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Three recurrence formulas are dv_\'vl(.)p(s(l, giving the solution of a particular case of
Riceati’s equation in power series valid in the neighborhoods of 0, «, and an arbitrary

point, respectively.

The first two were programed for computation on the SEAC.

1. Introduction

A particular case of Riccati’s differential equation
is important in the theory of radio propagation.
In the notation often used in that subject, omitting

subscripts irrelevant in the present paper, the
equation is
B o5y 1—0 (1)
dr

where § will be considered the independent variable,

. | :
and both variables are complex. The equation
may be written

dr 1
e 0
ds  28*m—1 (2)

Since this is a first-order differential equation,
there should be one constant of integration. If
the value of 7 is arbitrarily chosen for some value
of 8, the differential equation ought to define r for
all other values of 6. We may, for example, arbi-
trarily select 7(0) or 7(«), and from it derive 7 for
all other points.

If there exists in the complex é-plane any point
P such that as we approach it the value of &7
approaches %, then the derivative dr/ds approaches
infinity, and P is a singular point of 7. Since &7
involves both the independent and the dependent
variables, the position of P depends upon the par-
ticular function 7 which we are studying: e.g.,
upon the initially selected value 7(0). It is not
immediately obvious that any such P exists, nor
that there may not be more than one.

A single-valued function of a complex variable 6,
with isolated singular points, can be represented
[1] by power series as follows: In the é-plane, draw
concentric circles, one through each singular point,
and all centered at the origin. Within the smallest
circle, the function is represented by an ascending
series in 6 (i.e., there is a constant term, and a series
of all positive integral powers of ). This series is
absolutely convergent and represents the given
function for all values of & within the circle. Outside
the smallest circle, it diverges. On the circle itself,
it may or may not converge. This circle is called
the “circle of convergence” for that series; as a
special case, its radius may be zero.
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Outside the largest circle, the function is repre-
sented by a descending series, namely a series con-
sisting of a constant and negative integral powers
of 6. It 1s absolutely convergent outside the circle,
divergent inside it, and may or may not converge
on it.

In the region between any pair of circles, the
function 1s represented by a series containing all
integral powers of &, both positive and negative,
and a different series is required for each inter-
circle region. Such a series is absolutely convergent
in the region between the two circles to which it
appertains, may or may not converge on those
circles, and diverges outside the specified region.

All of these series together represent the given
function at all points of the complex plane, except
perhaps those on the various circles. The function
exists for all points except the singular points
themselves; for other points on the various circles,
one of the series may or may not represent the
function.

For the function in which we are interested, we at
first use the hypothesis that there is one singular
point, and that therefore there are two series: The
ascending and descending ones, which have a com-
mon circle of convergence. A few terms of cach series
are given by Bremmer [2], and a greater number of
terms are given by Johler, Walters, and Lilley [3].

Although one of the two series converges for any
ralue of 6 that does not lie on the common circle of
convergence, the rate of convergence is slower the
nearer the point is to that circle. For points very
near the circle, the converging series will not, in
general, provide a practical method of computation.
Even within the limits of practical computation, it
will be impossible to select any fixed number of terms
at which to stop the computation, if given accuracy
of the computed result is desired. Rather, the num-
ber of terms must be increased as & gets nearer the
circle.

One could, of course, always compute a fixed num-
ber of terms; but there would then be no assurance as
to how accurate the result would be, nor as to which
series should be used, nor even that either one con-
verged. There is thus need for a formulation of the
series which does not rely on expressions with a fixed
number of terms.



