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Consider two simul tan eous first ordcr diffcrenti al cqu a,t ions x' (I) = " '(x ,y, l ), y' (I) = 
G(x,y,l). Runge-Kut ta type in tegration m ethods are developed which allow differenL in te
gration steps to be used for t hese equ at ions. These methods retain t he desirabl e proper- Lies 
of Runge-Kutta methods, na mely t he self-starting property an d case of cha ngc of integnLtioJl 
step. Two differen t approaches a rc considered and extensive experimental work is reported 
upon. Experiments a re done both in s ituations where t hese methods arc advantageous 
and where they a re not. It is seen that these met hods a re more e ffi cient t han Lhe normal 
Runge-Kutta methods if t hey arc at a ll appli cable a nd in ideal s ituations t hey give t he same 
acc uracy wi t h 90 perce nt less computation. These methods arc appli cab le to six degree 
of freedom mi sile simulations, for which t hey were developed. 

1. Introduction 

Consider two simultaneous first order differential equations: 

dx 
dt = F (x,Y,t) (1.1) 

dy 
dt = G(x, y,t ) (1.2) 

where y et) docs not depend strongly on x(t ) or varies much more rapidly than x(t ). In a 
normal numerical integration method for these equations, the in tegration step h must b e chosen 
small enough to adequately integrate both (1.1 ) and (1.2). In thi paper Runge-Kutta type 
methods arc described which allow different in tegration steps to be used for these equations. 
These methods retain the desirable properties of Runge-Kutta methods, namely the se1£
starting property and the ability to change the integration step easily. 2 

The problem is defined in detail and two different approches to the development of the 
formulas are given in section 2. The analysis for third order integration formulas is given in 
sec tions 3, 4, 5, and 6. In section 7 the results are stated without derivation for fourth order 
integration. 

Three systems of differential equations have been solved using these formulas with varying 
values of the parameters. The first equation is of the type suited for these formulas and they 
result in a considerable saving in computation. The results are discussed in detail in section 9. 
They point ou t that the second approach gives formulas which are considerably more acemate 
than the first approach- although one would not expect this beforehand. The second equation 
is of a type not suited for these formulas. The results are discussed in section 10. The third 
equation is of the type suited for these formulas except that a very high frequency low-ampli tude 
oscillation has been added to x(t ). The experimental results are somewhat erratic. 

In the final section a detailed discussion is given for the situations where these formulas 
are most useful and also comparison is made of their efficiency with that of the usual methods. 
It is seen that these formulas are more efficient than the normal Runge-KutLa methods if they 
are at all applicable and that in ideal situations they may give the same accuracy a normal 
Runge-Kutta with 90 percent less computation. One area of application is to SL,( degree of 
freedom missile simulations, for which these formulas were originally derived. 

1 This work was done wbile tbe autbor was at Autonetics, Inc. and at tbe National Bureau of Standards as an N RC-NBS Hesearch Associate. 
, For an accowlt of the basic properties of RWlge-Kutta see F. B. Hildebrand, Introduction to N umerical Analysis (M cGraw-Hill Book Co., 

Inc., New York, N.Y., 1956) . 
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2 . Problem Definition 

h denotes the integration step for (1.2) , and Kh, where K is an integer, is the integration 
step for (1.1 ). Let tn denote to + nh and let Xn and Yn denote the numerical solutions of (1.1 ) 
and (1.2), respectively at t= tn' Round-off error is not considered in this paper. 

Consider two t-axes, 

~-------------- Kh ----------------

.. -- h ~. 

t 'm+ l)K- I 

the first for (1.1) and the second for (1.2) . It is now desired to obtain Runge-Kutta type 
integration formulas that integrate (1.1 ) in steps of Kh and (1.2) in steps of h. 

(1.1) can be integrated from tmK to t"n+llK by a normal Runge-Kutta method. For a 
third order method the pertinent equations are: 

ko= KhF(xn, Yn, tn) 

kl = KhF(xn+ 'YlkO, Yn+'Ylho, tn+'YIKh) 

k2= KhF(xn+ 'Yicl + ('Y2 - 'Y3)ko, Yn+'Y3hr + ('Y2 - 'Y3)ho, tn+ 'Y2Kh) 

ho= KhG(xn, Yn, tn) 

hl = KhG(xn+'Ylko, Yn+ 'Ylho, tn+'YIKh) 

h2= KhG(xn+'Y3kr + ('Y2-'Y3) ko, Yn+'Y3hr + ('Y2-'Y3) ho, tn+ 'Y2Kh) 

XCm+!) K=XmK+ .6oko+ .6rkr + .62kz. 

(2 .1 ) 

The integration parameters 'YI , 'Y2, 'Y3, .60) .6r, and .62 may be those of any third order Runge
Kutta method. Note that h2 need not be computed for this integration. 

