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Electric Polarizability of a Short Right Clrcular
Conducting Cylinder*

T. T. Taylor'

(April 29, 1960)

A method similar to that employed by Smythe [1]2 for calculating the capacitance of
a freely charged short right circular conducting cylinder is used to calculate the electric polar-
izability tensor in the prineipal axis system for such a cylinder. Calculations to an accuracy
of dppr()\im(ttel) five significant figures are carried out for eylinders with radius to half-length
ratios of %4, 14,1, 2, and 4. The results are applicable to the design of artificial dielectrics.

1. Introduction

A solid conducting object in the form of a short, that is noninfinite in length, right circular
cylinder makes a suitable element for use in the construction of an artificial dielectric. For
such an object, therefore, it becomes important to know the electric polarizability tensor
a;; which relates the indue od dipole moment p; to the inducing field £, according to the equation

Pi=ay By, (1)

with the cylinder situated in free space. Once ay; 1s known, the effective dielectric constant of
a spatial array of identical and identically oriented cylinders can be calculated according to
the methods of Kaprielian [2].

A centered coordinate system in which the z-axis coincides with the axis of rotational sym-
metry obviously constitutes a system of principal axes for a short right circular cylinder.
The (ompononts az, and «,, are clearly equal and are denoted a,, where ¢ stands for “trans-
verse”’; similarly, ., is denoted a;; where [ stands for “longitudinal.”” The eylinder cross section,
with nomenclature, is illustrated in figure 1. This article describes a method which has been
used successfully for calculating «;; and «,, for cylinders with radius to half-length (a/b) ratios
of %, % 1, 2, and 4. Rationalized M.K.S. units are used throughout.

The problem which presents itself is that of finding, in the external space, a Laplacian
function which has no tangential gradient at the surface of the cylinder and which reduces to
the potential of a uniform field at infinity. With such a potential, there is associated physically
a surface charge density on the cylinder proportional to the local normal gradient and a field-
free condition in the interior. It is the presence of this density which gives rise to the induced
dipole moment. Since there is no known coordinate system in which a cylinder of finite length
with closed plane ends forms a coordinate surface and in which Laplace’s equation is separable,
the present problem must be regarded as intractable from the point of view of conventional
methods and another method involving an arbitrarily good approximation to the surface charge
density must be invoked.

As a mathematical abstraction, let the cylinder be rezarded merely as a geometrical con-
struet to which the surface charge distribution just mentioned is firmly affixed. If that portion
of the potential which corresponds to the uniform (applied) field is now subtracted, the remain-
ing potential will be that due to the charge alone and will be found to correspond to a localized
external field with dipole-like appearance and a perfectly uniform snternal field which is equal
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Fiaure 1. Cross section of the cylinder with nomenclature.

and opposite to the applied field. The problem may therefore be restated in terms of finding,
on a finite cylindrical surface with closed plane ends, a charge distribution which, when acting
alone, generates a uniform field in the interior. The technique employed in the present article
makes use of this viewpoint and consists in setting up, on the surface, a charge density function
which is completely determined by a finite number of parameters, then solving for the values of
these parameters so as to obtain maximal uniformity of the charge field or, alternatively,
maximal cancellation of the applied field, within. This method is similar to that employed by
Smythe for caleulating the capacitance of a freely charged cylinder [1].  The research reported
here was performed under the direction of Prof. Smythe, to whom the author is indebted
for many valuable discussions. The cooperation of the personnel of the California Institute
of Technology Computing Center is also gratefully acknowledged.

A second article, now in preparation, applies this method to the problem of determining
the magnetic polarizability tensor under the assumption of negligible field penetration. If
both tensors are known and if the wavelength is long compared with element spacing, it becomes
possible to calculate the wave propagation constant of artifical media whose elements are cyl-
inders of the type considered here.