2. Ascending Series

In 1955, the present author programed radio appli-
cations of (1) on the National Bureau of Standards
Electronic Automatic Computer (SEAC). Some of
the results have been published [4], but not the for-
mulas. Instead of using a fixed number of terms of
the series, recurrence formulas were developed for
expressing each term as a quadratic function of the
preceding ones. To derive the formulas for the
ascending series, we express 7 as a series in é:

=>b,0" (3)
n=0
Rewrite Riccati’s equation as follows:
1 2 —
T 2= (4)

Insert into (4) the value of 7 given in (3), and in one
term change the summation index from n to m:

2> berti1=0
2%6,,#3 + : (5)

©

> nb,o"t

n=0

Now clear of fractions, remembering that two abso-
lutely convergent series may be multiplied term by
term:

1—2 52 S nb,b, a5 nb,om1—0.  (6)
=0 n=0

m=0 n

In the second term, introduce a new summation
index k, and eliminate the index m, £ being defined by
m=k—mn. To find the summation limits for » and %
make a plot of m and n;in (6) we are to evaluate the
term for each point of the following grid:

1\\\\\\\\\
0. . NN\ NG\
o 1 2 3 4 5 6

m—>

Since k=m-+n, lines of equal k are the diagonal
lines. Since we need to sum for all points of the
grid, extending upward and to the right indefinitely,
1t is seen that we get the same points if we let £ run
from 0 to «, and for each value of k let » run from
0 to k.

== 22 an by ,,5"*1—{—}: nb 6"t = (7)

=0n=

Now change the summation indices again. In
the second term, replace & by j—2, and in the last
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term replace n by 7. Then write out explicitly the
terms for j=0 and 1, and collect terms having a
common summation:

© i—2
1+b43 jbj—~2]2nb,,b,-_n_2] §1=0.  (8)
j=2 n=0

Since this equation is to be satisfied for every
value of 6 within the circle of convergence, the
coefficient of each power of § must vanish. This
imposes no condition on b,, which is equal to 7(0),
which we have previously proposed as the constant
of integration. KFrom the constant term of (8),

b=—1 (9)
and for the higher powers of §, we see that the
bracket of (8) must be zero for every value of j=2,
ie.,

b=, (10)

In particular, b,=0.

Now break the right side of (10) into two equal
sums, each having a coefficient of 1/7; and in one
of them replace n by a new summation index m
defined by n=j7-2-m:

lf—
Zn‘bnb] = 2+ Z (.7 2 m)b] 2~ m me

m=j—2

(11)

Now replace summation-index m by n. Since the
summations run over the same values of 7, and since
terms with the same n have also the same b-product,
the series can be combined to give:

j=2

j n=0

b=

v

b,b; ,_oforj=2. (12)

Equations (9) and (12) show the coefficients to be
used in (3), after the summation-index of the latter
has been changed to .

3. Recurrence Formulas for the Terms

For the SEAC computation, it is better to use
recurrence formulas involving the terms rather than
the coefficients. Let B; represent a term of our
series; 1.e.,

B;=b0". (13)
Substituting into (3), (9), and (12), we get
= 0
T= B]'; BIZ‘_‘B BQ—O
A (14)
1—2 » 53 .
By= v 8> BBy for jz3,
n=0

where By=0b,=7(0) is the constant of integration,
and may be chosen arbitrarily. In practice, it is a
boundary condition, chosen to fit the conditions of
the problem at hand.



4. Descending Series

Using a similar but somewhat more complicated
method, we get for the descending series
L
T = U 24,/\8)
A]:( ! ) 2_,A A, > (15)
A(] n=1
J 21 o
7 6ZAJ 2 for ggz,d

where A;=7() is the constant of integration.

In order to determine which value of A, belongs
to the same function 7(8) as does a given value of
B,, so that the results of the two series may be com-
bined into a single function, other information about
the problem at hand is used [3, pp. 1 to 4].

5. The SEAC Computations
The SEAC code used (14) and (15) as follows:

One of them was selected more or less arbitrarily.
The terms A; or B; were computed and saved, since
each involves those which come before. When
possible, computations were continued until a term
was found which was negligibly small. (Real and
imaginary parts ol A; or £; each smaller than, say,

107%) This determination began with 7=3, since
. . . v =] >

B, is identically zero. When such a term was

eached, the computations were discontinued, and

the A’s or B’s were summed.

If any A; or BB; (starting with A, or ;) was very
large, that computation was abandoned, and the
other formula was tried. The same thing was done
il no negligibly small term was found within the
space available for storing terms in the memory
(about 65 terms could be stored). If, by the same

criteria, the second formula did not converge, the
computation for that pnrtlculzlr ralue of 7(0) was
abandoned. Some of the gaps in the published

results [4] come from this cause. (Some occurred
because of lack of time to complete the lengthy
computations that had been planned.) This might
occur either because the point was very near the circle
of convergence, so that still more terms were needed;
or because for certain functions there are more than
one singular point, giving a region in which both
series actually diverge.