The main difficulty in integrating (1.2) is to obtain values of x(t) at the integration points 
between tmK and tCm+DK' A natural way to obtain these values is to extrapolate x(t) from tmK 
The Runge-Kutta method is itself an extrapolation process and one extrapolation has been 
made in the integration of (1.1) from tmK to t Cm+DK' The values of ko, kr , and k2 from (2.1) 
may also be used to extrapolate x(t) from tmK to the intermediate points. Let XmK+J denote the 
extrapolated value of x(t) at tmK+h 1 ~j~K-1. Then, for the appropriate coefficients AM), 

Other estimates of x(t) are needed and they are obtained in the same manner. 
For a third order method the equations for integrating (1.2) from tmK+J to tmK+J+I are: 

do (j) = hG (XmK+J,YmK+iJtmK +f) 1 
d, (j) ~ kG (x~+ ,+ t. A, (j) kH,YmK + ,+ ",do, ' mK+, + ",h) ~ 

d, (j) ~ hG ( "mK + ,+ t, A, (j) k'._',y~ + ,+ ",d, + ("'-",) do, '~H+ ",h) J 
YmK+1+r=YmK+ f+ aodO (J) + a1dr (J)+a2dz CJ)· 

(2.2) 
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Two basic approaches are co nsidered for obtaining the integration parameters fJ-I, fJ-2, fJ-3, 

a o, al and a2 and the extrapolation parameters AI(j), .. . , A9(j). The first is to consider the 
truncation error of the resulting integration formula for yet). The parameters can b chosen 
so that the method is third order. Thi is done in s ctions 3, 4, and 5. The second approach 
is to determine the extrapolation parameters so as to make the extrapolation as accllrate as 
possible and then to determine the integration paramctcrs independently. This is clone in 
section 6. 

3 . Preliminary Computations 

For simplicity ~~~!Ai(j)k i-n will be denoted by ~n . Likewise, 

An(j) : 

I'n(j) : 

lln(j) : 

<Pn(j) : 

These expressions will occur quite often. The argument j will be omitted if it leads to no 
confusion. 

In order to consider the truncation error of the integration formula, various term will be 
expanded in Taylor's series. There will be some derivatives evaluated at (XmK,YmK,tmK) and 
some at (XmK+hYmK+i,tmK+i). Expansions will be obtained in this section that \vill allow a 
comparison of such terms. A Taylor's series expansion of ~n will also be obtained. 

The notation : F p= oF/op, Gp = oG/op, Fpq = 02F/opoq, Gpq = 02G/Opoq ; p,q=x,Y,t will 
be used. The convention that F denotes F(XmK,YmK, tmK) and that G denotes G(XmK+hYmK+h 
tmK+i ) will be adopted. The same convention will hold for derivatives of F and G. Further
more F I ,GI ,F2,G2 will denote elF/elt, elO/elt, 

respectively. 
Then it is seen that 

F (XmK+j,YmK+i,tmK+j) 

= F +Px(XmK+j-XmK) + Fy(YmK+j-YmK) +Fdh+ ! [Fxx (XmK+j-XmK) 2 

+ 2Fxy(XmK+j-XmK) (YmK+J-YmK) + Fyy (YmK+j-YmK)2 + F tt (jh)2 

+ 2Fxt (XmK+j-XmK)(jh) + 2Fyt (YmK+j-YmK) (j h)l+ ... 

G(XmK,YmK,tmK) = G- Gx(XmK+j-XmK) - Gy(YmK+j-YmK) - Gt(jh) + 

~n= AnKhF+ (Kh )2I'n[FxF + F yG(XKm,YmK,tmK) + Ftl+ (l~h)3 (lln) [FxxF2 

+ 2FxyFG(XmK,YmK,tmK) + F yyG2(XmK,YmK,tmK) + 2FxtF+ 2FytG(XmK,YmK,tmK) + Fltl 

+ (Kh )3<pn[Fx(FxF + F yG(XmK,YmK,tmK) + F t) + Fy( Gx(XmK,YmK,tmK) F 

+ Gy(XmK,YmK,tmK) G(XmK,YmK,tmK) + Gt(X,nK,YmK,tmK)) 1 + . . . 
(n= I,4 ,7) 
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Let Yn(t ) denote the solution of (1.2) which assumes the value Yn at In. Then 

Since this will be a third order integration method, 

Y mK+J(lmK) - YrnK= ah4+ bh5+ 
Now 

and hence 

(3.2) 

With equation (3.2) and by repeated substitution, eqs (3.1) assume the form: 

F(XmK+h YmK+J> l rnK+J) = F+ A1KhFxF + jh(FyG+ Ft) 

+ ~ [Ji'xx F2K 2M+ 2FxyFGKAl j + FttP+FyyG2P + 2FxtKAd+ 2FytGP1 + (3 .3) 

(n= l , 4,7). (3.5) 

4. The First Approach 

The difference YmK+J (tmK+J+l) - YmK+J+l will be expanded in a Taylor's series and the coef
ficients of all terms of third order or less in h will be equated to zero. The resulting equations 
will be used to determine the integration and extrapolation parameters. Now 

With eqs (3.3), (3.4), and (3.5) it is seen that: 

1 
YmK+J (lmK+J+l) = YmK+J + Gh+ '2h2 [ GxF(XmK+hYmK+hlmK+J) + GyG+ Gtl 

do{j)=hG, 

+ 2GxtF(xmK+hYmK+hlmK+J) + 2 GxyGF(XmK+hYmK+htmK+J) 1 

+~h3 [Gy(GxF(xmK+hYmK+htmK+J) + GyG+ Gt) 

