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Equations
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Consider two simultaneous first order differential equations z'({)=F(z,y,t), y' ()=
G(z,y,t). Runge-Kutta type integration methods are developed which allow different inte-
gration steps to be used for these equations. These methods retain the desirable properties
of Runge-Kutta methods, namely the self-starting property and ease of change of integration
step.  Two different approaches are considered and extensive experimental work is reported
upon. Experiments are done both in situations where these methods are advantageous
and where they are not. It is seen that these methods are more efficient than the normal
Runge-Kutta methods if they are at all applicable and in ideal situations they give the same
accuracy with 90 percent less computation. These methods are applicable to six degree
of freedom missile simulations, for which they were developed.

1. Introduction

Consider two simultaneous first order differential equations:

Y Faat)  alt)=a (1.1)
)
T=Gay,t) Yt =, (1.2)

where y(t) does not depend strongly on z(#) or varies much more rapidly than z(f). In a
normal numerical integration method for these equations, the integration step - must be ehosen
small enough to adequately integrate both (1.1) and (1.2). In this paper Runge-Kutta type
methods are described which allow different integration steps to be used for these equations.
These methods retain the desirable properties of Runge-Kutta methods, namely the self-
starting property and the ability to change the integration step easily.?

The problem is defined in detail and two different approches to the development of the
formulas are given in section 2. The analysis for third order integration formulas is given in
sections 3, 4, 5, and 6. In section 7 the results are stated without derivation for fourth order
integration.

Three systems of differential equations have been solved using these formulas with varying
values of the parameters. The first equation is of the type suited for these formulas and they
result in a considerable saving in computation. The results are discussed in detail in section 9.
They point out that the second approach gives formulas which are considerably more accurate
than the first approach—although one would not expect this beforehand. The second equation
is of a type not suited for these formulas. The results are discussed in section 10. The third
equation is of the type suited for these formulas except that a very high frequency low-amplitude
oscillation has been added to (). The experimental results are somewhat erratic.

In the final section a detailed discussion is given for the situations where these formulas
are most useful and also comparison is made of their efficiency with that of the usual methods.
It is seen that these formulas are more efficient than the normal Runge-Kutta methods if they
are at all applicable and that in ideal situations they may give the same accuracy as normal
Runge-Kutta with 90 percent less computation. One area of application is to six degree of
freedom missile simulations, for which these formulas were originally derived.

1 This work was done while the author was at Autonetics, Inc. and at the National Bureau of Standards as an NRC-NBS Research Associate.
2 For an account of the basic properties of Runge-Kutta see ¥. B. Hildebrand, Introduction to Numerical Analysis (McGraw-Hill Book Co.,
Ine, New York, N.Y., 1956).
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2. Problem Definition

h denotes the integration step for (1.2), and Kh, where K is an integer, is the integration
step for (1.1). Let ¢, denote t,-+nh and let z, and 7, denote the numerical solutions of (1.1)
and (1.2), respectively at t=t,. Round-off error is not considered in this paper.

Consider two t-axes,

= Kh

tmk tm+nk timtok

h—.

th th+1 te t{m+1)K—1 t(m+l)K+1 e t(m+2)K

the first for (1.1) and the second for (1.2). It is now desired to obtain Runge-Kutta type
integration formulas that integrate (1.1) in steps of Kk and (1.2) in steps of A.

(1.1) can be integrated from f,x to t,, nx by a normal Runge-Kutta method. For a
third order method the pertinent equations are:

ko=KhF (X0, Yuy tn) )

ky=KhF (z,+viko, Yntrviho, tatviKh)

ky=KhF (x,+vsk1+ (va—"s)ko, Yntvsha+ (va—"3) o, tntv2Kh)

ho=KhG(xn, Yn, t,) > (2.1)

hy=KhG(@,+viko, Yutviho, tat7Kh)

hy=KhG(x,~+vsk1+ (va—v3)ko, Yntvsha+ (vo—"3) o, tnt-7.Kh)
Lm 41k =Tmx 1 Boko+ Bikr + Boks. )

The integration parameters vi, ¥z, vs, 8o, 81, and B, may be those of any third order Runge-
Kutta method. Note that A, need not be computed for this integration.

The main difficulty in integrating (1.2) is to obtain values of z(¢) at the integration points
between t,x and g,k A natural way to obtain these values is to extrapolate z(t) from ¢,
The Runge-Kutta method is itself an extrapolation process and one extrapolation has been
made in the integration of (1.1) from #,x to tuinx. The values of ko, ki, and k. from (2.1)
may also be used to extrapolate () from ¢, to the intermediate points. Let z,.,; denote the
extrapolated value of z() at t,xr;, 1<j<K-1. Then, for the appropriate coefficients \;(7),

3
il”n+1=i§1 >\z(j)k't—l-

Other estimates of z(f) are needed and they are obtained in the same manner.
For a third order method the equations for integrating (1.2) from ¢,x.; to t,x. ;11 are:

. 3
do (7)) =hG (@nx+jYmr+1,tmr+s)
6
d,(j)=h@ (xmx+,+§ \ () ki_4,ymx+,+mdo,tmxﬂwlh) |
R (2.2)

9
02D =G (e 2 M G ot s () do )

Ymk+1+1=Ymr+51 gty (7)+audy () -aeds (7).
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Two basic approaches are considered for obtaining the integration parameters uy, ws, us,
a, aq and a, and the extrapolation parameters \;(7), . . ., No(j). The first is to consider the
truncation error of the resulting integration formula for %(#). 'The parameters can be chosen
so that the method is third order. This is done in sections 3, 4, and 5. The second approach
is to determine the extrapolation parameters so as to make the extrapolation as accurate as
possible and then to determine the integration parameters independently. This is done in
section 6.

