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On a Generalization of the Index Notation for
Absolute Tensors of Arbitrary Order

Edmund H. Brown
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A generalized vector index notation is introduced which facilitates study of properties
of tensors regardless of order and variance of components. This generality is obtained by
replacing the set of m indices, each of which vary in a single domain of n integers, by one
vector index which varies over the integral lattice points of an m-dimensional domain. The
notation also suggests an elegant treatment of order transformations of tensors.

1. Introduction

The usual index notation for the components of a tensor in a given coordinate system has
the advantage that repetitious display of similar components of tensor quantities or equations
i1s avoided without sacrificing directness and simplicity of algebraic manipulations. At the
same time, retention of a single base symbol (to which the indices are attached) for each tensor
is conceptually appealing since there is a one-to-one correspondence between base symbols and
covariant objects. This correspondence is especially desirable in the expression of physical
theories since physical observables are required to have the covariance property. A disadvan-
tage of the notation is that, in the study of general properties of tensors, equations such as the
transformation relations, the expressions for covariant derivatives, or the integrability condi-
tions do not retain the same form, but require an increasing number of terms or factors with
increasing tensor order. In this note, an amusing generalization of the usual notation is pre-
sented which permits a study of such general tensor properties in a form which is invariant
with respect to order. In addition, this generalization suggests some new concepts, such as
that of the order transformation.

2. Index Notation

Let T be an mth order tensor defined on an n-dimensional coordinate-space @ and z*
be an arbitrary coordinate system in . Then, m indices 7, may be defined in the domain
J(;) consisting of the set of positive integers such that 0< j,<n fora=1,2,. . . m. By assigning
one component of 7"in the coordinate system z* to each set of the indices j, the tensor 7" may
be completely specified and written in the index notation as #/1% - - - Jm

For every coordinate transformation in @ given by a set of n analytic functions z°=ux*(z?)
there will be a transformation of the components of the tensor 7" at a point z? given by

g2 Sm iy TSy S (1.m)
J1 1o Im
where
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Thus, for a vector, m=1, the transformation law will be
= s (1.1)

and, in general, the transformation law of an mth order tensor will involve exactly m of the
transformation matrix factors ;.
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If a tensor field 7'(@) is defined on all points of @, the true rate of change of 7' is given by
the covariant derivative
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where the convenient vertical bar notation of Green and Zerna! is used. For a vector, the
expression for the covariant derivative becomes merely
ot!

WH’T?M; (2.1)

and, in general, the covariant derivative of an mth order tensor will involve exactly m “correc-
tive” terms in the Christoffel Connection T
As a final example, the integrability conditions for an mth order tensor may be written

iy o | iy .- ! hiy . . iy i1 ih iy s iiy . - b Pim
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where R, is the Riemann-Christoffel curvature tensor. For a vector, the integrability
condition reduces to ‘
= =" s (3.1)

and, in general, there will be exactly m terms on the right side of the integrability conditions
(3.m) for every mth order tensor.

3. Index Vector

In the previous section, exactly m indices j, were adjoined to the base symbol of an mth
order tensor, with each of the j, varying in a single domain /;;. We now consider the converse
possibility of a Cartesian lattice index space J(,, which is the mth Cartesian product of m of
the spaces J(;y and define a Cartesian index vector j in this space. For the moment, we consider
only index vectors whose components are positive integers, that is, we restrict </, to the first
hyperquadrant. For an mth order tensor on an n-dimensional space, a mazimum index vector

j can be defined by the relations j,=n, a=1, . . . | m, for its components 7,. Then, since

there will be exactly n” index vectors j which satisfy the conditions 0<j,<7,, one component
of the tensor may be assigned to each of index vectors j and the tensor itsell represented by the
symbol 7.

One of the simplest methods of forming higher-order tensors is by adjunction of vectors.
Since coordinate differentials are vectors, a first application of this index vector notation results
in the symbol da’=da/ida’> . . . dzin.  Although the transformation matrices 2} do not repre-
sent tensors, the symbol z§=zz? . . . 2} may be constructed by analogy with da’. Using
this generalized matrix, the transformation law for a tensor of arbitrary order may be written

t°=t'}, (1)

where (corresponding to the usual summation convention) the diagonal repetition of j indicates
summation over all the index vectors in J,,.