+ Gx{ Fx (XmK+hYmK+htmK+J)F(xmK+hYmK+htmK+J) 

+ GFy(XmK+hYmK+J,tmK+J) + Ft (XmK+hYmK+himK+J ) } 1 + 
=YmK+J+Gh+~h2Gl +~h3G2 

+ ~h3(GyGl + GzFl)+ ~h3Gx(FFxKl)q + FyGj + Fd) + . 
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dl(j)= hG+h(GX~4+ Gy G!J.J/'+ Gtillh) 1 
+ t h[ Gxx~~+ 2GXyG~4illh+ 2Gxt~4illh+ Gyy GZ(illh)Z+ 2GytG(illh)2+ Gtt(illh)Z] 

= hG+ hZ( GxFKiq+ GyGill + G'ill) 

+ t h[ Gxx~~+2GXyG~7J.tzh+2Gx'~7J.t2h+ GyyG2 (il2h)2 +2 Gyt(J.tzh )2 + Gtt(J.t2h)2] 

+ il3h2Gy( GX~4+ GyGil//' + GtJ.tlh ) + 

J 

(4.3 ) 

(4.4) 

The following system of equations results when Lhe coefficients of the various terms are 
set equal to zero: 

(4.5) aO+al+a2= 1 
2 2_1 

alJ.tl + azil2 -3 

1 1 
al ill+a2il2=2 a2illil3=6 

(4.6) 
1 

alA4K + a2A7K =2 
1 

a2J.t3KA4=6 (4.9) 

(4 .7) 
1 

alA~K2+a2A~K2=3 K 2 K 2 _ l +j al r 4+ a2 r 7- 6 2 (4.10) 

(4.8) al J.tJ<A4 + a2J.t2KA7=~ K 2 K 2 l + KAl al r 4+ a2 r 7=6 -2- (4.11 ) 

Equations (4.5) are the usual equations for the integration parameters of a third order 
Runge-Kutta method. From (4.9) it follows that KA4= J.l2 and hence by (4.6) KA7= J.l2. 
From (4.10) and (4. 11 ) it is seen that KA1=j. Equations (4.6) through (4.11 ) may then 

:r be replaced by 

(4.12) 

No attempt will be made to discuss all possible solutions of (4.5) and (4.12). However, 
a few obvious facts will be pointed out. From (4.5) it is seen that J.tl~ O ) J.t3~ 0 , a2~ 0 . Like
wise 'Yl ~ O . It is clear that AI) A4) A7) r 4 and r 7 are independent. Since the matrix 

is of rank three any set of third order Runge-Kutta integration parameters may be used. 
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One could at this point make an analysis of various types of simple solutions of (4.12). 
However, in the next section it will be seen that there are some other considerations. Two 
sets of parameters are given for comparison purposes. 

ao, aI, a2, MI, 112 , M3 (arbitrary solutions of (4.5)) 1 
AI = k A MI A M2 A 

AS= 1+ 3j A:=~~= A5= ~6::9= ~ J 
6a2'YIK2 

(4 .13) 

Mz= O M3=1 
(4.14) 

5 . The Truncation Error 

In this section the truncated terms of the various expansions will be considered in some 
detail. A term shall be said to be T(j" K~ hOY) if it is of the formj" K~h'Yjwhcre j is a function in
dependent of j, K and h. It would be desirable for all of the fourth order terms truncated in 
the integration of (1.2) to be T(h4). The procedure would be pointless if some of the truncated 
terms are T(K4h4). It will be seen that there are terms which are T(Kh4 ) and T(PK- Ih4) which 
cannot be simultaneously eliminated by any choice of extrapolation parameters. 

All of the truncated terms from YmK+J(tmK:+1+I) - YmK+1+1 which are not T(h4) are listed below. 
It is assumed that AI =j/K , A4= MdK , A7= Mz/K. The terms from YmK+J(tmK+i+\), d\(j) and 
d2 (j) are grouped in that order. 

3+8j (G F+ G G+ G )F + (1+8j+12K 2r\) G F F 
24 xx X1I xl I 24 x x I 

+ (l+4j) G G F +(1 + 4j+ 6P) G F + (1 + 4j- 6P) G FG' 
24 x y I 24 x 2 24 x y I, 

The original statement was that y (t ) did not depend strongly on x(t) or varied more rapidly 
than x(t). This statement may be replaced by the following explicit assumptions on F and G: 

Assumption 1: The following inequalities are valid: 

p=x,y, 1,2 . 

This assumption implies that y(t) does vary more rapidly than x(t) . 
Assumption 2: Gx is T(K-l). 
It is seen from (4. 12) that f4 and f7 are T(jK-2). 

