. 01246495
TaBLE 3
a/b=1%
m fm gm
basic +0.13390263 (4+1) |- ooo o
0 —+0. 76790238 (+4-0) —0. 32481666 (+0)
1 -+0. 23079152 (+40) —0. 14321008 §+0)
2 —+0. 58147254 (—1) —0.97128394 (—1)
3 +0. 16764875 (—1) —0. 67455522 (—1)
4 —+0. 50092196 (—2) —0.36913235 (—1)
5 +0. 13805064 (—2) —0. 11074155 (—1)
6 0. 32120205 (—3)
7 0. 57675668 (—4)
8 —+0. 70016001 (—5)
9 0. 42707647 (—6)
Equator
check__ _ By/B sin ¢=—1. 00000004
Apla : negligible
Pole D
check. __ a 5 (B./B sin ¢)=—0. 00614087

Az/b=—0. 02256388
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TaBLE 4
a/b=1
m Im Im
basic +0.12992927 (41) |- oo
0 -+0. 54323936 (+0) —0. 29402467 (4+0)
1 0. 92098198 (—1) —0.12410492 (+40)
2 +0.17619634 (—1) —0. 80893285 (—1)
3 0. 38217146 (—2) —0. 59953649 (—1)
4 +0. 67793221 (—3) —0. 44063915 (—1)
5 +0. 66769575 (—4) —0. 29238560 (—1)
6 —0. 16182197 (—1)
U —0. 68464716 (—2)
8 —0. 19415309 (—2)
9 —0.27441144 (—3)
Equator
check._ - - B,/B sin ¢=—0. 99999998
Apla : neglible
Pole d
check___ a 7 (B:/B sin ¢)=-—0. 00000485
Az/b=—0.00001512
TABLE 5
a/b=2
m fm gm
basic 02124071978 GE 1) R e nees
0 0. 33590275 (4-0) —0. 25652350 (40)
1 0. 30150397 (—1) —0. 11210208 (+0)
2 —+0. 28485520 (—2) —0. 72413481 (—1)
2 S | S S —0. 52386398 (—1)
/S P ———— —0. 37934754 (—1)
5 —0. 25696044 (—1)
6 —0. 15530579 (—1)
7 —0. 80562157 (—2)
8 —0. 34498633 (—2)
9 —0. 11632626 (—2)
10 —0. 28842547 (—3)
11 —0. 46632080 (—4)
12 —0. 36819245 (—5)
Equator Bp/B sin ¢=-—1.00000288
check . __
Ap/a=+0.00000115
o a ab—p (B/B sin ¢)=—0.00000013

Az/b=—0.00000100




TABLE 6

alb=4
m fm Im
basic 0. 11775253 (+1) |
0 40. 18232541 (40) —0.21277158 (4+0)
1 40, 76983950 (—3) —0. 98721317 (—1)
2 —0. 61346284 (—1)
3 —0.39649681 (—1)
1 —0, 24392554 (—1)
5 —0.13622852 (—1)
6 —0. 66941775 (—2)
7 —0.28211792 (—2)
8 —0. 99369454 (—3)
9 —0.928363133 (—3)
10 —0. 62808005 (—4)
11 —0. 10154428 (—4)
12 —0. 10608227 (—5)
13 —0. 53798542 (—7)
Equator Bp/B sin ¢=—1.00378633
check __
Apla=-0.00094822
= %Iﬁeck_,_ a % (B4/B sin ¢)=-+0.00000000

Az/b: negligible
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