3. Preliminary Computations

For simplicity =722\,(j)k;_,, will be denoted by =,. Likewise,

t=n

WO D WO E 2 WRT(HE 2 WY ()
L@ N (D e (7)
MA@ YN () F7 e w2 ()
() Myshag2 ()

These expressions will occur quite often. The argument 7 will be omitted if it leads to no
confusion.

In order to consider the truncation error of the integration formula, various terms will be
expanded in Taylor’s series. There will be some derivatives evaluated at (z,x,%mx,t.x) and
some at (ZpxijYmxiptnxss). IExpansions will be obtained in this section that will allow a
comparison of such terms. A Taylor’s series expansion of ¥, will also be obtained.

The notation: /,=0F/dp, G,=0G/dop, F,,—=0d’F[opdq, G,,=G/Opdg; p,q=uy,twill
be used. The convention that /" denotes F(z,x,Ymnx,tnx) and that G denotes G(z,xi5Ymxris
tuit;) Will be adopted. The same convention will hold for derivatives of /" and G. Further-
more Fy, G, F,, G, will denote dIF/dt, dG/dt,

Fo?+-2F, FG+F,,@+2F, F+2F, G+ F,,
G, F*+2G,, FG+G,, 2426, F+26, G+G.,

respectively.
Then it is seen that

N
F@nxtsYmtitngs)
=+ B (e s—tme) + 2 Ung iy Ynx) FEGD 5 4 o Enars—Tnr)

+2F ) (Emrts—Tmx) Ymx 45— Ynx) + FoyYmzrs— Yme)*+ Fii(Gh)*?

+2F, i (Zm+i—2mg) (Gh) +2F y (Ymrts— Ymx) G+ . . .
G(xmK;ymK;th) = G— Gz(xmK-i-j'_ me) - Gy (ymK+j_ymK) _ Gt (]h) + o e e

(Kh)? ) - (3.1)

En= AnKhF+ (Kh)ZI‘n[FzF—I_FyG(me;ymK;th) +Fl]+T (An) [Fzzﬁ g

+2FzyFG(me;ymK;th)+Fny2(xmK;ymK;th) +2FztF+2Fth(xmK;ymK;th) +Ftl]
+ (Kh)3¢n[Fz<FzI"+FyG<xmeymK7th)+Ft)—I_Fy(Ga:(xmK;ymeth)F
+ G (Emr Ynr b)) O Eomm Y sonie) T O e Yz b)) - -

(n=1,4,7)
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Let y,(t) denote the solution of (1.2) which assumes the value ¥, at ,. Then
:I/IILK+j—?/IIIK: yrnK+j'_ ymK-f-j (th) +ymK+]’ (th) _ymK-
Since this will be a third order integration method,

?/IIIK+j(tMK>_ymK:ah»iJl—bhé‘l— “ e e e
Now

; h)? ;
ymK+j_'ymK+j(tn):G]h+%_)“ [pr(xmK+]'7 ?/mK—!—jy th—{-]’)_}"GyG_{" Gl]+ L)
and hence

. h)?
?/7,1K+7_?/,,1K:G]h+% [GIF(J/‘MK"FJ‘) Ymr+ 1y th+j)+GyG+Gt]+ . e

With equation (3.2) and by repeated substitution, eqs (3.1) assume the form:

F(xngsts Ymrti, Emk+1) =F+ MKW F+jh(F,G+F})

2
—{-%[I"IIF2K2A%+2l'}yIf’GKA.j+I”,,j2+Fny2j2+2F“KA1j+214’,,sz2]+ 500

G(xmK,ymK,th) - G'_ GIﬁKA]IL—]’L(GyG+ Gt) ‘l_ « s e

(Kh)*

Elz:ﬁKAnh+ (Kh)2pnlﬂl+~‘2— Anlf2+ (Kh)3¢n(‘FzFl+FZIG1)

— (KRh)T[G.FE b+ G,Gih+Gghl+ . . . (n=1, 4, 7).

4. The First Approach

(3.2)

(3.3)

(3.4)

(3.5)

The difference ¥,xi;tEnxsiir) —Ynrrso Will be expanded in a Taylor’s series and the coef-
ficients of all terms of third order or less in £ will be equated to zero. The resulting equations

will be used to determine the integration and extrapolation parameters. Now

Ymr+ j(th+j+l) —Ymrt+ir1=Ymr+j (th+j+l ) —Ymr4i— aodo— aldl - szdz-

With eqs (3.3), (3.4), and (3.5) it is seen that:

1
Ymiti(Engrsrr) =Ymr+s+ Gh +§h2[G,F (@nxtsYnrsptnxrs) + GG+ G

1
+’6h3 [th'Jf_ ZthG'}_ GwG2 + G11F2 (xmK-{—jyymK{»jyth-(-j)
+2G i F @nrs Y mrtitngts) T 2C0yGF (Tngs 1, Ymrtitmrss)]
1
+§h3 (G (CoF (T 1 Ymrcs55tmrss) + GG+ )

+G.{F. (Cmrs iy Ymrsitngss) F@nrt i Ymectitngts)

+GF (TnrisYmrsitngrs) T Fi(@mrspYmesntnes) H+ . . .

