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Let F(z,y) be the joint distribution function of (X, Y), possessing a probability density

function f(z,y).
spectively.
(X, Yi), k=1, .
X< X; and Y<Y if =]

Let Fi(x) and F,(y) be the marginal dlstnbutlon functions of X and Y re-
Let a be a quantile of () and 8 be a quantile of Fy(y).

A random sample

., nm,is dm\\n and the values on each variate are ordered so that
Let 7 and j be the greatest integers such that i/n <F 1(@) and
7/n <Fy(B), and let M be the number of elements (\ Y)

such that X< X} and Y< ) The

joint distribution of (M, XY} is obtained and is xho“n to be asymptotically normal.
Estimates and confidence limits on the parameters of interest are also given.

1. Summary

The exact distribution of quantiles as well as its
limiting form is well known in the univariate case.!
Mood ? investigated the joint distribution of medians
in samples from a multivariate population and
showed that it is asymptotically normal. In this
paper the exact joint distribution of quantiles and an
auxiliary statistic in samples from a bivariate popu-
lation are obtained and it is shown that the joint
distribution is asymptotically trivariate normal.
The auxiliary statistic is utilized to estimate the
correlation coefficient between quantiles and also for
setting up confidence limits on 1t. KEstimates for an
ordinate of a univariate probability density function
(pdf) are also obtained. These are used in setting
confidence limits on the quantiles.

2. Introduction

Let F(z,7) be the distribution function of (X,Y)
possessing a pdf f(z,y). Let the marginal distribution
function of X be denoted by #,(z) and that of ¥ by
Fy(y). Let a be a quantile of Fi(z) and B be a
quantile of 75(y). It is assumed that the first and
second partial derivatives of F(z,7) are continuous
in a neighborhood of («,8) and that f(e,8)#0. A
random sample (X;,Y5), k=1, ., m, 1s drawn
from F(z,y). Let the sample values of X be ordered

so that
MR < X

Similarly, let ¥]< . < Y,. All such samples
for which X; X 01 Yi—Y for different indices 7
and j may be c\cfuded from consider: ation, as these
samples form a set of probability zero. Let 7 and j
be the integers such that

i/n <F ()< (i+1)/n; jin <Fy(B)< (+1) /n.

*Contribution from the National Bureau of Standards Boulder Laboratories,
Boulder, Colorado.
! Harald Cramér, Mathematical methods of statistics, p. 368 (Princeton Univ.
I’less, Princeton, N.J., 1946).
2A. M. Mood, On the joint distribution of medians in samples from a multi-
variate populatx(m Ann. Math. Stat. 12, 268 (1941).

Hence i/n=F\(a)—b,/n, j/n=Fy(B) —8,/n, 0 <8, 8, 1.

If M denotes the number of ele ‘ments (X,Y) in the
sample such that X<< X} and Y<<Y7, then M is a
discrete-valued random variable with possible values
0, 1, , min (¢—1, j—1).

First the exact distribution of (M, Xi, Y7) is ob-
tained for a fixed n. Then the asymptotic ¢ {istribu-
tl()n of the standardized variates is found when
1, 1, 7—> so that i/n—F\(a) and j/n—F,(B).

3. Joint Distribution of the Three Variables

Let us take a Euclidean plane (z, %) to represent
the sample points. Given two numbers z, and y,,
the lines 2=, and y=1y, divide the plane into four
quadrants, namoly
{@, ) 2w, y<wo},
(@, ) e<<wzo, y >0},
{@, ) 2 >w0, y<uo},
{@@, ) >0, ¥ >0}

Y)eQy}, i=1, 2, 3, 4.

f \

Qs

Il

Let p,=Pr{(X, Then

p1=F(x0, 10), Pa=1(20) — F (20, Yo),
ps=Fs(yo) — F(x0, Yo), Ps=1—F\(x,)
— F5(yo) +F' (20, Yo)-

Xi will fall in (z), 2o-+dag) and Y7 will fall in (y,,
Yot+dy,) in all samples (X, Y73), k‘—l , 1, such
that the following statements hold qunultanoously
(1) i—1 points “fall on the left of the line z— %o,
n—1 points on the right of it, and one point on it;
(2) j—1 points fall below the line y=y, n— j
points above it, and one point on it.

Let (2,,Y”) and (X’,) denote the points which
fall on z=1, and y=1y, respectively. There are five
distinct possibilities:
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Case (1): X'z, and Y’<yo,

Case (2): X'<mz and Y’ >y,
Case (3): X' >z, and Y'<y,,
Case (4): X' >z and Y’ >y,

Case (5): X’=u,, in which case there is only
one point (x,,), common to both

the lines.