156 



~ 

I 

" 
I 

With assumption 1 and t he preceding remark it i seen that there are two groups of terms 
which are not T(h4) . They are 

and 
(1+ 4j- 6j2)G FG 

24 x y I, 

These terms would be eliminated if the following equations held : 

These two equations may be transformed into 

1+ 4j+Gj2 
12K3 

(5. ]) 

(5.2) 

Unfortunately, it is not possible to sa tisfy (4. 12), (5. 1) and (5.2) simul tfLJ1 eolisly. The 
equation s 

]+ 4j+ 6j2 
12K3 

1+ 8j+ 6j2 
24K3 

are incompatible. It is possible to satisfy (4.12) and either (5.1 ) or (5.2). Since the terms 
involved by (5.1 ) and (5.2) are T (PK - Ih4) and T (Kh4), respectively, th e smallest truncation error 
resul ts when (4.12) and (5.2) are sa tisfied. 

If (5.2) or (5.1) are to be satisfied, then some of the simplicity of the extrapolation coeffi
cients is lost. Two ets of parameters are given below ; the first satisfles (5.1) and the 
second satisfies (5.2). 

J.i.l, ilz, 1'1, 1'2, 1'3 (arbitrary Runge-Kutta integration parameters) 

1.6= 1+ 4j+ 6j2-21' IK (1+ 3j) 
12KOi1'YZ( 1'2-1'1) 

J.i.1, J.i.z, 1'1, 1'2, 1'3 (arbitrary Runge-Kutta integration parameters) 
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These equations are somewhat more complicated than those given in section 4. 
With assumption 2 it is seen that there are three groups of terms which are no t T (h4) . 

They are 

and the two groups found with assump tion 1. These terms would be eliminated if the followin g
equations held. 

H ence if r 1 is set equal P /2K2 the same equa tions are found as with assump tion 1. 

6 . The Second Approach 

In this section the extrapolation parameters will be determined so as t o make the trunca
tion error of the extrapolation as small as possible. This procedure is similar to the analysis 
for the Runge-Kut ta integration of one equation. 

The extrapolation of x(t ) to any value tmK to any value tmK+ r is given b y 

where leo, leI and 1c2 are from (2.1) . 1.0(1'), 1.1(1') and 1.2(1') are determined by equating the co
efficients of h in the expansion of the error equal to zero . The resulting equations are 

AO (r) + Al (1' ) + 1.2 (r) = r/Kh 

Al (rhl+A2(rh2=~ r2/(Kh)2 

(6. 1) 

(6. 2) 

(6.3) 

(6.4) 

Equation (6.1 ) results from equating the coeffi cien ts of h to zero , (6.2) r esults from equating 
the coefficients of h2 to zero, and (6.3) and (6.4) resul t from equating the coefficients of h3 to 
zero. In general only three of these equations can be satisfied One would naturally choose a 
solution which satisfies both (6.1 ) and (6.2). 

These equations may be written for the extrapolation parameters. The resulting equations 
are: 

Al=k }q=';{ A _ f..L 2 
7- K (6.5) 

r - L r 4 
(j + f..L I)2 r 1 

r _ (j + f..L 2) 2 
r 1 (6.6) 1- 2K2 2K2 7- 2K2 

~ _ l ~4 
(j + f..Ll )3 

~1 
~ _ (j + 1-"2)3 

~1 (6. 7) 1- 3K3 3K 3 7- 3K 3 

l 1>. 
(j+ J.L l)3 

1>1 1>7= 
(i+ 1-"2) 3 

1>1' (6.8) 1>1 = 6K3 6K3 6K 3 
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Equations (6.6) and 6.5) imply th at (4 .12) is sa t isfied. The converse is not true. It is easily 
shown tllat (6.7) implies 

and that (6.8) implies 

6l+ 4j+ 4 (a1 iJ.~+ a2iJ.D 
24K3 

Therefore (6.7) implies that the Gx F2 term is T(PK - W ) and (6.8) implies that the Gx FyG1 term is 
T (Kh4 ) . H ence (6.7) and (6.8) have the same effect on the truncation error as (5. 1) and 
(5.2) although (6.7) and (6.8) do no t actur.lly imply (5.1 ) and (5 .2 ), respec tively. 

It is rather surprising tha t r 1 = ]2/2K 2 does not appear among the equations derived in ec
tions 4 and 5 with assump tion 1. It is certainly plausible to include this equation in any set 
of equations taken to determine the extrapola tion parameters. 

Two se ts of parameters are given, the first satisfies (6. 5), (6.6), and (6.7) and th e second 
satisfi es (6.5), (6.6), and (6.8). 

iJ. 1, }J.2, 1'1, 1'2, 1'3 (arbi trary Runge-Kutta integration parameters) 

Al=-ii.- A2- A3, A2 
2j3 - 3'Y2K P 

A3 
2j3-3K.j2'Y1 

6K3'YI (1'1- 1'2) 6Kh2( 1'2-1'1) 

A4=;{-A5-A6, 
2(j+ }J. I)3-3'Y2K (j+ iJ. I)2 2(j + iJ. I)3 _ 3K (j+ iJ. I)Z'Y1 

(6 .9) 
AS 

6K 3Y1 ('YI- 'Y2) 
A2, A6 

6K3'Y2( 'Y2-'YI) 

A7=;I-As- A9, A8 
2 Ci+ iJ.2)3_3'Y2K (j+ iJ.2)2 

A2, A9 
2(j+ iJ.2)3_3K (j+ iJ.2)2'Yl 

6K31'1 ('Yl-'Y2) 6[-01'2 ('Y2-'Yl) 