1 1
=Ymr+;+Gh+ §h2G 1+ 6”/3612

—l—%hz“(G,,Gl—}—G,Fl)+%h3G,(FFIKA1+F,,Gj+F,j)+. .
o7

do(j) =16,
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dy(5) =hG+h(G,Zi+ G, Guh+ G ouh) 1
3G 23 26, G2 A 2G Z sk A Gy B ()26 G (i) (k)]
—hGH R (G FK A+ GG+ Gan) < 4.3)
1[G K2 AZ+-2G, GFK A iy 26y FK Aguy + G, G213
+26,,G8+ G wi +HRPKT LGP+ . ..

dy(7) =hG+h(G.Z;+ G, Guh— G ush)
 3A[G, =24 2G, Ok 426G, Zrpish A Gy P (1) 42, (k) + G (k)]
+ ush?*G(G.24+ G, Guh+ G yh)+ . . .
=hG+W[G.FK A+ G,Guy+ G o)
G R A 42, OF K Mg +-2C, FK A+ G, 3 +2G, Guid+ Gl
+ k3G, (G FK Ayt G, Gy + G o) + BKT,GLF A . . . (4.4)

The following system of equations results when the coefficients of the various terms are
set equal to zero:

1
(4.5) atoytay=1 a1u%+a2ﬂ§=§
1
a1#1+azﬂz=5 M= ¢
4.6) oA K+aphK—1 oty KAy —— (4.9)
2 6
4.7) a1A2K2+a2A$K2=% a1K2F4+a2K2F7=%+% (4.10)
1 1 KA
(4.8) al#lKA4+a2#2KA7=§ 041K2F4+012K2F7=6+ 21 (4.11)

Equations (4.5) are the usual equations for the integration parameters of a third order
Runge-Kutta method. From (4.9) it follows that KAs=pu, and hence by (4.6) KA;=pu.
From (4.10) and (4.11) it is seen that KA;=j. Equations (4.6) through (4.11) may then
be replaced by

j 2 1 . .
A1=l A7=& A4=;—{1 0‘1114‘]““21‘7:6[? (1+SJ)' (4-12)

No attempt will be made to discuss all possible solutions of (4.5) and (4.12). However,
a few obvious facts will be pointed out. From (4.5) it is seen that u #0, w370, ap7#0. Like-
wise v;7#0. It is clear that A;, A4, A;, I'y and T; are independent. Since the matrix

1 0 0 O
01 0 O
0 0 a; Oy

is of rank three any set of third order Runge-Kutta integration parameters may be used.
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One could at this point make an analysis of various types of simple solutions of (4.12).
However, in the next section it will be seen that there are some other considerations. Two
sets of parameters are given for comparison purposes.

Qg o, Qs My, Mo, Ms  (arbitrary solutions of (4.5))

_J M _t_
M=R Mg MTRTM (4.13)
1437
>\8=6a2'le2 )\2: )\3: }\5: )‘6: )\g: 0
S 1 A
a0=0 OZIZZ aZ:Z
2
=3 u=0 ps=1
‘ > (4.14)

7 _2 _ 2 :
M= M=zp—h Neg g (143))

}\2:)\3:)\6:)\7:)\g:>\g:0.

5. The Truncation Error

In this section the truncated terms of the various expansions will be considered in some
detail. A term shall be said to be 7'(j«KPh") if it is of the form 72 K#L"f where f is a function in-
dependent of 7, K and 4. 1t would be desirable for all of the fourth order terms truncated in
the integration of (1.2) to be 7'(h*). The procedure would be pointless if some of the truncated
terms are T'(K*h*). It will be seen that there are terms which are 7(Kh*) and T (72K 'h*) which
cannot be simultaneously eliminated by any choice of extrapolation parameters.

All of the truncated terms from ¥,x;(tmgrji1) —Ymrs o1 Which are not 7'(h*) are listed below.
It is assumed that Ay=j/K, A=w/K, A;=wu/K. The terms from ¥,xr;tnxsiri), di(7) and
d,(7) are grouped in that order.

(1—|—8j+ 12K°T

8 (Gt G+ Pt TTUTIZET) g g

<1+4.7) G.G FH_Q"M GE ﬁ%{;—ﬂ GGy

“1K2F4<zeF+ nyG+ GzL)FI +Ks¢4 Gz Fx Fl —*‘%KgAAi Gz FZ +K2(K¢4_.?I‘4) Gz Fy Gl 5
M2 K P7(GMF+ nyG‘l_ Gzz)Fl +K3¢7GIF:C Fl +%K3A7 G:cF2 +K2 (K¢7—.7 F7> GxFy Gl +,U3K2F4 GszFl-
The original statement was that %(¢) did not depend strongly on z(¢) or varied more rapidly
than z(¢). 'This statement may be replaced by the following explicit assumptions on # and G:
Assumption 1: The following inequalities are valid:
|F,| <|6,/K, p=u,y,1,2.
This assumption implies that y(t) does vary more rapidly than z(f).