We will consider Pr(M=m, x,<X;<x,+dry,
<Y <yotdyo)=P(mzoy0)dxody,. 1t M=m, then,
in case (1), there will be i—m—2, j—m—2 and
n—i—7j-+m-+2 points in (), ¢, and Q4 respectively.
The probability of such a sample is given by

])1 ( ]er,ff(),y()) dxr,dy()

OF OF
3 l‘[) p; m— 21)1 m— 2pz+m 1—i+2 DJ. ay dxodyo
~ ml(i—m—2)1(j—m—2)(n+ m—i—j+2)!’

(3.1)

where the partial derivatives are evaluated at (xo,y).
The contribution to P (m,ry,y,) from other cases
may be found similarly. The possible values of m
in each case are determined by the rule that negative
factorials are not allowed.  For example, in case (1)
the maximum possible value of m is min(i—2, j—

and the minimum possible value is max(0,2+7—n

where all the partial derivatives are evaluated at
(%o, Yo)-

Hence the joint pdf of (X7,Y7), p(2y,y), 1s given by

—oogzo, yOS 2 (34)

i—1
P(@o,Y0) Zm2=0 P(m, o),

and the probability distribution of A is given by

P(m)— f f Bl e

m=0,1, ..., i—1. (3.5)

4. Asymptotic Distribution

In this section the following will be found:
(7) The limit of the pdf of (U/,V), p(u,») (the no-
tation p is used generically to denote a pdf) where

__n(Y;—B) f2(8)

(X —a) f1(@) N ;
(7@ (1= F:(®) 1™

V=@ (1—F@))]™

(77) The asymptotic probability distribution of
QR=M]/n as n—w.

—2). It will be assumed that the suffixes 1 and 2 The following operations are performed.
are so chosen that F,(a) <F,(8) and hence 7<j. (1) Write
Thus, with the convention that the terms involving
negative factorials be replaced with zeros, Fle,B)=F, F(a)=F, FB)=F, fi(ad=f,
5
_ oF or o'F o*F
P G oyo) =25 Pe(m,oy0), S8 =f2 5=t oy =T o=t o=t
m=0,1, ..., 7:_17 — o <&y, Y=<, (32} 2F
where P, is as given in (3.1) and bxbyzf’ glfi=c, glfr=en file)=h, flB)=F
o 9
n|p I)i m— 2p; m— lpn+m i—J+1 (fl 0) aF 25
Po= m!(t—m—2)!(j— m—])!(ner—@—y—{—l)' ’
an pi m— lpJ m— 2pn—l-m {=4+t1 bF(fg(?/o) aj)
Pe= m!(t—m—DG—m—2)!(n+m—i—j+1)! ’ . (3.3)
| mpi—m—1pj—m—1pn+m—i—j Z
nl pipy " iy Fi(m) =3, (fz (o) — ay
N (e sy ey
P p ])1 m— lp: m— lpn+m = j-Hf(xo yo) ;
Toml(i—m=)I(—m—D!(nt m—i—j+1)! :
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where all the partial derivatives are evaluated at
(a,8). 1t is observed that by our assumptions none
of the quantities 11, fs, g1, 92, and f is equal to zero.
I\tlis further observed that /< F since F(a,8) < F(a, ).
Also,

yl=f_6w Jlay) dy < f:o Jlay) dy=1,

and g, <fs, so that 0<¢,, ¢,<1.
(2) For S§>2, use Stirling’s approximation,
Sl=+27 S5+12-5[14+-0(S)].
(3) Write

min=q, 1/n=dq.
This operation is equivalent to replacing the discrete
random variable M/n by a continuous random varia-
ble @ over the range (0,/;—1/n). However,
|Q—M/n|<1/n.

If by these operations P (m,xq,1,) degdy, 1s trans-
formed imto p(q,z0,0)dqdzydy,, then

P(¢,%0,90) =[G (q,20,90) |"H (q,20,50) [1+ 007,  (4.1)
where
G (q,%0,%0)
pipst = pgipy
294(1’11—9)1?1 W(Fy— )P {(1—F,— Fy+ Q)I—FngH’

(4.2)

: B W3 (Fy— @) 2 (Fy— )"/ MOF
Il(q’x"’%)_(2#)3/2(])2p3)2q”2(1—1"1—[”2+q)5/2 oz Oy

blw ol
i (—Fi= ot (B0~ (@) =35 ) 3

or oF
”{‘Pzpfl(l_Fl“F2+Q)(F1“Q)_Ia <f2(yo)“a?>

+ Popspi (1 — F1—Fy+- @) *(F1— @) ' (Fy— @) !