By analogy with the derivation of Brillouin,* generalized expressions for the Christoffel
Connection may be obtained by considering the displacement of a tensor of arbitrary order.
If 2% are normal coordinates, that is, coordinates such that the covariant differential D¢* is
equal to the ordinary differential d¢* in the infinitesimal neighborhood of the point z?, then

£ (2?4 da?) =1t (2" +Ds*

1 A, E. Green and W. Zerna, Theoretical elasticity (Oxford University Press, Oxford, England, 1954).
2 1. Brillouin, Les tenseurs en mécanique et en élasticité (Dover Publications, New York, N.Y., 1946).
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Transforming to arbitrary coordinates 2* by means of the transformation matrices x,(z"+dz")
and a; (z) gives

f() =t*@")an(a?), (e +dek) = {* (@) +Dt* ek (2" +dx?)
= {£*(a") +D*) {ah(@") +ahyda®} = (%) + Dt + taheida®,

where a3, =01,/02" and where we neglect the term (7011tainin(f thc second-order differential,
Dt*ziydz’.  Defining the Christoffel Connection by T, = — .I‘abTJ.I'k, the covariant differential
can be written

=dt'+ T dat,

and the generalization of the expression (2.m) for the covariant derivative of a tensor of
arbitrary order becomes

e A
i Jnio, ¢
t ]_k:a—rk-}-z‘ I 2)
If the normal coordinates z* are assumed to be obtained by transformation from a third
set of arbitrary coordinates 27, we can write

i . r — T PpS i "8
TL=— (alafl)adak=—af adxsata oy —xl afagayx}

or,

) [ ‘l’ — T
F =]~ oL 1"“ .l”lj.l“k,

which is the generalization of the well-known Christoffel transformation law. Clearly, the
original definition of 2§ requires that

1 0 TR T [ PO e o i1 A2 L. . . iyig. .« o I im
P =t w4 1"1 m['% +-th I,
by the law of differentiation of products and the relation &;=xzz].
For an arbitrary tensor field #'(z*), the expression for the covariant differential permits

a calculation of the change in the components at a fixed point after integration around a given
curve O of G If 8" is the change at the point, then

6t‘=56 dt‘zgg I)ti—Slg thI‘fh,__dxk=§> t‘[kr/.:"—gUt"I'fhk(/ﬁ
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S S
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where § isjthe surface enclosed by ' and ds’ the differential surface element. Following the
il .
usual definition of the_curvature tensor,

th”k <DI" 14 M) ( “m_{.rn I‘l)

so that the change 8 may be written

. 1 - : i i
di=—1 f f (B o - 0 R ) ds™,
8
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Since integrability requires =0 for arbitrary area S, we arrive at the generalization of
the integrability conditions (3.m) in the form

li{k!_ti;!k:th[').;h]]‘k. (3)

Thus, to be integrable, a tensor field cannot be completely arbitrary, but must satisfy the con-
ditions (3). In the case of a tensor field obtained by parallel displacement to all points of a
tensor given initially at one point, we must have Df=0; thus, the field can be integrable only
if the space is Euclidean, Riy;=0.

4. Mixed Index Vectors

The index vector notation facilitates study of general tensor properties regardless of order.
In such a study, however, specification of the covariancy or contravariancy of components with
respect to particular indices may be even less important, especially in a metric space where
components may be immediately transformed from one type of variance to the other. Thus,
a general notation should allow interpretation of such differences in variance without actually
displaying the differences in its symbols.

Let us consider what significance can be attached to an index space J(,,, which includes all
hyperquadrants, that is, which allows both positive and negative integers as components of the
index vector j. Each hyperquadrant in the enlarged </, will be bounded by m hyperplanes
formed on m semi-axes and, thus, there will be 2” such hyperquadrants in /.. Defining a
maximum index vector j by j,===n with some particular signature o={+, +, —, + . . .}
for the signs of the components then, with the restrictions sign j,=sign j. and 0<|ja| <|[7,|, there
will be exactly »™ index vectors j for each maximum index vector J, that is, exactly the same
number as components of an mth order tensor defined on an n-dimensional space. In addition,
the number of maximum index vectors will be, clearly, equal to the total number of combina-
tions of covariant and contravariant indices for an mth order tensor.