Assumption 2: G, 18 T(K™).
It is seen from (4.12) that T'y and T; are T'(jK?)
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With assumption 1 and the preceding remark it is seen that there are two groups of terms
which are not 7'(h*). They are

. h o
OL%Z‘:—MG::I(;, ‘I;KﬁAqGIFYQ, %KSA_’GZFZ

and

1+4+45—67? : ;

WY =0D0 k6,  KEo—iT)GFG,  K(Ko—iT)GF G,
These terms would be eliminated if the following equations held:

1-+4j4 62
12K°

=a1A4—{—a2A7

1+4j—65

“ourr e —jly) tar(Ké—I1).

These two equations may be transformed into

14454642

12K3—==a1A4—|—a2A7. (51)
14-874-67*
%‘7—=a,¢4—|—a2¢7. (5-2)

Unfortunately, it is not possible to satisfy (4.12), (5.1) and (5.2) simultancously. The
equations

1437
L'y, l'7= 6_*1_{2]

1444652
eyt auhy=t T L

14874672
ax¢4+a2¢7=i24j;£—3]

are incompatible. It is possible to satisfy (4.12) and either (5.1) or (5.2). Since the terms
involved by (5.1) and (5.2) are T(2K~'A*) and T'(Kh'), respectively, the smallest truncation error
results when (4.12) and (5.2) are satisfied.

If (5.2) or (5.1) are to be satisfied, then some of the simplicity of the extrapolation coeffi-
cients is lost. Two sets of parameters are given below; the first satisfies (5.1) and the
second satisfies (5.2).

M1, Mo, Y1, Yo, vs (arbitrary Runge-Kutta integration parameters)

1‘|‘3j o2

:6(11’le2 1 (53)

M=% M=ENh N

_ 144546722y, K(1+35)
12K01172(’Y2—‘Yl)

N M=% Ae=As=Ag=Np=0

By Moy Vi, Yo, s (arbitrary Runge-Kutta integration parameters)

J M 1435 Neve
M=L  A=EN—hs A= A 1
K RO T 3amK? ™ (5.4)
__14-85+65° b yriniiog
MR M= M=h=de=h=0
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These equations are somewhat more complicated than those given in section 4.
With assumption 2 it is seen that there are three groups of terms which are not 7'(4*).
They are
(14+8j-+12K°T
24

)G RF,  K$GEF, KéeGEE,

and the two groups found with assumption 1. These terms would be eliminated if the following
equations held.

14-45+672
247[{3 Y = A4+ lq
1+87+67* 14-87+12K°T
247[{3 : ]24[{3 “=aupt-asr.

Hence if T is set equal 72/2K? the same equations are found as with assumption 1.
6. The Second Approach

In this section the extrapolation parameters will be determined so as to make the trunca-
tion error of the extrapolation as small as possible. This procedure is similar to the analysis
for the Runge-Kutta integration of one equation.

The extrapolation of z(¢) to any value #,x to any value ¢, 7 is given by

TmrTNo (T>ko+)\1 (7') ki 4-Xs (T> ko

where kg, k; and k, are from (2.1). N\(7), M (7) and N\(7) are determined by equating the co-
efficients of /& in the expansion of the error equal to zero. The resulting equations are

M (@) N (D) +N (7)=1/Kh (6.1)
M (7 va-ha () vamy 7 (KCR)? (6.2)
M (r) 7R () V= 7Y (B’ (6.3
N (r) vivi=g 7/ (KD (6.4)

Equation (6.1) results from equating the coefficients of & to zero, (6.2) results from equating
the coefficients of A* to zero, and (6.3) and (6.4) result from equating the coefficients of 2° to
zero. In general only three of these equations can be satisfied  One would naturally choose a
solution which satisfies both (6.1) and (6.2).

These equations may be written for the extrapolation parameters. The resulting equations
are:

A1=Ii{ 1\4:% 4&72% (6.5)
3 : 2 ; 2

Rl el s (6.6)
3 i+ )’ (+m)°
. . it

by el g U (6.8)
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Equations (6.6) and 6.5) imply that (4.12) is satisfied. The converse is not true. It is easily

shown that (6.7) implies

6.j2+ 4I+ 4 (‘XJM:H‘ az#g)

CAVE SOAYES 12K3

and that (6.8) implies

6j2+ 4j+ 4(a1y?+a2pg) .
24K

s+ =

Therefore (6.7) implies that the G/, term is T(7?K~'A*) and (6.8) implies that the G.F,G, term is
T(Kh*). Hence (6.7) and (6.8) have the same effect on the truncation error as (5.1) and
(5.2) although (6.7) and (6.8) do not actually imply (5.1) and (5.2), respectively.

It is rather surprising that I',=7?/2K” does not appear among the equations derived in sec-
tions 4 and 5 with assumption 1. It is certainly plausible to include this equation in any set
of equations taken to determine the extrapolation parameters.

Two sets of parameters are given, the first satisfies (6.5), (6.6), and (6.7) and the second
satisfies (6.5), (6.6), and (6.8).