J.lJ, iJ.2, 1'1, 1'2, 1'3 (arbitrary Runge-Kutta integration parameters) 1 
_J -~ 'Y2j3 

, ~ AI-K - A2- A3' A2-2[-(2'Yl 6K3'Yl'Y3 
, 

A3= 6[la'Y1'Y; 

(j+ iJ. I)2 'Y2(j+ iJ. I)3 (j+ iJ.I )3 - A 
(6.10) 

A4=~-A5- A6' A5 - A2, A6 2[-(21'1 6K 3'YIr3 
6K'm, 'J 

A7=~-AS- A9' As 
(j-t- iJ.2)2 'Y2( j + iJ.2)3 

A2, A9 
(j+ J.l2)3 A 

2K21'1 6K3'Yh3 6K3'YI'Y3 - 3 

If only (6.5 ) and (6.6 ) are to be sa tisfied there is considerable simplification in the extrapola
tion coefficients. The followin g set satisfies (6 .5) and (6 .6): 

J Al=K - A2 A i 
2= 2[-(2'Yl A3= 0 

A4=2{-A5 
A _ij+ J.l I)2_A 
5- 2K2'YI 2 A6=0 (6.11) 

iJ.z AS 
(j + iJ.2)2 

A2 A9= 0 A7=K - A8 2K2'YI 
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7. FourthrOrder Formulas 

An analysis similar to that of sections 4, 5, and 6 may be made for a fourth order integration 
method. Only the results of such an analysis are given here. The equations for a four th 
order integration method are: 

4 

XmK+J=:8 Ai( j )ki - l +XmK 
i=l 

8 

dl (j)=hG(XmK+J+ :8 Aiki-s,YmK+J+ fJ.ldo,tmK+J+ fJ.l h) 
i=5 

12 

d2(j) = hG(XmK+J+:8 Aiki- 9,YmK+J+ fJ.3dl + (fJ.2- fJ.3)do,tmK+J+ fJ.2h) 
j=9 

16 

d3(j) = hG(XmK+J+ :8 Atkt-13,YmK+J+ fJ.6d2+ fJ.5dl + ( 1-14- I-Is- fJ.6)do, tmK+J+ fJ.4h) 
j=13 

The integration parameters must satisfy: 

alfJ.f+a2fJ.~+ a31-1~ = t 1 
a2fJ.lfJ.2fJ.3+ a3fJ.2fJ.4fJ.6+ a3fJ.lfJ.4.fJ.5= t 

a2 fJ.I fJ.3+ a3fJ.~fJ.6+a3fJ.I I-I5=~ J 
a3fJ.11-l3fJ.6=-.h; 
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The extrapolation parameLer must satisfy the following equations In order for the 
integration method to be fourth order: 

(7.2) 

where 

The truncated terms have not been examined as in section 5 due to the extremely tedious nature 
of such an examination. 

The equations analogous to (6.5), (6.6), (6.7), and (6.8) are: 

Al = k A f.ll 
5=J{ 

A 112 g=J{ -\ f.l4 • 13=J{ (7.3) 

'2 (j+ f.l 1)2 (j+ f.lZ)2 (j+f.l4) 2 r - J r 5 r l r g r 1 r l 3 -rl (7.4) 1-2J{2 2J{2 2J{2 2J{2 

'3 
Ll -( j + I1IP Ll _(j + f.l Z)3 (j+ f.l 4) 3 

Ll1=3k3 Lll Lll Ll l3 Lll (7.5) 5- 3J{3 9- 3J{3 3J{3 

c/> -l c/>5 
(j+ f.ll )3 

c/>I c/>9 
(j+ 112)3 

- c/>l c/>13 
(j+ f.l4)3 

-c/>I' (7.6) 1-6J{3 6J{3 6I{3 6J{3 

The relation between the Aj and the An, r n, Lln and ¢ n is 

1 1 1 1 

o 1'1 1'2 

This relationship can be inverted and 

An An 

An+1 I'n 
=A 

An+2 Lln 

An +3 I c/>n 
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where A is the matrix with elements aij/ p, 

If Runge-Kutta-Gill integration parameters are used, then 

r1 
-3 2 

- :8284272l 0.58578646 2.8284272 

A~l: 3.414214 - 6.8284272 :_8284272 J 
- 1 2 

8. Experiments 

Experiments have been made with these formulfl,s on three pairs of differential equations . 
They are 

dx= /2 
.... 

dt x x(O) ~ l ~ 

~; =X cos (25t) yeO) = 1/1250.5 
J 

(8. 1) 

dx 6 x(0) = a6/13 ) dt =y 

dy 13x y(O) = a 
dt a5 (t+ l)12 

(8.2) 

~~ = .1 + (1.5 X lO - 4) cos (150t) 
.... 

x(O) = O 

~ ely 
yeO) = .00016. elt = xcos (25t ) J 

(8.3) 

Equation (8.1) is a typical example of a system suited for spli t Runge-Kutta. Equation 
(8.2) is an example of a sys tem not suited for split Runge-Kutta. Yet even in this situation 
there may be some advantage to using it if the solution for yet) is needed with much more 
accuracy than that for x(t). In (8.3), y et) is much more rapidly varying than x(t), yet the 
small oscillation in x(t) gives it a comparatively large second derivative. The experiments for 
each of these equations are discussed in considerably more detail in sections 9, 10, and II. 

