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Note on the Solution of Riccati's Differential Equation 
H. Herbert Howe 

(F ebr·uar y 4, 1960) 

Three recurrence formul as are developed , giving t he solu t ion of a pa r t icul ar case of 
Riecati's equ ation in power series valid in t he neigh borhoods of 0, co , a nd a n a rbi trary 
point, r espectively. The first t wo wel e programed for computat ion on t he SEAC. 

1. Introduction 

A particular case of Riccati 's diffe~ential equation 
is important in the theory of radIO. propag~tl?n. 
In the notation often used 111 that subj ect , onut tll1g 
subscripts irrelevan t in the present paper , the 
equation is 

(1) 

wher e a will be consider ed the indepcnden t variable, 
and both variables ar e complex. The equ ation 
may be writ ten 

(2) 

Since this is a first-order differential equation , 
there should be one constant of in tegration. If 
the value of 7 is arbitrarily chosen for som e value 
of a the differential equ ation ought to defin e 7 for 
all ~ther values of a. We may, for exa mple, arbi
trarily select 7(0) or 7( 00) , and Jrom it derive 7 for 
all other poin ts. 

If there exists in the complex a-plan e a ny poin t 
P such tha t as we approach it the value of a27 

approaches t, then the derivative d7/da approaches 
infinity, and P is a singular point of 7. Since a27 

involves both the independen t and th e dependen t 
variables, the position of P depends upon the par
ticular function 7 which we are studying : e. g., 
upon the initially selected value 7(0). It is not 
immediately obvious tha t any such P exists, nor 
that there may not be more than one. 

A single-valued function of a complex variable a, 
with isolated singular points, can be represented 
[1] by power series as follows: In the a-plane, draw 
con cen tric circles, one through each singular point, 
and all centered at the origin. Within th e smalles t 
circle the function is represented by an asce nding 
series' in a (i. e., th ere is a constant term , and a series 
of all positive integral powers of a). This series is 
absolutelv convergent and represen ts the given 
function :for all values of a wi thin the circle. Outside 
thc sm alles t circle, it diverges. On the circle itself, 
it may or may not converge. This circle is called 
the "circle of con vergence" for tha t sen es ; as a 
s pecial case, its radius may be zero . 
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Outside the largest circle, the fun ction is repre
sented by a descending series, namely a series con
sis ting of a constant a nd negative in tegral powers 
of a. I t is absolu tely con vcrgen t outside the circle, 
divcrgent in side it, a nd may or may no t converge 
on it. 

In Lhe regioll between any p air of circles, the 
fun ction is represented by a series containing all 
in tegral powers of a, bo th positive and negative, 
and a differen t series is r equired for each in ter
circle r egion. Such a series is absolu tely convergen t 
in the region betwee n the two circles to which it 
appertains, may or may no t converge on those 
circles, and diverges ou tside the spccified region. 

All of these series together represent the given 
fun ction a t all points of th e complex plane, except 
perhaps those on th e various circl es. Th e fun ction 
exists for all poin ts excep t the singular points 
themselves ; for other poin ts on the various circles, 
one of th e seri es may or may no t r epresent the 
fun ction . 

For the fun ction in which we arc in terested , we a t 
first usc th e hypo thesis that t here is on e sing ular 
point, and that therefore th ere are two series : The 
ascending and descending on es, which have a com
mon circle of convergence. A few terms of each series 
are given by Bremmer [2], and a greater number of 
terms are given by Johler , Walters, and Lilley [3]. 

Although one of the two series converges for any 
value of a that does not lie on the common circle of 
convergence, th e rat e of convergence is slower the 
nearer the point is to tha t circle. For poin ts very 
near the circle, the converging series will not , in 
general, provide a practical method of compu ta tion . 
E ven within the limi ts of practical compu ta tion , it 
will be impossible to select any fixed number of terms 
a t whi ch to s top the computation , if given accuracy 
of the computed result is desired . R ather , th e num
ber of terms must be incr eased as a gets nearer the 
cirele. 

One could, of course, always compute a fixed num
ber of term s; bu t there would then be no assuran ce as 
to how accurate the result would be, nor as to which 
series should be used, nor even that either one con
verged. There is thus n eed for a formulation of the 
series which does not r ely on expressions with a fixed 
number of t erms. 