(fer—55 )(Bwo—3 )] @)

where all the partial derivatives are evaluated at
(x0,50). The terms in H arise severally from P, Py,
Ps, and P, after the factor G" is taken out and are
given in that order. The contribution from Pj is of
order n~' as compared to the other terms and hence
absorbed in O(n7!) in (4.1).

(4) Make the transformations

_ n2(m—a)fy
C [RA—)

B)Js

99
)]

2y —

=FQ—F

so that

VF F(1—F) (1—F,)
nf}fz

and  p (q,a0,0) dxodyudg  goes into  p(q,u,0) dgdudp,
where p 1s used generic allv to denote a pdf and is not
the same iun(tlon from equation to equation.

(5) Expand each function of (u,») in Maclaurin’s
series up to the terms of order n7!, e.g.,

dudp

([-"[)([y(;—

P1=F4 (To—a) g1+ (Yo—B) g2+ (.r(,;a)“ {/:;+(?/‘l:6)~ G4

+ (@—a) (yo—B)f+0(n~*?),

where 2z, and 7, are replaced in terms of % and ».
Then

log G=w(q) + (re—0a) (¢—F) ks fi {koer —F (F,— F) (1
—Fy) }+ (yo—B) (q— F)kifo{ keoes— F(F
—F)(1—F) } =3 (@—a)f ket + (1

] 2) 2l v ]'
—20)F(F,—F)(1—F,)+-(g—F)A, } ) ("o

—F(1—F)
B)kiffo{ keaeres
—F(1—ry)
F)A3}+0(n=33).

—B) e, f3{ keac3+ (1 —2¢,) F(F
+(q—F) A} — (m—a) (yo—

—o (1 —F)(1—F)—c,F(F,
+F(F—F) (Fo— F) + (g—

Here, ¢; and ¢, are defined in the beginning of this
section; A;, 4;, and Ay are some constants depending
only on the parameters of F(z,y) and need not be

specified, as it will be seen presently that (¢—F) is
of order n=2;

l/kIZF(FI—F)(FZ_F)(l_Iﬂl_F2+F>)
ky=F\F,(1—F,—F,-1-2F)—F%
and
F F,—F F,—F
wi@=glog_+Fi—g logp— +(F:—g) log Fi—g
I’Z—{—]’
+(A—F,—Fo+¢q) log p

It is easy to verify that w(q) has an absolute maxi-
mum at ¢=7# in the range of values of ¢ and w(#)
=w’(F)=0. Expanding w(q) in a Taylor's series
about ¢=1,

w(g)=—ghks(g— )+ Ol (g—F)'.
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Each function of ¢ is expanded about ¢=F and
the transformation

t=Edean(g—F)

is made with a similar transformation 7" on the
random variable Q. The pdf of (7,U,V),p(tu,»)
is then given by

(4.3)

P(tun) = @m) 21— ) 2 exp | —; (t—ulu—ol)*

WP —2puw

— =y |1H0EI] (@4
where
F—F\F,
P IFRG—Fy(1—F)
jYhlke:— F(F—F)(1—F)]
VA=) F,(1—F,)
h2=\/]?1[k202_F(F1_F)(1—Fl)]. (4.5)

\/(I_PZ)Fl(l—Fl)

The limits of variation of u and » are (—, ) and

those of t are (—dyn, -+dyy/n) where d; and d,
are positive constants independent of n. In fact,

dlz\/lm max (F,F;+F,—1), dy=~lerkey (F;—F).