No experiments were made with parameters derived from assumption 2 in section 5. 
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9 . First Example- The Typical Case 

The solution of (8.1) is 
x(t) =et/2 

yet) = O~ cos 25t+ 25 sin 25t)e tI2/625.25. 

(9.1) 

(9.2) 

There ar e three basic variabl es in the solution of (8 .1 ). They are 0) the method of solu tion, 
(ii) K , (iii) h. The methods of solution are numbered 1 through 6 corresponding to equ ations 
(4 .13), (5.3), (5.4), (6. 11), (6.9), and (6.1 0), respectively . The same integration parameters 
were used throughout. They were: 

In figure 1 the errors in the y integration are studied as a function of K for various methods 
of solution. The integration interval h is fixed at .01 and the error is the maximum eITor for 
Os t S 1. In general this OCCUTS close to t= 1. The value of the error of the x integration 
at t= 1 is also given. H ere the variation of K is equivalen t to varying the integration tep. 
This elTor behaves like K2.7 in the range of values considered. 

10·',--------.---.-----,--,----,---,---, 

METHOD 1---

x ( ! I ERROR AT ! 0 I 

METHOD 6 

35 
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FIG U RE 1. J1Iaximum integrat-ion e1TOTS as 
a function of Ie and the extrapolation 
method. 



There is very little difference in the r esults for the first three methods and only one curve 
is given. These methods proved to be inferior by a large factor compared with the second 
three methods . 

There is little difference in the results for the fourth and fifth methods. Only the results 
for the fourth method are plotted . This lack of difference can be explained. Method 4 
corresponds to satisfying eqs (6.1 ) and (6.2), and method 5 corresponds to satisfying (6.1), 
(6.2), and (6.3). Now (6.3) arises from setting the coefficient of F2 equal to zero and for this 
system F = ax and F2 = O. Hence there is no improvement when method 5 is used rather 
than method 4. 

On the other hand method 6, which satisfies (6.1), (6.2), and (6.4) is a definite improvement 
over method 4. Equation (6.4) arises from setting the coefficient of FxFl+ FvGl = et/2/8 equal 
to zero and hence an improvement would be expected. 

There is another phenomenon apparent in figure 1 and a very significant one. That is the 
fact tha t the error does not decrease with K after a certain point. Indeed, the same accuracy 
for yet ) may be obtained with Kh = O.35 as with Kh = O.O l if method 6 is used. This phenom
enon is explained by the fact that there are two factors that contribute to the error in the 
yet) integration. One of them is the error in extrapolation of x(t) and the other is the error 
inherent in the actual integration of y(t). For some values of K the extrapolation errors are 
dominant and for other values the integration errors are dominant. 'Vhen the extrapolation 
errors are no longer significant then improvement can be made only by decreasing h. 

In figure 2 the errors are studied as a function of h with K fixed. This was done only for 

10-' ,-----,-------------,-----" 

METHOD 1 

X I tiER ROR AT t = I 

METHOD 4 

/ 
10-6L-__ ----=~-------:-:c::__-----:-' 

.00 1 .004 .00 8 .0 12 

h 
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FIGU RE 2. Maximum integration errors as 
a function of h and the extrapolation 
method. 

J( is fixed at 25. 
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the first and fourth methods. Figure 2 is sclf-explanfttory except to point out t lmt thmgs are 
not always as one thinks they should be in numerical analys is. There is no particular explana
tion for the fact that the error does not decrease monotonically with h, it just happens that way. 

Figures 3 through 7 are plots of enol' curves for various situations. Figure 3 is for method 1, 
J{= 25 and h= .01. Figure 4 is for method 4, ]. = 25 and h= .Ol. F igure 5 is for method 4, 
K = 10, h= .01. It is identical with the curves 'with K = 5, 1. Figw'e 6 is for method 6, K = 25, 
11, = .01 and it is identical with the curves with K = 10, 5, 1 and very similar to the curve with 
J{= 35. Figure 7 is for method 1, J{= 25, 11, = .01 / 4 2:::::: .0084. 

O k---------~--------~+--------~-~------_r~ 

0 .2 .4 .6 .8 .10 

FIGURE 3. Error curve for method 1 with 
K =25 and h = 0.01. 

.2 .4 .6 

FIGU RE 4. En'or curve for method 4 wiih 
K =25 and h = 0.01. 
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~ -30 
0:: 
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-40 

-60 

-70 
0 .2 .4 .6 .8 

FIGURE 6. ErrOl' curve for method 6 with 
K =25 and h = 0.01. 

Identical curves are obtail' ed fo r ~mallcr values of K 
and for K =35 tbe error curve is very similar. 

60X 10- 5 

50 

40 

0:: 

~ 30 
II: 
W 

20 

10 

o· 
0 .2 .4 .6 .8 

FIGURE 7. Error curve for method 
K =25 and h ""' 0.0084. 