2. Functions for Expressing the Charge Densities

A system of generalized orthogonal polynomials and weighting functions has been con-
structed for the purpose of expressing the charge densities on the side and ends of the cylinder.
These polynomials involve an argument «, which represents either z/b or p/a as required, and a
weighting function (1—u?)*. The parameter » is given the value of minus one-third in order
that the charge densities may be asymptotic to a constant times /77 as [—0, where / is the
distance from the edge of the cylinder. The product of the polynomial of order m and the
weighting function is denoted by the symbol ¥, and is defined as follows:

(=D"27T(m4v+5)
I'(y+ T (m+1+»)

‘)-bm(’Y)g‘;Vyu): (1—u2)"u5’2Fl(—m,m+v—%—y+ ?;7"{— g-;uZ). (2>
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If the parameter v is given the value of one-half, this function becomes suitable for use on the
side of the eylinder; if unity, for use on the end. The parameter ¢ controls the parity of the
function and is zero for even parity, unity for odd parity. Another function, involving the
polynomial alone, is given by

(—1)™2(2m4-v+v+ O T (m+v+v+ ) ut, I,

¢m(‘y,§',v,’u)—- F('Y’**g‘)[‘(,n—*—l) <_ ,7l777L+V+‘Y+ (;7_}_;;11’2)' (3)

The multipliers in (2) and (3) are designed to simplify both the orthogonality relation and
certain integral transforms (see app. A) which play an important part in the analysis. The
former is simply

-
fn R T @)

The polynomials themselves are adaptations of Gegenbauer and Jacobi polynomials; expressions
for ¢, and ¢, in terms of Jacobi polynomials of argument (2u>—1) are possible.

3. The Longitudinal Problem

In the longitudinal problem, a uniform electric field of magnitude £ is applied in the
positive z-direction. The assumed charge density on the side depends upon the coefficients 7,
and 7, 0<m< N,—1, as follows:

JRER] -
0, |z|>b.

= [ 2
Ty %:rb ¢(, (5) 1; 0) 5)) (6)

is called the “basic” term and is included in order that (5) may more easily approximate the
true distribution especially when a/b is small.

The potential generated in the interior by the charge density (5) acting alone is easily
expressed as an integral transform:

Salk

g ME = 1
Ts _])( >___ Ty z;+ Z rm‘//m<2y ) —gy

m=

The linear term,

Vi(e,2) _a
c(lp] ) ]L (2") sin kz'dz" | Ko(ka)l(kp) sin kz di. (7)
The Fourier sine transform of the charge density, enclosed in square brackets above, may be
found with the aid of appendix A. The function /y(kp) sin kz, which is regular in a neighbor-
hood of the origin, may be represented as a spherical harmonic expansion about the origin.
Thus (7) becomes:

V\‘ ,0 b L J ]Cb Ne— _1 mJ m v kb
e O R e

(—1)? /r 2p+1P ‘
i (5) Ponoso.  @®
This expansion converges within that sphere which has its center at the origin and which
passes through the nearest point occupied by charge, in other words, for all »<Za.

Consider next the ends of the cylinder. The assumed charge density on the upper end
depends upon the coefficients ¢, and ¢,,, 0 <m <N,—1, as follows:

+N2_1t v, (1 O ") <
%:T(p)= b m=0 e A g’& »opsa (9)
' 0, p>a.
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The constant term,
tb:tb}zo(L 0,0, 5) (10)
is now the “basic” term. Again, the potential generated in the interior of the cylinder by both

the charge density (9) and an equal and opposite density situated on the lower end, is easily
expressed as an integral transform:

Vo2 8 ([0 [ 00 Tk o'’ e Toke) sinh b (11)

This, in turn, may also be given as an expansion in spherical harmonics which converges for

all »<b:

e(" 0) Jy(ka) (=D Jomp140(ka) P 2p+1 el
SE=nt), [t S ok i (5) Pores g

Evidently the sum of (8) and (12) constitutes an expansion of the interior potential due
to the total charge distribution. Although this expansion converges only within the largest
sphere which can be inscribed in the cylinder, it can be continued [3, p. 196] to any interior
point of the cylinder. This expansion of the interior potential may be expressed in the follow-
ing form:

V(?” 0) © N,—1 N.—1 r 2p+1
— 20 7 X3+ 20 rn X3 0N 2t X :,”‘:I (;) Py i1 (cos 0), (13)
= m= Uihs g

where the X’s are obtained from (8) and (12) by integrating [4, p. 137] over k. These X’s
become the matrix elements in a system of simultaneous linear equations which may be solved
for the ry, 7, ts, and ¢, such that the coefficient of (r/c)***1 P, (cos 6) will be unity for p=0
and zero for as many p >0 as possible. A solution of this type approaches exactness as the
number of simultaneous equations approaches infinity; however, good accuracy was obtained
with only eighteen equations. Among these is included an additional relationship known as

the “edge condition,”
1/3 N,-—l
=m=(3) 3 (14)

which insures that the side and end densities match one another as they both tend to infinity
at the edge. The expressions for the matrix elements are as follows:

(—1)p+m 2225 (m—}—p—{— ) (m+p+s>< >< >2m+2

r <§>I‘ 2p+2)T (2m—{—§+v>

sm___
Xy'=

2
F(mtp +% meptitn2mtIn D) (5)

D (b p D) DO D s
e r(%) T(2p+2) I‘<2m+2+u> (_X9>

2
B mt gty mep b 2mtedn ) ()

Separate expressions for X3 and X ‘are not necessary since these elements may be obtained
merely by setting »=0 in (15) and (16).

138



The dipole moment in the longitudinal problem has only a z-component and is found by
integrating zo over the entire surface of the cylinder. The orthogonality properties of the ¥,
and ¢, greatly simplify this integration, which results in the following formula for the longi-
tudinal polarizability:

e 2 r'(3/2) 1 I |
o @ ”+‘)’/*r(1s/ﬁ)’"°:|+2[2‘”+22/3r(5/3)t"’ {17

where v, is the geometrical volume of the cylinder.
4. The Transverse Problem

In the transverse problem, a uniform electric field of magnitude /£ is applied in the positive
z-direction. The assumed charge density on the side depends upon the coefficients s, and s,
0<m<N;—1, as follows:

Wl o 1z
Sp ‘*_ Z mlpm( g’ 5)’ lZ' Sb
—[<os¢]S( )=[cos ¢] m=0

0, [2]|>b.

(18)

The potential of this density in the interior of the cylinder is given by the integral trans-
form

V(é’]’j’”a) ¢ f [ S( 7 cos kz' dz’ ]Kl(ka)ll(kp) cos kz dk cos ¢. (19)
0 0

Its spherical harmonic representation, convergent for »<a, becomes

Vi(roe) m\@ 2)”2 i Jl/z(k'b> = 1)mr]‘zm+1/2+v(kb)i|
2 #_%c <7r J (kb>”’+7§. " (Jeb) 72+

Fuka) ok U () Pl aleost) coss. (20)

The assumed charge density on the upper end involves the coefficients w, and w,, 0<m
<N,—1, and is given by:
p . Nzl
o Wy — + Z wm‘pm<1 1 '—'*’ )’ P<(l
ti=lcos 4] W(p)=[cosgl{ @ 7
0, o >a.

(21)

The potential generated in the interior of the cylinder by both this charge density and an equal
density on the lower end becomes

V<é’£{’") ¢ f [ f W (o")J,(kp")p" (zp]e w7, (kp) cosh kzdk cos . (22

Again, the spherical harmonic expansion, convergent for »< b, is given by

V08 o .t (D s lh)
e = e

1

)T (o

r 2p+1 . )
<E Pj,.1(cos 6) cos ¢. (23)
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Once more, the sum of (20) and (23) constitutes an expansion of the interior potential
due to the total charge distribution, which expansion converges within the largest sphere that
can be inscribed in the cylinder. The expansion may be expressed as follows:

@ 2p+1
V28 51 [V = sn g 5 wmyem] ()" Phaleos 0) cos g, (29)
=

where the Y’s are again obtained by integrating over k. It is desired that s, s, w,, and w,

be such that the coefficient of (r/c)“’J”P;pH(cos 6) cos ¢ be unity for p—=0 and zero for as many
p >0 as possible, and a system of simultaneous linear equations must be solved. The edge

condition now becomes
1/3 N —1
S, 25
m=0 " (b> ( )

and the expressions for the matrix elements are:

(—vyremze=rn (et pty ) T (metpty) ()0
be)\e

T i Oy rertar (2nti)

o (mtptl mept b 2mt S ) @

S >
(= F<m+7)+2> I'(m+p+2) <%><%>ZM+ZQFI(M+P+; m—p-+14»;2m-+3+»; %;»)

Y 5P :
r (5) T (2p+3)T(2m+347)

27)
Note that V3 and Y% are obtained by setting »=0 in the above.

The dipole moment now has only an z component and is found by integrating zes over
the entire surface of the cylinder. The expression for the transverse polarizability is:

ﬁ—[‘ﬁ?ﬂrl(/?/)fi) ]+ l:%b+22/3I‘(8/3) w ] (28)

5. Results

The two distinct tensor components of the electric polarizability are given in table 1.

