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A generalized vector index notation is int.rod uced which facilitates study of properties 
of tensors regardless of order and variance of components. This generality is obtained by 
replacing the set of 1n indices, each of which vary in a sin!!,le domain of n int egers, by one 
vector index which val'ies over the in tegral latt ice points of an m-dimensional domain. The 
notation also suggests an elegant treatment of order t ransformations of tensors. 

1. Introduction 

The usual index notation for the components of a tensor in a given coordinate system has 
the advantage that r epetitious display of similar components of tensor quantities or equations 
is avoided without sacrificing directness and simplieity of algebraic manipulations. At the 
same time, retention of a single basS' symbol (to which the indices are attached) for each tensor 
is conceptually appealing since there is a one-to-one correspond ence between base symbols and 
covarian t objects. This correspondence is especially desirable in the expression of physical 
theories since physical observables are required to have the covariance property. A disadvan­
tage of the notation is that, in the study of general properties of tensors, equations such as the 
transformation relations, the expressions for covariant derivatives, or the integrability condi­
tions do not retain the same form, but require an increasing number of terms or factors with 
increasing tensor order. In this note, an amusing generalization of the usual notation is pre­
sented which permits a study of such general tensor properties in a form which is invariant 
with r espect to order. In addition, this generalization suggests some new concepts, such as 
that of the order transformation. 

2 . Index Notation 

Let T be an mth order tensor defined on an n-dimensional coordinate-space G and x' 
be an arbitrary coordinate system in G. Then, m indices ja may be defined in the domain 
J(l) consisting of the set of positive integers sLIch that O<ja~n for a= I ,2, . .. m. By assigning 
one component of T in the coordinate system Xi to each set of the indices ja the tensor T may 
be completely specified and written in the index notation as t'112 ... 1m' 

For every coordinate transformation in G given by a set of n analytic functions xS= X 8(X i ) 

there will be a transformation of the components of the tensor T at a point Xi given by 

t81 S2 ••• Sm = tiJ jz ..• jmx~ lx ~2 ••• XSm, 
1, 12 Jm 

(1.m ) 

where 

Thus, for a vector, m= 1, the transformation law will be 

(1.1) 

and, in general, the transformation law of an mth order tensor will i.nvolve exactly m of the 
transformation matrix factors x;. 
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If a tensor field T(G) is defined on all points of G, the true rate of change of T is given by 
the covariant derivative 

(2.m) 

where the convenient vertical bar notation of Green and Zerna1 is used. For a vector, the 
expression for the covariant derivative becomes merely 

(2.1) 

and, in general, the covariant derivative of an mth order tensor will involve exactly m "correc­
tive" terms in the Christoffel Connection r~jk' 

As a final example, the integrability conditions for an mth order tensor may be written 

(3.m) 

where Rijlkh is the Riemann-Christoffel curvature tensor. 
condition reduces to 

For a vector, the integrability 

t il til - t"R i . kj- jk- • ·h ljk, (3. 1) 

and, in general, there will be exactly m terms on the right side of the int egrability conditions 
(3.m) for every mth order tensor. 

3. Index Vector 

In the previous section, exactly m indices ja were adjoined to the base symbol of an mth 
order tensor, with each of the,7a varying in a single domain J(I). vVe now consider the converse 
possibility of a Cartesian lattice index space J (m) which is the mth Cartesian product of m of 
the spaces J(l ) and define a Cartesian index 'Vector j in this space. For the moment, we consider 
only index vectors whose componcnts are positive integers, that is, we restrict J (m J to the first 
~1YPeI·quadrant. For an mth order, tensor on an n-dimensional space, a maxirr:um index tector 

j can be defined by tbe relations ja= n, a= l , . .. , m, for its components ja. Then, since 

there will be exactly nm index vectors j which satisfy the" conditions O<.ia~ja, one component 
of the tensor may be assigned to each of index vectors j and the tensor itself represented by t he 
symbol ti. 