1 wilh 

It Is scen tbat the relatively larger CrrOI' bere Is due to 
tbe cbance sbape of tbe curve and not to any basic lower 
accuracy. 

1.0 

.10 

0 .2 .4 .6 8 1.0 

FIGU RE 5. Error curve f or method 4 with 
K = 10 and h = 0.01. 

Identical curves are obtained for smaller val ues of K . 
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10. Second Example- An Unprofitable Case 

The solution of (8.2) is 
x(t) = a6(t+ 1)13/13 

y(t) = a(t+ 1)2. 

All of the results discussed below arc for a= .1. 

(10.1) 

(10 .2) 

In figW'e 8 the errors are studied as a function of J{ for vanous methods of solution. 

'}ERRORS IN 
// X(t)ATI~.2 

/; , 
/ ,? '/ 

/ Y' 
/ / 

METHOO 4 + 5/ f 
/ '/ 

METHOD 6/'V // 

ERRORS IN Y (t) 

ATt'? 

/. / / 
INCORRECT / /. / 
METHOD 6 ~/ 

11/ 
II; 

11/ 
11/ 

II; 
'I; r -I", 

I 1/ 
I II 
I 1/ 
p i 

I II 
I I 

I 
I 
I 
I 
I 
I 
I 
I 
I 

} 

METHOD 4+5 

METHOD 6 

10- 0 ':----=-- - --:'=----:'::--- -f::----::'. o 25 

k 

FIGUR E 8. I ntegration eTTOT at t = O.2 as a 
function of K and extrapolation method. 

It is seen that the yet) error depends directly on the xeo error. T he maxirn um error accul'S a t. t = O.2. 

Methods 1, 2, and 3 are not used. Methods 4 and 5 give very similar results while method 6 
does somethat better than either of them. Also included is an "incorrect method 6" which 
gives the best results of all for larger J{'s. In this method As was computed from 

(j+ J.t2)2 'Y2(j + J.t1 )3 

2J{2'Y1 6l{3'Yh3 

instead of its true value given in (6.10) . 
The fact that method 6 is better than methods 4 and 5 cannot be explained as previously. 

Indeed, by that argument method 5 should be the best and method 4 the worst with method 6 
in between. Recall that method 5 satisfies (6 .3) which is obtained from setting the coefficient 
of F2 equal to zero, likewise method 6 is obtained from setting the coefficient of FXFl + FyGl 
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equal to zero. Now in this case F2= 120a6 U+ 1) lO and FxFl + FvGl=6a6 (t+1)1O and hence 
method 5 should be th e best. This points out that the truncation error is not always a good 
meaSUl'e of the integration error . 

It is seen that the integration errol' does not level off as [( decreases. This is due to the 
fact that the major portion of the error in the yet) integration is due to the errors in the inte
gration of x(t ), as differentiated from the errors in the extrapolation of x(t). This is borne out 
by figures 9 and 13. In figure 13 the y et) integration error is plotted for the y tern of equation 

~~: =a6(t+ 1)12 

dy = 13 xfa5(t + 1) 12 
dt 

which have the same solution as (8.2) . M ethod 6, [(= 20 and h=.002 is used. This leads to 
much more aCCUl'ate values of x(t) which in turn lead to a much more accurate yet) integration 
even though the extrapolation accuracy has not improved. 

In figure 9 the error CUl'ves for methods 4, 5, and 6 are compared with [(= 20, h= 0.002 
and for O::;t::; .2. I' 

The error curve for method 4 with [( = 1, h= 0.002 is given in figure 10. 
In figure 11 two error curves are gIven whICh have the same interval of integrat ion for 

the x(t) equation . Both use method 6, one 'with [(= 1 and h= .02 and one with [(= 10 and 

lOX 10'6 

a: 
0 
a: 
a: 
w 

0 

-10 

-20 -

-30 -

-40 

-50 
0 

METHOD 6 

METHOD 5 

.04 .08 

FraURE 9. ErTor cW'ves for methods 4, 5 
and 6 with K =20 and h = 0.002. 

'rho improvement of method 6 see ms to lie in the fact 
t hat the error remai ned positive much longer than for 
t he other two methods. 

.12 

0 ,-------,-------,-------,-------,------, 

a: 
o 
a: 
a: 
w 

-8 

-16 

24 X 10- 9 L--------:"---------,L--~--____'::------'-:----=-= 
o .04 .08 .12 .16 .20 

Froum; 10. En'or curve for method 4 with 
K = l and h =C .002. 

This corresponds to tbe normal Runge-Kutta integra· 
tion proced ure. 
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a: 
o 
a: 
a: 
w 

- 4 

- 8 

h=.02 k=1 

h=.002 k=IO 

12 X10- 5 L.. ___ -'---_______ __':--_______ -;! 
.3 .5 

FIG U RE 11. En'or cw-ves jor method 6 with 
I( and h taken to be (10, 0.002) and 
(1,0.02) . 

'I'hesc curves emphasize the fact that the accuracy is 
determined by 1( h and not h alo ne. 

22 X 10-7 ,----.------,---1\-- --,----,----,-----, 

a: 
o 
a: 
a: 
w 

16 

8 

.1 6 

FIGURE 12. The unusual e1T01' curve for the 
incorrect method 6 with J( = 10 and h = 
0.002. 