When n—e the joint distribution of (7.U,V)
is a trivariate normal with mean vector (000)
and covariance matrix V obtained from

1 =y —h,
V_1= __']I/l %+(1—p2)_1 hlhg—p(l—pz)_l
—hy  hihy—p(1—p?) ! R4 (1—p?) 1

(4.6)

Integrating out ¢, the asymptotic pdf of (U,V)
is obtained as

p () =@ (=) exp [ =5 e
+02—2pu7)}:|r —o<y, <o, (4.7)

so that p is the correlation coefficient between U and
V and hence between X; and Y. The following
theorem may then be stated:

Al F @) E () — Fi ()P () — Fy (O L= F1 ()1~ 1(2) /1 (8011 (22)

Tueorem. The asymptotic joint distribution of
the variates (X3,Y?) is normal with parameters

EX|=aq, 1B i==3),
, F(1—F , F,Q—F
Vaer-:————l(nﬁ ), Yar ¥ — 2<nf2 Gl D
7 7 _F_FIFZ
Cov (X3,Y))= T

Integrating p(t,u,p) with respect to u and », it is
found that the distribution of 7' is dsymptotlcally
normal with mean zero and variance

O’T— 1—l—h2—{-h2+2h1h2p

Hence, from (4.3), @ is asymptotically normally
distributed with mean # and variance

o= (keske:m) = (1-+hi4-h34-2hihsp). (4.8)

The variate M/n, which is discrete-valued, is

distinguished from €, which possesses a pdf. How-
ever, if g=m/n,
Pr (M/n<q)=~Pr (@< ). (4.9)

5. Confidence Limits on Quantiles

Since Xj is asymptotically normal with mean «
and variance

oi=F (1—F)/(nf}),

confidence limits on « with confidence coefficient
(1—~) are given by X;+Z,s;. Here, 0<y<_1, and

® —22/2
[ 1
¢ dy=z
fz‘v V21 27

However, ¢; remains undetermined unless f; is known.
Exact nonparametrlc confidence limits on quantiles
are readily available? However, an alternate pro-
cedure is outlined here which prov1des an asymptotic
estimate of f; and hence of o;.

Consider the joint distribution of (X7, Xj,

Xi.), where as n—w, 7—® in such a way that
i/n—F, while k/n and l/n both tend to zero. k and
I may be taken to be of order 7%, 0<a<_1. The
probability  that t<X’<t—{—dt t1 <Xi: <t +4-dt;,
t, <X, <t,-+dt,, is given by p(t ty,to) didt,dts, where

(5.1)

P(,tts) =— G

—k—D!Ek—D(—1)(n—1—1)!

3 8. 8. Wilks, Order statistics, Am. Math. Soc. Bull. 54, 6 (1948); G. E. Noethers
On confidence limits for quantiles, Ann. Math. Stat. 19, 416 (1948).
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Make the following transformations:

Vi (Xi—a)fy

L7 :—
VE(O—F))

Ui=7 (Xi—Xi-s),

U= X=X (6:2)

with corresponding transformations from (t,t,,t;) to
(u,uy,u5).  Use Stirling’s approximations for factor-
ials involving 7 and n. Expand each function of »
in Maclaurin’s series and let n=>o. We finally ob-
tain the asymptotic joint pdf of (7,UU,l/5) given by

—u22 .
Pk D) R ) )Y,
p(u,ul,ug):f (k_11>'uk 1,k 1( 1]>!

OSUu

uyte T1v2

—o<uL ®, (5.3)
The following statements are true asymptotically.
(1) (UU,U,) form an independent set of variates.
(2) 2kfiU,=2nf,(X;—Xi_;) is a X* variate with 2k

degrees of freedom.

(3) 2UfiU,=2nf1(Xi1,—
degrees of freedom.

(4) Hence,

U< .,

X}) is a X* variate with 2/

2"(X1"+I_X;—k>fl

is a x> variate with 2(k-+4/) degrees of freedom,
distributed independently of X7.
(5) Thus,

UG+
W= o0y~

_ (Xi—atD
Vb, —F) (X —Xi-0)
(5.4)

is distributed as the ratio of a N(0,1) variate and

an independent x* variate divided by its number of
degrees of freedom 2(k-+1).

W is independent of the parameter f;; however,
the distribution function of such a ratio has not been
tabulated, hence, at present, it is of little practical
use. However, 1/f; can be estimated by

Jy= (kU +1U,) [ (k+1), (5.5)

which has mean value equal to 1/f; and variance

(kB-+0)~*fr2.  Thus
S’z':\/Fl(l*Fl)L’vz;/\/; (5.6)

i1s an unbiased estimator of o; with known distribu-

tion, still in the asymptotic sense.
In practice, k& and [/ may be taken of order n'?

6. Confidence Limits on F and »

The asymptotic maximum likelihood estimator of
Fis M/n which has asymptotic variance o3 given
) Q 5

by (4.8). Solution of the inequalities
—Ziyoq<SQ—F<Zyaq
gives

h(Q) SF<h(Q),

to obtain asymptotic confidence limits on /' with
confidence coefficient (1—~). For large n, o, may
be replaced by Sp, where S§ is obtained from the
right-hand side of (4.8) by replacing /' by (). Thus,
to order n='?, 100(1—v) percent confidence limits
for I are Q4 Z,S,.