TABLE 1

a/b /o€ /o€
0 ® 2.0600
Y 15.071 2. 3151
15 7. 0966 2.6115
1 3. 8614 3.1707
% 2.4325 4.2173
4 1. 7507 6. 1814
© 1. 0000 @

v9=2mab

These results may be compared with the polarizability of a conducting sphere which is equal
to 3w in rationalized M.K.S. units. Actual values of the charge coefficients are in-
cluded in appendix B. An estimate of the accuracy of the results was obtained by solving
the problem repeatedly with larger and larger numbers of equations and observing the limit
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toward which the calculated value of the polarizability tended. It was found that, for a maxi-
mum number of equations equal to 18, the polarizability could be found to 5 significant figures
with some doubt about the least significant figure. As might be expected, the accuracy is best
for a/b equal to unity, in which case the least significant figure is in error by at most one unit.

As an additional check upon the caleulations, the potential, V, at the pole and the electric
field, Z,, at the equator due to the charge alone in the longitudinal problem were calculated
and compared with the corresponding values associated with the applied field. The small
errors involved can, by appealing to the appropriate gradients, be translated into local dis-
crepancies, Ap at the equator and Az at the pole, between the actual surface and an imaginary
surface which is an equipotential under the joint influence of charge and applied field. A
corresponding check, in which the potential, V, at the equator and the electric field, Z,, at the
pole due to the charge alone were compared with the corresponding values associated with the
applied field, was carried out for the transverse problem. The results of both checks are given
in appendix B and are seen to be very satisfactory.

6. Appendix A: Hankel Transforms of the ¢,, Functions
It will be shown that all of the integral transforms of the ¥,, functions used in this article

are special cases of the general transform:

= 1)”‘1‘(m+1—+—v)2"J2,,,+1+u+u(f),
T'(m+1)¢+> ’

Re ¢ >>—1; Re v >>—1; t real and >0, (A1)

i
f w(1—u?)*Py” (2u*—1) J,(tu)udu= (
0

which will now be proved. P” (2u?—1) is a Jacoby poiynomial [5, p. 168]. Denote the in-

tegral in eq (A1) by f(t). Then

Ul :ri:?) r((rl%ft(ﬁ?; 1) 01“2’“"(1~ u?)’P? (2u*—1)udu. (A2)

Letting 2u’—1=z1in [4, p. 284],

! 1 v W,0o 2 — F(l+1)P(m+]—{—v)F(l—a+l) o 1. .
L w(1—u?)’Pe (2u 1>wlu_21‘(m+l)[‘(l—a—m+1)F(u+H—m+2)’Rel> 1;Rer>—1.

(A3)
Let l=r+o; Re 6 >—1:
D(mtl4y) < (1) ()t S
1(t)= 2T (m—+1) gI‘(r—7n+l)I‘(v—i—r—{—a+m+2)’ Bele =l Rely =t e
Make a change in the index of summation; let r=m--Fk:
_(=D"T(m+14y) & (=1)*(t/2)*+2mte .
J(t)= 2T (m-+1) ,;0 rA+k)r@m+4-2-+ot+v+k) e
This is:
_(=D"T (m+14-») E)““"
f(t)_ 2F(7ﬂ+1) 9 J2m+l+v+v(t), (AG)
and the transform of eq (A1) is true.
From [5, p. 170], one finds that:
Pgo (ui—1) =SV TIMELED) b bttt 150415 0). (A7)

T(m+1)T(o+1)
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If o is set equal to y+¢—1, the transform becomes

[7 B0 a1 = S s ), (A8)

Now if the parameters v and ¢ are allowed to take all values relevant to the present problem,
one obtains:

Side, even:

1_ 1/2 (__1\m
f¢m<%;0,v,u>cos tudu=<g> (=) iﬁ';‘i:/“”(t); (A9)
0
Side, odd:
1/2 _1\m
[ (1) sim (5 ) " (1 Tmrnel), (A10)
End, even:
1_
[0 01,00 Fpudtu= G om0 (A1)
End, odd:
1_ . m
L \//,,L(l,1,v,u)J1(tu)udu=(il);]—lim-f—2+”(t); Re v>—1. (A12)

Because of the special values taken by v and ¢, the singularity at the origin which might have
occurred in (tu)7Jy ¢ (tu) does not appear. Both sides of eqs (A9) through (A12) become
entire functions of ¢ and no restrictions need be placed upon ¢.