I 

~~_J 



2 . Ascending Series 

In 1955, the present author programed radio appli
cations of (1) on the National Bureau of Standards 
Electronic Automatic Computer (SEAC). Some of 
the resul ts have been published [4], but not the for
mulas. Instead of using a fixed number of terms of 
the series, recurrence formulas were developed for 
expressing each term as a quadratic function of the 
preceding ones. To derive the formulas for the 
ascending series, we express l' as a series in 0: 

Rewrite Riccati's equation as follows: 

dT~do -2021' + 1= 0. 

(3) 

(4) 

Insert-into (4) the value of l' given in (3), and in one 
term change the summation index from n to m: 

'" 
2 ~ bmom+2+ 1= 0. 

m = O (5) 

N ow clear of fractions, remembering that two abso
lutely convergent series may be multiplied term by 
t erm: 

'" '" '" 1- 2 ~ ~ nbnbmom+n+l+:C nbnon-1= 0. (6) 
m= O n=O n=O 

In the second term, introduce a new summation 
index k, and eliminate the index m, k being defined by 
m = k - n. To find the summation limits for nand k 
make a plot of m and n ; in (6 ) we are to evaluate the 
term for each poin t of the following grid: 

m --i> co 

Since k = m + n, lines of equal k are the diagonal 
lines. Since we need to sum for all points of the 
grid, extending upward and to the right indefinitely, 
it is seen that we get the same points if we let k run 
from 0 to co, and for each value of k let n run from 
o to k. 

'" k '" 
1-2~ ~ nbnbk_noH l+ ~ nb non - 1= 0. (7) 

k= On=O n = O 

N ow change the summation indices again. In 
the second term, replace k by j - 2, and in the last 
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term replace n by j. Then write out explicitly the 
terms for j = 0 and 1, and collect terms having a 
common summation: 

(8) 

Since this equation is to be satisfied for every 
value of 0 within the circle of convergence, the 
coefficient of each power of 0 must vanish. This 
imposes no condition on bo, which is equal to 1'(0) , 
which we have previously proposed as the constant 
of integration. From the constant term of (8), 

(9) 

and for the higher powers of 0, we see that the 
bracket of (8) must be zero for every value of j~ 2, 
l.e., 

(10) 

In particular, b2= 0. 
N ow break t he right side of (10) into two equal 

sums, each having a coefficient of I/j; and in one 
of them replace n by a new summation index m 
defined by n = j - 2-m: 

Now replace summation-index m by n. Since the 
summations run over the same values of n, and since 
terms with the same n have also the same b-product, 
the series can be combined to give: 

'- 2 j- 2 
b _ ._7 - ~ b b ,cor J' > ? 
j- . L...J n j-n-2 L = *-J. 

J n= O 
(12) 

Equations (9) and (12) show the coefficients to be 
used in (3 ), after the summation-index of the latter 
has been changed to j. 

3 . Recurrence Formulas for the Terms 

For the SEAC computation, it is bettor to use 
recurrence formulas involving the terms rather than 
the coefficients. Let B j represent a term of our 
senes: l.e .. 

(13) 

Substituting into (3), (9), and (12) , we get 

where Bo = bo = T(O) is the constant of integration, 
and may be chosen arbitrarily. In practice, it is a 
boundary condition, chosen to fit the conditions of 
the problem at hand. 



4. Descending Series 

Using ft sllntlar but somewhat more co mplicated 
method, we get for the descending series 

(15) 

j - 21 ] - Tb2 A j- 2 for j"?;. 2, 

where AO = T( 00) is the constant of integration. 
In order to det~rmine which vt1lue ?f Ao belongs 

to the same functIOn T(8) as does a gIven value of 
B.o, so .that the r esults of the two series may be com
bll1ed lI1to a sll1g1e fun ction , other i ll formation about 
the problem at hand is used [3, pp. 1 to 4]. 