Here, again, there is the difficulty of nuisance
parameters ¢; and ¢,. To show how to overcome
this difficulty, the case of medians is presented.

When Fi=F;,=1/2,

p=4F—1,  k{'=F(1/2— ky—F(1/2—F),
2¢;,—1 _ 2¢,—1

h=f=7 MW= 6.1)
F 1—2F

A="020 L (20— 1) 2o 1)+ 2020~ 1) Qe 1)), J

Now 0<¢;,, <1, 0<F<1/2, and the expression
in the square brackets has a maximum equal to

2+2|p|=max {8F, 4(1—2F)} for variations of ¢; and
¢,.  Thus,
F(1—2F) max(2F, 1—2F)
2 )
o5 < o -+ an <1/(4n). (6.2)

The last bound is the least upper bound of the
expression in the middle and is attained when /=0
or 1/2.

Hence Q+ Z,/(24/n) are asymptotic nonparametric

confidence limits on /' with confidence coeflicient at
least equal to 1—+.
Going back to the general case, it is observed that

Q—F\F,
\/1’11’2(1_[’1)(1— )

(6.3)

is the asymptotic maximum likelihood estimator of p.
Confidence limits on p are easily set up as p is a
linear function of ¥, and r of (.
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A special case.  1f F(z,y) is a bivariate normal with
correlation parameter p* then, for F,=F,=1/2,

01:C221/2, hlzh?_:()}
F:L—icosﬂp* 0<cos 'p*<7
2 2r 2 = =%
o Gr .o ,
p*:sn1§p:s1n§(4ﬁ—l),
a%:ﬁ(l—ﬂ”),
2n

and 100(1—+) percent asymptotic confidence limits
for p* are

i [g (40—1+ 7, /80(1—20Q) /n,}],

as sin 6 is a monotonically increasing function of 4 in
(—m/2, 7/2).

7. Generalization

The results of this paper can be generalized to the
case of a set of quantiles in samples from a multi-
variate population possessing a pdf and satisfying
certain continuity conditions. From the discussion
of Mood (see footnote 2) of the joint distribution of
medians in samples from a multivariate population,
and from considerations of the generalizations of
eq (3.3), it is seen that the asymptotic distribution
of quantiles will be multivariate normal. To be
more explicit, the joint distribution of a set of quan-
tiles is obtained as a weighted sum of multinomials
and multinomials are known to tend to normal under
suitable linear transformations on the variates. Thus
to specify the asymptotic distribution only asymptotic
means and covariances of the variates are needed.
However, these can be determined by considering
the marginal bivariate distributions.

Then the following conjecture may be stated:

f('lly 080

ConJEcTURE. Let F(x;, . .
tion function of (X, ... X,) possessing a pdf
. z,). Let the marginal distribution of X;
be denoted by #;(z) and that of (X;,X,) by Fy,(x,y)
and corresponding pdf’s by fi(z) and fi,;(x,y). Let

ai1<ai2 .. -<airiy

be r; quantiles of Fy(x). Continuity of the partial
derivatives of F up to order p at the points
(@15 « + - apy,) is assumed for all possible values

of (51, . . ., 7,). Let a sample of size n be drawn
and the values of each variate be ordered so that

X G1)<X'(2)< ... <X (in),

L()t kij, j:l) 2, o o o
the integers such that s

ky/n SFi(ay)<(ky+1)/n.

Then the asymptotic joint distribution of the
variates {X’(ik;;)} is normal with parameters

., x,) be the distribu-

1=1,2,...,p

1=1,2, ... p.

., p be

EX’(’ikij)zozij, jzl, 2,. --;Ti, 121, 2y .,]);
N Fz (ai'a m)—Fi(ai ‘)Fl(alm)

Cov { X (ke ), X’ () } =—2002% f
OV{ ( J) ( i )} nfi(aij)fl(alm) ’
.7:172; o Ty 2.21727 Y 2)
m—l, 2, oy (k) lzl, 2, 5 o oog S0k

Here I, (aij,ci) 18 to be interpreted in the follow-
ing way:

Fi,i(aij7a1m):Fi;i(aim:aij):Fi(aU)) jSm.

The author acknowledges the helpful criticism and
comments by Dr. Edwin L. Crow on an earlier draft
of this paper.
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