7. Appendix B: Values of the Charge Coefficients

The values of the charge coefficients and the results of the checking procedure at pole and
equator are given in tables 2 through 6. The notation “A(p)” means “A times 107’

\
i TABLE 2 TABLE 3
|

a/b=14 alb=1%
‘ Longitudinal Transverse Longitudinal Transverse
\
| m Tm Sm m Tm Sm
Basic +0. 12905187 (40) 0. 40387637 (4-0) Basic —0.19225150 (—4) —+0. 38965487 (+4-0)
0 +0. 23603290 (+1) —+0. 14690787 (+41) 0 —+0. 18367917 (+1) +0. 16055212 (+1)
i —0.11393541 (4-0) —0. 43239914 (+0) I —0. 48838691 (— 1) —0. 35509127 (4+0)
‘ 2 —0.19185823 (—1) —0. 65706908 (—1) 2 —0. 54930270 (— —0. 43967119 (—1)
} 3 —0. 52174681 (—2) —0.17221441 (—1) 3 —0. 10582670 (— 2) —0.10119125 (—1)
4 —0. 16484165 (—2) —0. 54219231 (—2) 4 —0. 23834773 (— —0. 28016839 (—2)
5 —0. 53665621 (—3) —0.17807221 (—2) 5 —0. 54147255 (— —0. 78539136 (—3)
6 —0.16813125 (—3) —0. 56407302 (—3) 6 —0.11308514 (— —0.20187101 (—3)
it/ —0.48283874 (—4) —0.16353609 (—3) 7 —0. 20056279 (— —0. 43956298 (—4)
8 —0.12195426 (—4) —0. 41591873 (—4) 8 —0. 27611488 (— 6) —0. 74296836 (—5)
9 —0. 25981907 (—5) —0. 88990999 (—5) 9 —0. 25757920 (—7) —0. 85391338 (—6)
10 —0. 12042175 (—8) —0. 49561337 (—7)
10 —0. 44409406 (—6) —0.15241129 (—5)
11 —0.56727317 (—7) —0.19470442 (—6) Equator E./E=—1.00000003 V/aE cos ¢=-1.00000009
12 —0.47918712 (—8) —0. 16423381 (—7) check
13 —0.20011235 (—9) —0. 68402739 (—9)
Apla Negligible Negligible
Equator E./E=—1.00000002 V/aE cos ¢=-1. 00000002
check m tm Wm
Apla Negligible Negligible Basic +0. 46938430 (—1) —+0. 50835705 (—2)
m tm Wm 0 —+0. 23357609 (4-1) 0. 13797193 (—H)
| 1 —0. 82663119 (—1) 0. 88406931 ( 1)
| Basic +-0. 15200248 (—1) —0.17172000 (4+0) 2 —0. 76227915 (—2) 0. 25064651 (—1)
| 3 —0. 12692924 (—2) 0. 77264312 (— 2)
‘ J —+-0. 35624820 (41) —+0. 14693027 (41) 4 —0. 16584913 (—3) +0. 15415744 (—
ik —0.39128623 (—1) +0.32011553 (—1)
Pole check /b E=4-0. 99999997 Ep/E cos ¢=—1.00002004
| Pole check V/bE=+-0. 99999875 Ep/E cos ¢=—0. 99902328
| Az/b Negligible -+0. 00000890
| Az/b —0. 00000037 —0. 00022077
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TABLE 4 TABLE 6
afb=1 alb=4
Longitudinal Transverse Longitudinal Transverse
L i Sm m Tm $m
it =S (=1 SRS (GH) Basic —0.91407486 (—1) +0. 36081774 (+0)
0 +0.14921036 (+1) —40.19371617 (41) 0 11655470 (+1) 2T (+1
1 —0.83747159 (—2) —0. 32219422 (-0) : T +. 27748768 (1)
2 40, 23944987 (—2) —0. 38977600 (—1) i ARl (=) - 13470990 (-+0)
3 —+-0. 12471808 (—2) —0. 93990090 (—2)
4 0. 48160777 (— —0. 25045051 (—2) Equator E:/E=—0.99979406 V/aE cos ¢=-41.00001613
5 40, 14698364 (— ) —0. 64974220 (—3) Check
6 0. 31457070 (— —0.12162489 (—3)