The above equality, thus, permits the following correspondence: To each contravariant
index j, we assign a positive sign to the respective component of j; to each covariant index ;s
we assign a megative sign to the respective component of j: and, as the index vector j varies in
Jum subject to the conditions sign j,=sign 7, and 0<_|j,| <[J.], we assign to each j one of the
respective components of the mixed tensor corresponding to J All the 2™n™ index vectors in J(,,
thus specify all the possible covariant, contravariant, and mixed components of a given mth
order tensor defined on an n-dimensional coordinate space.

In particular, if # are components of arbitrary variance (that is, some of the components
of the index vector may be negative) of a given tensor 7, then ¢ '=¢ and the form of the trans-
formation law (1) remains valid for this generalization if we also define zf=xzi. Thus, (1)
may be written as either & =#zf or t,—=t;z} regardless of the variance of the components.

Defining giy= i ;,0ij, - - - Y15, 9=9"" ¢ ... g™’ and ézzgikgkaajl‘ 8% .. 8" where the
indices 7, and j, may be either positive or negative, the corresponding ‘“‘covariant’’ Christoffel
Connection will be given by Tyj=ginI'5. Using the identity

toJ/A
or

?:<Pi1k1+rk1jil>gi2k2 et g‘mkm+ t '+(Fimjkm+rkmjim)gilkl T gim—lkm—ll

the expression (2) for the covariant derivative of a tensor of arbitrary order may be written
in either of the forms

k
-ig?

ot*
trh:as-q-tv ri, or ¢ s

—
i ‘al.s th

regardless of variance. The similar generalization of the integrability conditions (3) for ten-
sors of arbitrary mixed variance is obvious.
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5. Order Transformations

The identity giti =t~ which follows from the results of the last section suggests the definition
(#)~'=t"1 or, generalizing the latter, the definition #i= (#)*=¢*J, where w is a rotation operator
in J,, subject to the restriction 0<_|i,|<n. Thus, a variance transformation of the compo-
nents of a tensor 7"on G can be considered equivalent to a restricted orthogonal transformation
ofj in the index space /(.

By removing the restriction, a more general orthogonal transformation e can be defined
which can be called a decreasing order transformation, that is, e will be a transformation which
rotates j into a subspace Ji,, of J,, and, correspondingly, transforms the tensor 7, into
Twy. If ais a mazimum order transformation, that is, one which transforms j into a zero vector
at the origin of J,, then clearly there will be the same total number of such possible maxi-
mum order transformations e, as there are invariants of the tensor 7.

In particular, the scalar o=#t—1=¢t;—=t>> " t;;...;, 1s the only invariant possessed
by tensors of all orders (and thus might be called the “fundamental quadratic invariant’).
Just as contraction of a tensor is indicated in the ordinary notation by summation over a pair
of indices (one covariant, one contravariant), contraction in this new notation results in a
tensor #iw=3; ;fim subject to the restriction i,+4i,=0, with k, & fixed, where v=n—2.
The reduction in dimension of the index space results from, first, restricting the index vector
to the hypersurface defined by 7;+7,=0 and, second, summing the components of # (and as-
signing each sum to the corresponding sum of the index vectors) over the values of the index i;;
thus, the dimension of the index space is reduced by two.

Further consideration of general order transformations should be of considerable value in
the theory of groups as used in quantum mechanics, in the study of irreducible tensors, and in
determining the invariants of tensors of arbitrary order. If such general order transforma-
tions were unrestricted they would clearly lead to tensors of more general type, that is, tensors
represented by a set of components defined, not as functions of a point in a single space, but as
functions of M points in M spaces having possibly different dimensions.

Bourper, Coro. (Paper 64B2-27)
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