Wi, M2, Vi, Yz, Ya (arbitrary Runge-Kutta integration parameters) )
N __.7;_)\ Y - 27°—37,Kj* _ 2P=3Kjn
K : @ : (5K3’Yl(’)’1—72) ’ 6K3‘72(‘Yz_‘¥1)
. 4 . . . . . ; 6.9
=P\ )\}_:27(];}—/17,)"7_372712(]—}—#1)2_)\. \ 22(74-#1)3—31((]4—#1)271 gl
CROTTTY ’ 6Ky, (vi—72) v ! 6Ky, (v2—1)
M2 2(74 12)*— 37K (j+u)® 2(4p2)’—3K (4 m)*n1
el L ek e e R R D 2
TR ¢ 6Ky, (v1i—72) ’ ! 6 Ky, (Ya—1) J
Wiy M2, Y1, Y2, vs (arbitrary Runge-Kutta integration parameters) )
Iy I A 2T _ 7’
o R Ry °¢ 2y, 6Ky, )‘3_6K37173
- R " : 6.10
B _GERY mGer_ o _Grwr_ [ 10
KR i > 2K*,  6KPyiy, & STOK Py,
M2 N _(j+’#2)2_72(j+#2)3_ _(j+#2)3_
MERTN M NS o T 6Ky, Y M TRy,

If only (6.5) and (6.6) are to be satisfied there is considerable simplification in the extrapola-

tion coefficients.

The following set satisfies (6.5) and (6.6):

ML, A=t A—0 |
K - 2Ky,
5 2
=B, )\5:%}{2 N A=0 % (6.11)
s 2
N—P2 Y :(]+“3) —\ Ao=0
u K , E QKZ'YI : ! /
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7. Fourth’Order Formulas

An analysis similar to that of sections 4, 5, and 6 may be made for a fourth order integration
method. Only the results of such an analysis are given here. The equations for a fourth
order integration method are:

ko=KhF (Xng, Ynk, tnx)

ki=KhF (@nx+viko, Ymx+vilo, tnx+71Kh)

ky=KhF (@nx+vsk1+ (va—"v3) ko, Ymxtvsha+ (vo—vs)ho, tux+7.Kh)

ks=KhF (x,ux+vekatvski+ (va—vs—ve) ko, Ymx+Yshatvsha+ (va—vs—r6)ho, tnx+v:Kh)
ho=KhGQ(@nk, Ynx, tnx)

b= KhG(2nx+viko, Ymx+riho, tnx+71Kh)

hy=KhG (@nx+vsk1+ (va—v3) ko, Ymx+vsha+ (v2—s) o, tnx+72Kh)
hs=KhG(@nx+voks+vsk1 1+ (va—vs—76)ko, Ymx+vshat+vshi+ (va—vs—Ye)ho, tmxtv:.Kh)
Ttk =Tmx+ Boko+ Biky + Boka + Bakes

4
xmK+]’=§ Ai(j)ki—l +xmK
do(7) =hG@nxt1,Ymrtitnkss)
. 8

dy(7) :hG(me+i+§5 Niks 5, Ymr st mdotmrss+ mh)
12

dy (.7) =hG(xmK+j+§ >\1’C1-9,?/m1<+j+ sy (ua— MS)dOyth+j+ P-zh)
16

dy (.7) =hG(me+;‘+§3 >\iki—13yymK+j+ ol usdy - (pa— ps— #ﬁ)do,thH'Jr‘ wsh)

Ymktj41=Ymr+j T oo+ ondy + andy+ erydly

The integration parameters must satisfy:

aytat+artaz=1 a1#?—|-a2;4§+a314‘2:%

gyt aps =3 Ty ST TS ST T S 7.1)
api+ a3+ 013#22% i pyt aBM%M6+ as#?#sle? .
Qo M3t ez o g Otz iy 5= % 013#1#3#6:?11
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The extrapolation parameters must satisfy the following equations in order for the
integration method to be fourth order:

. 1435 )
Alz% a5ty a'3= (;}_{2'7
14-47-1 642
Asz%1 “1A5+012A9+“3A13:%L
3184
Ag—_—’;—é all’vlr5+a2ﬂ2r9+a3ﬂ4rl3:2:—KZ - (7.2)

14854652
A13=#—[é 51 Ctapy +- sy = %

. 147
P1=2§{2 a2#3115+a3#51‘5+¢13#6r9=2f;}}?g )

where
M= Ar >\n+l I >\n+2 +>\n+3 An:'ﬁ)\n-u ‘*"Y%}\n-x-z‘i"yz)\n%
I'v=7Nt1 +“/2>\n+2 +'Y4)\n+3 ¢n:7173)\n+2+ (7175+7275>>\n+3

The truncated terms have not been examined as in section 5 due to the extremely tedious nature
of such an examination.
The equations analogous to (6.5), (6.6), (6.7), and (6.8) are:

A1=% A5=% Ag:ufé ‘&13=#—é (73)
. . ) . i : "
F1=ﬁ§ F5=(]2“JI‘KI'1;) -1, r _(];‘I{#zz) r Pw:(]z‘;{#;) —T, (7.4)
" . 3 . . . .
I A T R
The relation between the \; and the A,, T',, A, and ¢, is
A, 111 1 A, |
r, 0 v Yo V4 Aot1 ‘
e ‘
A, 0+ i M2
b 0 0 7yovs (vvstveve) S
This relationship can be inverted and
Ay A,
Ant1 r,
=/
)‘n+2 An
)‘n+3 | ¢n
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where A is the matrix with elements a;;/p,
P:'Yl[(Yz—"Yl)Vz(’Yl75+7276) Fv1v3vs(y1— )]
aiu=—p Gip= (’Y? - 73) (’Y1 75+7276) —Y173 (71—74) 3= (’Yz'—’Yl) (’YI Y52 ”)’6) + v1vs (vi—v4)

a=(r1—2) (va—s) (Y1—v4)

2 2
=0 a22273(7175+7276)‘“717372 @23 = v1¥s¥s — Y2(Y1¥5 T Y2v6) A24="2Y4 VY4
a3 =0 @ = — V1 (V15 7276) as=71 (M5 72%) a5 =717 (v1—71)

3 2
an=0 Ay = Y13 Ay3=—Y1Y3 =717 (v2—1)-

If Runge-Kutta-Gill integration parameters are used, then

il —3 2 0 k

0 0.58578646 2.8284272  —6.8284272

= 0 3.414214 —6.8284272 6.8284272
0 -1 2 0 )

8. Experiments

Experiments have been made with these formulas on three pairs of differential equations.
They are

dt
) > (8.1)
%zx cos (25t) y(0)=1/1250.5
g 7
d _ b )
; > (8.2)
y 13z o
it~ a(E+1)e y(0)=a |
dx . — }
EZ:'I+(1'O><10 ) cos (150¢) 2(0)=0
\ (8.3)
dy
gp =T eos (25¢) y(0)=.00016.
J

Equation (8.1) is a typical example of a system suited for split Runge-Kutta. Kquation
(8.2) is an example of a system not suited for split Runge-Kutta. Yet even in this situation
there may be some advantage to using it if the solution for y(f) is needed with much more
accuracy than that for z(¢f). In (8.3), y(t) is much more rapidly varying than z(f), vet the
small oscillation in z(f) gives it a comparatively large second derivative. The experiments for
each of these equations are discussed in considerably more detail in sections 9, 10, and 11.

No experiments were made with parameters derived from assumption 2 in section 5.
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9. First Example—The Typical Case

The solution of (8.1) is
()= 9.1)

y(t)=(% cos 25t+25 sin 25t)¢!/2/625.25. (9.2)

There are three basic variables in the solution of (8.1). They are (i) the method of solution,
(i1) K, (iii) k. The methods of solution are numbered 1 through 6 corresponding to equations
(4.13), (5.3), (5.4), (6.11), (6.9), and (6.10), respectively. The same integration parameters
were used throughout. They were:

010250:2/9, a=p,=1/3, a2262:4/9y 712#121/2, 72:#2:3/4y ’73:#3:3/4-

In figure 1 the errors in the y integration are studied as a function of K for various methods
of solution. The integration interval & is fixed at .01 and the error is the maximum error for
0<t<1. In general this occurs close to t=1. The value of the error of the z integration
at t=1 1s also given. Here the variation of K is equivalent to varying the integration step.
This error behaves like K> 7 in the range of values considered.

10 T T I T
METHOD |
X (1) ERROR AT t=|
10~
METHOD 4
1075 =
METHOD 6
Ficure 1. Maximum integration errors as
a function of X and the extrapolation
method.
-6
10°°— m
loptd = ]
1079 '
0 5 10 15 20 25 30 35
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There is very little difference in the results for the first three methods and only one curve
is given. These methods proved to be inferior by a large factor compared with the second
three methods.

There is little difference in the results for the fourth and fifth methods. Only the results
for the fourth method are plotted. This lack of difference can be explained. Method 4
corresponds to satisfying eqs (6.1) and (6.2), and method 5 corresponds to satisfying (6.1),
(6.2), and (6.3). Now (6.3) arises from setting the coefficient of F, equal to zero and for this
system F=az and F,=0. Hence there is no improvement when method 5 is used rather
than method 4.

On the other hand method 6, which satisfies (6.1), (6.2), and (6.4) is a definite improvement
over method 4. Equation (6.4) arises from setting the coefficient of F,F,+ F,G=¢'2/8 equal
to zero and hence an improvement would be expected.

There is another phenomenon apparent in figure 1 and a very significant one. That is the
fact that the error does not decrease with K after a certain point. Indeed, the same accuracy
for y(t) may be obtained with Kh=0.35 as with Kh=0.01 if method 6 is used. This phenom-
enon is explained by the fact that there are two factors that contribute to the error in the
y(t) integration. One of them is the error in extrapolation of z(f) and the other is the error
inherent in the actual integration of y(f). For some values of K the extrapolation errors are
dominant and for other values the integration errors are dominant. When the extrapolation
errors are no longer significant then improvement can be made only by decreasing .

In figure 2 the errors are studied as a function of 4 with K fixed. This was done only for

=

X (1) ERROR AT t=1|

Ficure 2. Maximum integration errors as
a function of h and the extrapolation

method.
K is fixed at 25.