7 +0. 34949152 (— 5) —0. 12244613 (—4) Aol —0.00005287 10.00000530
Equator E./E=—1.00000001 V/aE cos ¢=-40.99999999
check m ¢ 7
o o
Apla Negligible Negligible
" ™ - Basic +0.16831628 (+0) —0.10545599 (++0)
5 - 0 +0.92928755 (4-0) +0.15388757 (+1)
Basic 40. 87113326 (—1) 0. 13425511 (40) 1 —0.15311162 §+0)) 1-0. 82057625 5_1)
2 —0.25352751 (—1 +0.25448502 (—1)
0 +0.16193448 (1) 0. 14792105 (41) -
1 Z0.11224086 (-+0) 10, 58149961 (— 1) 3 —0.71931540 (— 0. 96857682 (—2)
2 —0. 14310444 (—1) +0. 17095607 (— 4 0.23904452 (— 2) +0.39007948 (—2)
3 —0. 34812949 ( 0. 59774893 (— 2) 5 - 81543454 E 40.15300282 g 2
. 6 —0. 26584526 +-0. 55635828 -3)
4 —0.95870761 (— +0. 20469643 (— < = :
5 —0. 23986408 ( +0. 59421158 (— 3) i B iy E il g
] —0.44962281 (—4 0.12420137 (— 9 0. 44553523 (— O Toams (1)
7 —0. 45407822 (—5) -H0. 13669068 (— 3 +0.
. e = - 10 —0. 77488570 (— 4-0.21335661 (—5)
Pole check /b E=+1. 00000001 Ep|E cos ¢=—0.99999996 1n — 0. 10037598 E 10, 28945170 E ﬁ;
F— - 12 —0. 85747540 8) +0.25757752 (=7
A Negligible Neglighlo 13 —0. 36132625 (— 40.11256670 (—8)
| Pole check Vb E=+1.00000001 Ep/E cos ¢=—1.00000001
TABLE &
| Az/b Negligible Negligible
a/b=2
| Longitudinal Transverse 8. References
m T'm Sm . . .
[1] W. R. Smythe, Charged right circular cylinder,
Basic —0.65161515 (—2) +0.16191166 (+0) J. Appl. Phys. 27, 917 (1956).
0 10.12482169 (+1) 40, 23744087 (+1) [2] Z. A. Kaprielian, Dielectric properties of a lattice
; ig-.g‘l‘g}ig?g‘; E:B Zgﬁikgﬁgﬁ% ((-H{)) of anisotropic particles, J. Appl. Phys. 27, 24
3 10.2370%1 5—2) —(. 72222609 E ) (1956).
4 0. 56748900 (—3) —0. 11581174 B . .
[3] O. D. Kellogg, Foundations of Potential Theory
Equator 4/ E=—1.00000271 V/aE cos ¢=-+0. 99999988 (Frederick Ungar Publishing Co., New York,
check N.Y., 1929).
Ao +0.00000121 TG [4] A. Erdélyi (Bateman Manuscript }"r()Ject)., Tables
‘ of Integral Transforms 11 (MecGraw-Hill Book
g
| - o . Co., Inc., New York, N.Y., 1954).
| [5] A. Erdélyi (Bateman Manuseript Project), Higher
| Basic +0.16025169 (40) —0.22721442 (+0) Transcendental Funetions 11 (MeGraw-Hill
0 +40.11683321 (1) +0. 15658591 (++1) Book Co., Inc., New York, N.Y., 1953).
1 —0. 12492981 (+0) +0. 42693596 (—1)
2 —0.17150631 (—1) +0.12814464 (—1)
3 —0. 42141901 (—2) +0. 43243348 (—2)
4 —0.12098644 (—2) +0. 14993639 (—2)
5 —0.34737952 (—3) 0. 49000507 (— 3)
6 —0. 90947390 (—4) 0. 14126899 (—
i —0.20111927 (—4) 4. 33697692 (— 4)
8 —0. 34459642 (—5) +0. 61418057 (—5)
9 —0. 40094338 (—6) +0.75263582 (— ())
10 —0.23533528 (—7) +0. 46182535 (—

Pole check

Vb E=+1. 00000002

Ep|E cos ¢=—1.00000003

Az[b

Negligible

Negligible

552370—60——2

(Paper 64B3-30)
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