6. Convergence of the Series

The eriterion used for terminating the computa-
tions (real and imaginary parts of some term both
less than 107°) is not rigorous, and under some
circumstances it would be incorrect. This may be
most easily studied by substituting into (12) so
that each b, is a polynomial in by=B,, to give the
equations of [3].

If B, happens to be such that any
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b, 1s zero, then B, will be zero regardless of §, even
though subsequent values of B might be of sub-
stantial size. For example, two out of every three
b’s are zero if By=0; or b; 1s zero if 5-+8B5=0, etc.

For the problem under consideration, each value
of By for which 7(6) was to be derived had an ampli-
tude of 7/3, and the moduli were all transcendental
numbers exceeding 1.8 [3, p. 20]. Being transcen-
dental, they could not make any b; exactly zero;
and it is extremely unlikely that, among the small
number of values that were used, there would be
one that would make any b, negligibly small. The
expansions of b, through j=11 as polynomials in
by [i | show thdt the coeflicients of powers of by tend
to increase as j increases; and since the modulus of
by exceeds unity, it seems most probable that the

ralues of b,

(omlnuv to increase as j increases
Hence, it seems warranted to coneclude that when
any B; becomes negligibly small it is probably

because [6] is less than unity, and [§7] is small; so
that succeeding values of |B;| probably will be still
smaller, on account of the factor 6* in (14).

A similar argument seems to apply to the descend-
ing series.  More reliable criteria would be to require
that each of several consecutive terms of the series
be negligibly small.

7. Bridging the Gap

Although neither series can be used for practical
<mnput(1(mn for points near the circle of convergence
(or between the circles of convergence, if there is
more than one singular point), the function itself
1s regular in any region not including a singular
point; and for a point far from a smg,ul(u point,
the derivatives would not be excessive. Hence, if
we are far from a singular point, it may be entirely
proper to interpolate across the gap where neither
series could be used.

Another method of getting values in this gap is
by means of analytic continuation. We can use the
ascending series to give a value of 7 for some value
of & which we may call ¢. Tt is then possible [1,
p- 196] to represent 7 as an ascending series in 6—gq,
which will be valid within the cirele centered at q
and passing through the nearest singular point.
Such a series, obtaln('d b\' methods analogous to
those already (h\%(nl)o(l

Y _ . 6‘([ . W
7‘5__(‘)( ) 0*7'((]); (1 i)(ﬂq _11
(71(1_2(70(]_)) 'n j n—2 L(IG)
j—1
+2q(5—q) ? ZC Csn-1t0 25 CoCjn
n=0 n= J

No computations have actually been made with
this formula.



8. References

[1] See any treatise on theory of a complex variable; e.g.,
Functions of a complex variable, by Kdouard Goursat,
translated by Earle Raymond Hedrick and Otto
Dunkel, pp. 19, 80-84 (Ginn & Co., 1916).

[2] H. Bremmer, Terrestrial radio waves. Elsevier, New York,
N.Y., 1949, p. 45. Bremmer errs in saying that there
exists an intermediate region in which = may be calcu-
lated from either series.

[3] J. R. Johler, L. C. Walters, and C. M. Lilley, Low- and
very low-radiofrequency tables of ground wave param-

98

eters for the spherical earth theory: the roots of
Ricecati’s differential equation (supplementary numerical
data for NBS circular 573), NBS Tech. Note No. 7,
pp. 56 (Feb. 1, 1959).

[4] James R. Wait and H. Herbert Howe, Amplitude and
phase curves for ground-wave propagation in the band
%00 cycles per second to 500 kilocyeles, NBS Cire. 574
1956).

Bouwper, Covo. (Paper 64B2-26)



	jresv64Bn2p_95
	jresv64Bn2p_96
	jresv64Bn2p_97
	jresv64Bn2p_98