1072
METHOD 4
Tod | |
.001 .004 .008 012
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@
o
(TRTCY 1 -20 ]
@x
-20} & -30 1
o
w
-30 1 1 1 v _ N
0 2 4 6 ) 10 g
Ficure 3. Error curve for method 1 with -50 =
K=25 and h=0.01.
5X1076 - - . r -60|- -
/\ -70 I ! I I
Q \/ 0 2 4 6 8
i i Figure 6. Error curve for method 6 with
K=25 and h=0.01.
g Identical curves are obtaired for smaller values of K
x -0} = and for K'=35 the error curve is very similar,
&
_ls — -
60X 1073 , r - T
_20 L= |
50= =
=25 ! 1 | L
0 2 4 6 8 1.0 40 |- ﬂ
Ficure 4. Error curve for method / with x
K=25 and h=0.01. & 30 1
w
201077 T T T 20 - b
10 s
0 A | 1 I fi 1
(o] =2 4 6 .8 10
Ficure 7. Error curve for method 1 with
K=25 and h =~0.008/.
% It is seen that the relatively larger error here is due to
o the chance shape of the curve and not to any basic lower
i aceuracy.
-60 ! 1 il !
(o] R 4 .6 8 1.0
Ficure 5. Error curve for method / with
K=10 and h=0.01.

the first and fourth methods.

Figure 2 is self-explanatory except to point out that things are
not always as one thinks they should be in numerical analysis.

There is no particular explana-

tion for the fact that the error does not decrease monotonically with £, it just happens that way.

Figures 3 through 7 are plots of error curves for various situations.
Figure 4 is for method 4, K=25 and h=.01.

K=25 and h=.01.
K=10, h=.01.

It is identical with the curves with K'=5, 1.

Figure 3 is for method 1,
Figure 5 is for method 4,
Figure 6 is for method 6, K=25,

h=.01 and it is identical with the curves with K= 10, 5, 1 and very similar to the curve with
K=35. Figure 7 is for method 1, K=25, h=.01/v/2 ~.0084.

Identical curves are obtained for smaller values of K.
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10. Second Example-—An Unprofitable Case

The solution of (8.2) is
2()=a’(t+1)?/13 (10.1)

yt)=a(t+1)% (10.2)

All of the results discussed below are for a=.1.
In figure 8 the errors are studied as a function of K for various methods of solution.

i I I l
.\ ERRORS IN
7/ [ XWAT t=2
/& A
7
o
METHOD 4+5, // ERRORS IN Y (1)
) AT =2
4 /// 4 /
1074 |
METHOD 6 (7
g
INCORRECT_ /' / |
METHOD 6 7N,/ {
///
///
/ METHOD 4 +5
7
1075 //// METHOD 6
v

INCORRECT
METHOD 6

Ficure 8. Integration error at t=0.2 as a
Sfunction of K and extrapolation method.

It is seen that the y(t) error depends directly on the
x(t) error. The maximum error aceurs at £=0.2.

107°—

107"

1078 I | | |

Methods 1, 2, and 3 are not used. Methods 4 and 5 give very similar results while method 6
does somethat better than either of them. Also included is an “incorrect method 6’ which
gives the best results of all for larger K’s. In this method A\s was computed from

A =(j+#2)2_72(j+#1)3
ST2K?y, 6Ky

instead of its true value given in (6.10).

The fact that method 6 is better than methods 4 and 5 cannot be explained as previously.
Indeed, by that argument method 5 should be the best and method 4 the worst with method 6
in between. Recall that method 5 satisfies (6.3) which is obtained from setting the coefficient
of F, equal to zero, likewise method 6 is obtained from setting the coefficient of F,F\+F,G,
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equal to zero. Now in this case Fy=120a® (t+1)"° and F,F,+F,G,=6a° (t-+1)° and hence
method 5 should be the best. This points out that the truncation error is not always a good
measure of the integration error.

It is seen that the integration error does not level off as K decreases. This is due to the
fact that the major portion of the error in the () integration is due to the errors in the inte-
eration of x(t), as differentiated from the errors in the extrapolation of z(f). This is borne out
by figures 9 and 13. In figure 13 the ¥ (¢) integration error is plotted for the system of equations

(L‘I"_ 6 12
dt " (¢+1)

W_ 1 30las(t+ 1)
dt
which have the same solution as (8.2). Method 6, K=20 and A=.002 is used. This leads to
much more accurate values of x(¢) which in turn lead to a much more accurate y(¢) integration
even though the extrapolation accuracy has not improved.
In figure 9 the error curves for methods 4, 5, and 6 are compared with K=20, /=0.002
and for 0 <t<.2. s
The error curve for method 4 with K=1, h=0.002 is given in figure 10.
In figure 11 two error curves are given which have the same interval of integration for
the z(t) equation. Both use method 6, one with K=1 and A=.02 and one with K=10 and

T T
@
| o
| @
x
w
=50 L ! 1
0 .04 .08 2
Ficure 9. Error curves for methods 4, 5 .
and 6 with K=20 and h=0.002. 12X10 - - -
The improvement of method 6 seems to lie in the fact A 3 .
that the error remained positive much longer than for Frcure 11. Error curves for method 6 with
the other two methods. I’r y 009
{ and h taken to be (10, 0.002) and
(1, 0.02).
These curves emphasize the fact that the accuracy is
determined by Kh and not h alone.
0o
22%1077 T
16 -
=8
@ @
o o
@ @
@ @
w w
8+
=16
I 0 ! L . !
| 24x107° w L - L L /o) .04 .08 12 16 .26
(] .04 .08 ol 16 220
Fraure 12. The unusual error curve for the
Fraure 10. Error curve for method /4 with incorrect method 6 with K=10 and h=
K=1 and h=0(.002. 0.002.
This corresponds to the normal Runge-Kutta integra- The improved answers are apparently due to the fact
tion procedure. that the error remains positive for a long period.
|
‘ 552370—60—3 167




40%10™"

Freure 13. Error curve of the modified
: equation for method 6 with K=20 and

h=0%0023
The modification removed the dependence of the z ()
L U ]

ERROR

equation on y(t). The maximum error is decreased by a
factor of 10.