5 . The SEAC Computations 

The SEAC code used (14) ftnd (15) as follows: 
One of them WitS selected more or less ftrbitrftrily. 
The tenns Aj or B j were co mputed ftlld saved s ince 
each involves those which co me before. 'Wh en 
possible, computations were continued un t il ft term 
:vas ~'ounel which WitS Il egligibly small . (Reftl and 
Im~tPll1a~T parts of A j 01: H j each smftller .tllftn , sa,}" 
10 .) Ihis eletel'll11n atw n began wIth 7= 3 sll1 ce 
B2 is identic,tlly zero . 'When such ,t' ter l;1 was 
r eached, the computations were disco ntinu ed a nd 
the A's or B's were summ ed. ' 

If any A j or B j (stt~l'tin g with A z or B 3) was very 
large, that co mputatlOn WH,S abandoned and the 
?,ther formyla was tr ieel. The same tilin g' was done 
If no n eghglbl.\T small term was found with in th e 
space avaiJable for s toring terills in the memorv 
(a.bo~t 65 terms eo ul~l be stored ). If, by the sam"e 
cntena, the seco nd Jorillula (lid no t conver O'e the 
computation. for that particuhu' v,tIu e of TtO) ' was 
abandoned. SOlll e of the gaps in the pnblished 
r esults [4] come frolll this cause. (So me occurred 
because ~f lack of tim e to complete the lengthy 
compu~atlOns that had be~11 pla nn ed.) This m ight 
occur eIther because the POll1t was very ncar the circle 
of convergence, so that still more terms were needed' 
or because for certain functions there are more thal~ 
one singular point, giving a region ill which both 
series actually diverge. 

6. Convergence of the Series 

. The criterion ,used. for terminating the computa
tlOns (real and Imagl11ary parts of some term both 
less than 10- 6) is not rigorous, and under some 
circumstan ces it would b e incorrect. This may be 
most easily studied by substituting into (12) so 
that ~ach b, is a polynomial in bo= Bo, to give the 
equatwns of [3], If Bo happens to be such that any 
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bj is zero, then B j will be zero regardless of 8, even 
though s~bsequent values of B might be of sub
stantIal SIze. For example, two out of every t hree 
b's are zero if Bo= O; or b7 is zero if 5+ 8m= 0, etc. 

For the problem under consideration each value 
of Bo f<;>r which T(8) was to ~e derived h~d an ampli
tude oJ 7r/3, and the modulI were all transcendental 
num bel'S exceeding 1.8 [3, p . 20]. B eing transcen
clent~l , . they could not. m ake any bj exactly zero; 
and It IS ~xtremely unlIkely that , among the small 
number of values that were used, there would b e 
one that would make any bJ n egligibly small. The 
expansions of' bj throu gh j = 11 as polynomials in 
bo 1.3] show that .the coefficients of po"vers of bo tend 
to ll1cr ease as .7 Hlcreases; and since the modulus of 
bo exceeds unity, it seems most probable that the 
values ?f bj continue to in crease as j in creases, 
H ence, It seems wtLl'1'anted to conclude that when 
any 13 j be~o ll1 es n egligibly small it is probably 
because [8[ IS less than umty, and [8J [ is smftll ; so 
that succeeding values of [B,[ proba bly will be still 
smaller , on account of the factor 02 in (14). 
. A similar argument seems to apply to the descend
mg sen es. More reliftble criteria would be to req u ire 
that each of several consecuti \Te terms of the series 
b e negligibly small. 

7 . Bridging the Gap 

Although neither series can be used 1'01' practical 
computation Jor points n car th e circle or converO'ence 
(or between the circles of' convergen ce if thgre is 
more than one singular point), the fu~ction itself 
is regul<u' . in any r egion not including ft sin o'ular 
poin t ; I.wcl Jor a poin t Jar from a singul ar pboin t, 
the denvatlves would not be excessive. H ence if 
we lLf'e I' ltl' .from II, si ngulal' poin t, it m ay be en tir'ely 
pr~pel' to mterpolftte across the gap where neither 
sen es could be used. 

Another J:nethocl. oJ get.ting ~mlues ill this gap is 
by m eans 01 analytIC contmuatlOn . W e can usc the 
ascending seri es to g ive a value oJ T for som e value 
of 0 which we m as' call q. It is thell possible [1 , 
p. ~ 96] t? r epresent T as an ascen~:ling series in 8- q, 
whICh wl1.1 be valId wlthlll t Ite CIrcle ce n tercel at q 
and passm!S throu~h the neares t sing ul ar point. 
Such a senes, obtaIn ed b~T methods a nalogous to 
those aJreaciy described, is 

00 

T= "'L, Cj ; CO= T(q ); OJ 
j=O 

(16) 

No computa tions have actually b een made with 
this formula . 
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