The im proved answers are apparently due to the fact 
that the error remains positl\'e for a long period . 
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a: 
w O ~------~~--+--+-~---~ 

-1 0 

-20 

-30 L-_ _ _ _ _ _______ _____ ~ 

FI GUR E 13. E n'or curve of the modified 
equati on f 01' method 6 with K =20 ahd 
h = 0.002. 

The modifi cation rem oved the dependence of the x(t) 
eq uation on yet). rrhe max imum error is decreased by a 
factor of 10. 

h= .002. The close similari ty of the two curves again emphasize tha t the accuracy of the 
x(t) in tegration determines the accuracy of the yet ) integration . 

The unusual error cur ve for the "incorrect method 6" is given in figure 12 with K = 10 
and h= 0.002 . 
n~ Some studies woro also mado with a= 2 but the overall behavior was tho same. 

11 . Third Example- Noise 
The solution to (8.3) is 

x(t) = t/10 + 10- 6 sin 150 

ty(t) = 4 X 10- S[sin 25t - 6 sin3 25t+ (48/5) Sill5 25t- (32/7) sin 7 25t] + 0.004 [t sin 25t+ .04 cos 25t]. 

This system is very similar to (8. 1) wi th the addition of a r apid oscilla tion on x(t). However 
the expcrimontal results bear no resemblance to those for (8 .1) . In fact they seem to be com
pletely chaotic. Although the errors in the yet) integration are all relatively small and fairly 
uniform in size, there appears to be no correlation between the maximum error and J{ or method . 
An examination of the error curves reveals the same lack of trend. Even the errors in the 
x(t) integra tion do not behave r ationally as a function of K , which is equivalen t to the inte
gration interval. . Indeed the largest error occurs for K = 4. 

In figure 14 the y et) in tegration errors are plotted as functions of K and m ethod. The 
x(t) integration errors, which are independen t of the extrapola tion method, are also plotted 
as a function of K . 

Figures 15 to 18 are error curves for various situations. 

12. Numerical and Efficiency Considerations 

The ingredients of an ideal situation for these formulas are as follows: (1) F(x, y,t) is com
plica ted and difficul t to evaluate, (2) the solution for y et) is relatively insensitive to errors in 
x(t); i.e., the main error source is the inherent in accuracy of the y et) in tegr ation. The firs t 
ingredient magnifies the efficiency and the second is necessary to attain high accuracy. The 1 
second ingredien t may be replaced by " the accuracy desired for y et) is lower than that required 
for x(t)." It should be remembered that numerical integration is a delicate business in general 
and these formubs are par ticularly so and hen ce each case should be examined on its own 
merits. 

A comparison will now be made between the work required for spli t Runge-Kutta and 
the normal Runge-Kutta methods. " 

Unless the parameter K is changed very often the extrapolation paramoters should be 
computed only on ce. For the integration of (1.1) and (1.2) from to to to+ I<.h the following 
tttbles give the r equired number of operations for normal Runge-Kutta and spLi t Runge-Kut ta 
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FIGUHE 15 . E rror curve JOI' method 6 with 
K =2 and h = O.Ol . 

'rhis Curve was reprod uced for methods 5 and 6 with 
J(~ 1 anci h ~O.OL Apparentl y the majpr portion of the 
errOr oscillates with a period of about 0.23. Upon this 
then thore is superimposed an error with much smaller 
magniLUde and a much shortel" perioci. Compare the 
period of the errOl" with figure 5. 
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FIGURE 16. Error Curve Jar method 4 with 
K = 6 and h = O.Ol . 

The error oscillates with ap proximaLely constan t 
ampl itucie and a period similar to that of figures 5. 10. 
and 17. 
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FIGUHE 17. E rror curve for method~4_ with 
K = 5 and h = O.Ol. 

The error oscillates as in figure 16 except it is now 
OSCillating about tbe line; errOr~ (1.2t+0.2) 10"'. in ste-ad 
of zero. 
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FIGURE 18. Error curve for method 4 with 
K =4 and h = O.Ol. 

The same oscillation period is present and the oseiila· 
tioll is about zero. bu t t be erl"or curve appears to be 
"amplitude modulated ." 
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methods. Table 1 is for third order integration and table 2 is for fourth order integration. 
From these tables it is seen that if a large K may be used then there is a large saving in com
putation even if F is extremely simple. If F is complicated then the efficiency is even greater. 

TABLE 1 TABLE 2 

Add. Mult. Fe val- G eval- Add. Mult. Feval- Geval-
uation uation uation uation 

----
Normal Runge-Kutta _____ _______ 22K 28K 3K 3K Normal Runge-

Kutta ____________ 3SK 46K 4K 4K 
Split RWlge-Kuttu 

3K+ 2 method L _______ 14 (K+l) 17K+ 19 3 Split Runge-
Kutta ____ ______ __ 25K+27 29 [{+34 4 4K+3 

Split Rungc-Kutta 
methods 5, 6 ___ __ 16K+ 14 19([{+1 ) 3 3K+2 

(Paper 64B3- 32) 
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