-20 .

-30 !

h=.002. The close similarity of the two curves again emphasize that the accuracy of the
z(t) integration determines the accuracy of the y(t) integration.

The unusual error curve for the “incorrect method 6 is given in figure 12 with K=10
and A=0.002.
p;> Some studies were also made with e=2 but the overall behavior was the same.

11. Third Example—Noise
The solution to (8.3) 1s

z(t) =t/10-+-107% sin 150
ty(t) =4 X 107 5[sin 25t —6 sin® 25t (48/5) sin® 25t— (32/7) sin” 25t] +0.004 [t sin 25t .04 cos 25¢].

This system is very similar to (8.1) with the addition of a rapid oscillation on z(f). However
the experimental results bear no resemblance to those for (8.1). In fact they seem to be com-
pletely chaotic. Although the errors in the y(t) integration are all relatively small and farly
uniform in size, there appears to be no correlation between the maximum error and K or method.
An examination of the error curves reveals the same lack of trend. KEven the errors in the
z(t) integration do not behave rationally as a function of K, which is equivalent to the inte-
gration interval. Indeed the largest error occurs for K=4.

In figure 14 the y(¢) integration errors are plotted as functions of K and method. The
z(t) integration errors, which are independent of the extrapolation method, are also plotted
as a function of K.

Figures 15 to 18 are error curves for various situations.

12. Numerical and Efficiency Considerations

The ingredients of an ideal situation for these formulas are as follows: (1) F(z,y,) is com-
plicated and difficult to evaluate, (2) the solution for y(#) is relatively insensitive to errors in
#(t); i.e., the main error source is the inherent inaccuracy of the y(#) integration. The first
ingredient magnifies the efficiency and the second is necessary to attain high accuracy. The
second ingredient may be replaced by “the accuracy desired for y(#) is lower than that required
for z(t).”” It should be remembered that numerical integration is a delicate business in general
and these formulas are particularly so and hence each case should be examined on its own
merits.

A comparison will now be made between the work required for split Runge-Kutta and
the normal Runge-Kutta methods.

Unless the parameter K is changed very often the extrapolation parameters should be
computed only once. For the integration of (1.1) and (1.2) from #, to t,+Kh the following
tables give the required number of operations for normal Runge-Kutta and split Runge-Kutta
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Fraure 14. Maximum integration errors as
a function of K and extrapolation method.
Thelines only join the data points and are not intended

to represent the actual behavior of the curves between

data points.

18X1078

ERROR
o

| Il

| ]

0 o 4 6 8

Fraure 15. Error curve for method 6 with
K=2 and h=0.01.

' This curve was reproduced for methods 5 and 6 with
K=1and h=0.01. Apparently the majpr portion of the
error oscillates with a period of about 0.23. Upon this
then there is superimposed an error with much smaller
magnitude and a much shorter period. Compare the
period of the error with figure 5.

30Xx1078

2ON=

S ANAN W)

ERROR
(o]

AVAVAY

V

1 1

=30
0 o2 4 86 1.0
Fraure 16. Error curve for method / with
K=6 and h=0.01.
The error oscillates with approximately constant
amplitude and a period similar to that of figures 5, 15,
and 17.
o}
-40
T -s80
14
@
w
-120
160 x10°®
| I | |
0 2 4 6 8 10
Ficure 17. Error curve for method 4 with
K=5 and h=0.01.

The error oscillates as in figure 16 except it is now
oscillating about the line; error= (1.2¢40.2)10-%, instead
of zero.

80x107® T T T
@
o
@
@
w

-60 | 1
0 i

4 6 .8

Ficure 18. Error curve for method /4 with
K=/ and h=0.01.

The same oscillation period is present and the oscilla-

tion is about zero, but the error curve appears to be

“amplitude modulated.”
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methods. Table 1 is for third order integration and table 2 is for fourth order integration.
From these tables it is seen that if a large K may be used then there is a large saving in com-
If Fis complicated then the efficiency is even greater.

putation even if F'is extremely simple.

TaBLE 1 TABLE 2
Add. Mult. Feval- G eval- Add. Mult. Feval- G eval-
uation uation uation uation
Normal Runge-
utta_._____._.___ 2K 28K 3K 3K Normal Runge-
Kutta____________ 38K 46K 41K 4K
Split Runge-Kutta
method 4 _______ 14(K+1) 17K+1$ 3 3K+2 Split Runge-
QU e 25 K427 29K-+34 4 4K+3
Split Runge-Kutta
methods 5, 6. ____ 16 K414 19(K+1) 3 3K+2
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