One of the simplest methods of forming higher-order tensors is by adjunction of vcctors. 
Since coordinate differentials are vectors, a first application of this index vector notation results 
in the symbol dxj = clx j'dxh .. . dx jm . Although the transformation matrices x; do not repre­
sent tensors, the symbol xj= x;:x;: ... x;: may be constructed by analogy with d:t j • Using 
this generalized matrix, the transformation law for a tensor of arbitrary order may be written 

(1) 

where (corresponding to the usual summation convention) the diagonal repetition of j indicates 
summation over all the index vectors in J (m) ' 

By analogy with the derivation of Brillouin ,2 generalized expressions for the Christoffel 
Connection may be obtained by considering the displacement of a tensor of arbitrary order. 
If xa are normal coordinates, that is , coordinates such that the covarian t differential Dta is 
equal to the ordinary differential dta in the infinitesimal neighborhood of the point xb , then 

1 A. E. Green and W. Zcrna, 'l'heoretical elas tiCity (Oxford University Press, Oxford, England, 1954). 
2 L . Brillouin, Les tenseurs en m~canique ct en elasticite (Dover Publications, New York, N.Y., 194G). 
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Transforming to arbitrary coordinates Xi by means of the transformation matrices x~(xb +dxb ) 
and x~ (x b ) gives 

where X~b = ox~roxb and where we neglect the term containing the seeond-order differential, 
Dtax~bdxb . Defining the Christoffel Connection by r~j k = - X~bXjXt the covariant differential 
can be written 

and the generalization of the expression (2.m) for the covariant derivative of a tensor of 
arbitrary order becomes 

(2) 

If the~normal coordinates xa are assumed to b e obtained bv transformation from a th ird . ~ 

set of arbitrary coordinates XT, we can wriLe 

-or, 

which is the generalizn,tion of the well-known ChTistoffel transformation law. Clen,rly, Lhe 
original definition of xj requires that 

by the law of differentiation of products and the relation o;=x!xj . 

For an arbitrary tensor field ti(Xk), the expression for the coval'in,nt differential permits 
a calculation of the change in the components at a :fixed point after integration around a given 
curve C of G. If ot i is the chn,nge at the point, then 

where S iSlthe surface-enelosed by C and clsjk the differential surface element. Following the 
usual definition of.l. the :eurvature tensor, 

:so that the change ot i may be written 

oti= -~f f {ti!ik- ti!kj+ th R~hljk }clS ik• 
S 
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Since integrability requires oti = O for arbitrary area S, we arrive at the generalization of 
the integrability conditions (3.m) in the form 

(3) 

Thus, to be integrable, a tensor field cannot be completely arbitrary, but must satisfy the con­
ditions (3). In the case of a tensor field obtained by parallel displacement to all points of a 
tensor given initially at one point, we must have Dti =.0; thus, the field can be integrable only 
if the space is Euclidean, R~h ljk='O. 

4. Mixed Index Vectors 

The index vector notation facilitates study of general tensor properties regardless of order. 
In such a study, however, specification of the covariancy or contravariancy of components with 
respect to particular indices may be even less important, especially in a metric space where 
components may be immediately transformed from one type of variance to the other. Thus, 
a general notation should allow interpretation of such differences in variance without actually 
displaying the differences in its symbols . 

Let us consider what significance can be attached to an index space J (m ) which includes all 
hyperquadrants, that is, which allows both positive and negative integers as components of the 
index vector j. Each hyperquadrant in the enlarged J (m ) will be bounded by m hyperplanes 
formed on m semi-axes and, thus, there will be 2m such hyperquadrants in J (m) . D efining a 
maximum index vector j by 3a= ± n with some particular signature <T = { +, +, -, + ... } 
for the signs of the components then, with the restrictions sign ja= sign3a and O<lja l ~ IJ aJ, there 
will be exactly nm index vectors j for each maximum index vectorj, that is, exactly the same 
number as components of an mth order tensor defined on an n-dimensional space. In addition, 
the number of maximum index vectors will be, clearly, equal to the total number of combina­
tions of covariant and contravariant indices for an mth order tensor. 

The above equality, thus , permits the following correspondence: To each contravariant 
index ja we assign a positive sign to the respective component of J; to each covariant index jb 
we assign a negative sign to the respective component of J; and, as the index vector j varies in 
J(1n) subj ect to the conditions signja= sign Ja and O<l ja l ~ IJa l , we assign to each j one of the 
respective components of the mixed tensor corresponding to j. All the 2mnm index vectors in J (m) 

thus specify all the possible covariant, contravariant, and mixed components of a given mth 
order tensor defined on an n-dimensional coordinate space. 

In particular, if ti are components of arbitrary variance (that is, some of the components 
of the index vector may be negative) of a given tensor T, then C i= ti and the form of the trans­
formation law (1) remains valid for this generalization if we also define x=r =x~ . Thus, (1) 
may be written as either [' = tixr or ts= tp;!, regardless of the variance of the components. 

Defining gij = gid,gi2h . . . gimjm' gij = ld' l 2iz ... gimjm and O~ = gikgkj = O~: o~ : ... o~:, where the 
indices ia and .fa may be either positive or negative, the corresponding "covariant" Christoffel 
Connection will be given by fi ljk = gih r~k. Using the iden tity 

the expression (2) for the covariant derivative of a tensor of arbitrary order may be written 
in either of the forms 

or 

regardless of variance. The similar generalization of the integrability conditions (3) for ten­
sors of arbitrary mixed variance is obvious. 
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5. Order Transformations 

The identity gijti = t- i which follows from tb e results of the las t section sugges ts the defini tion 
(ti )-l = t- i or, generalizing the latter, the defini tion ti = (ti )w = twi, where w is a rota tion opera tor 
in J e1U) subj ect to the restriction 0< li a l5: n. Th us, a variance transformation of tbe compo­
n ents of a tensor Ton G can be consider ed equivalent to a res tricted or thogonal transforma tion 
of j in the index space J e1U). 

By removing the restriction, a more general orthogonal transformation a can be defin ed 
which can be called a decreasing Myler transformati on, that is, a will be a transformation which 
rotates j into a subspace J ev ) of J em ) and, correspondingly , transforms th e tensor T ern ) into 
T ev). If a is a maximum order transformation , that is, one which transforms j into a zero vec tor 
a t the origin of J em ), then clearly there will be the same total number of such possibl e maxi­
mum order transformations a (i) as there are invariants of the tensor T. 

In particular, the scalar to = tit- i= titi = ti,i, .. . i"ti ,i, . . . i" is the only invariant possessed 
by tensors of all orders (and thus might be called the "fundamental quadratic invariant"). 
Just as contracti on of a tensor is indicated in th e ordinary no tation by summation over a pair 
of indices (one covarian t, one con travarian t) , contraction in this new notation res ults in a 
tensor ti(.) = Lik, ihti (n) , subject to the res triction ik+ i,, = O, wi th k, h fixed, where v= n - 2. 
The reduction in dimension of the index space results from, first, restricting the index vec tor 
to the bypersurface defined by i k + 1',, = O and, second, summing the components of ti (and as­
signing each sum to the corresponding sum of the index vectors) over the values of the index i k ; 

thus, the dimension of the index space is redu ced by two . 
Further consideration of general order transformations should be of considerabl e value in 

tbe theory of groups as used in quan tum mechanics, in th e study of irreducible ten ors, and in 
determining the invariants of tensors of arbitrary order . If such general order transforma­
tions were unrestricted tb ey would clearly lead to tensors of more general type, tha t is, tensors 
r epresented by a set of components defined, no t as functions of a poin t in a single space, but as 
functions of Jill poin ts in M spaces having possibly differen t dimensions. 

BO ULDE R, COLO. (Paper 64B2- 27) 
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