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Non-Seli-Adjoint Boundary Value Problems in Ordinary
Differential Equations

Werner Greub ! and Werner C. Rheinboldt

{October 15, 1959)

It is shown that the theory of non-self-adjoint linear ordinary differential equations can
be simplified and unified if, instead ot specifying linear boundary conditions in the conven-
tional way, one merely specifies the linear subspace determined by the boundary conditions.
If this is done, the corresponding linear space of the adjoint problem is the orthogonal
complement of the original space with respect to the scalar product defined by the right-hand

side of Green’s boundary formula.

1. Introduction

The theory of boundary-value problems for or-
dinary differential equations of the form

é @, (U (1) =1 (2) (1)

is now regarded as more or less complete.  The self-
adjoint case is presented in most textbooks owing
to its importance 1in applications. A complete
treatment of the non-self-adjoint problem is less
common but may be found in Coddington, Levinson,*
and Ince.? However, in these as well as in the
original publications, e.g., Bocher,* the boundary
conditions are stated in the form

o ™V (@),u(b), ..., umP (b))
n—=1

> (A (@) + Buu® (8))=0

y=

w,(uwla), . .

2

V4

)

where the o, are m linearly independent linear

.y M)

functions in the 2n dimensional number space
R (0=m=2n).
The m linear equations w,=0 (u=1, ., m)

define a (2n—m) dimensional linear subspace @ € ",
The set of solutions u(t) of the problem (1)/(2)
remains unchanged if the functions w, are replaced
by another system of equations w,=0 (p=1,...,m)
which define the same subspace Q € R*".

1 The work was carried out while both authors were employed at the University
of Maryland, the first in the Department of Mathematics, the second in the Insti-
tute for Fluid Dynamics and Applied Mathematics. The paper was prepared
while both authors were affiliated with the National Bureau of Standards, the
first working under a National Bureau of Standards contract with The American
University. The authors’ present addresses are, respectively: Mathematics
E , University of Zurich, Zurich, Switzerland; and Computing Center,
Syracuse University, Syracuse, N.Y.

2 Earl A. Coddington, Norman Levinson, Theory of ordinary differential
equations (McGraw-Hill Book Co., Inc., New York, N.Y., 1955).

3 K. L. Ince, Ordinary differential equations, London (1927).

. Bocher, Applications and generalizations of the conception of adjoint
systems, Trans. Am. Math. Soc. 14, 403 to 420 (1913).
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This fact causes an unnecessary complication
for the theoretical investigation of such boundary
value problems. It results especially in a somewhat
artificial definition of the adjoint problem. These
difficulties do not occur if one prescribes instead of
the boundary conditions (2) only the subspace
Q of R*" disregarding the manner in which Q is
represented. If this is done, the corresponding
linear space of the adjoint problem is the orthogonal
complement of the original space Q with respect to a
scalar product defined by the right-hand side of
Green’s boundary value formula.

It is shown in this article that the theory of the
non-self-adjoint problems can be simplified and
unified by a consequent use of these ideas and the
methods of linear algebra.

2. Green’'s Formula

As usual we denote by (% (k=0,1, .) the space
of all real-valued® functions wu(f) which possess k
continuous derivatives on a given closed interval
[@,b]. Let Llu] be the linear differential operator of
order n(=1) defined by

L[u]zi} @, (U (t) 3)

where a, ,(t) € C", u(t) € C" and a,(t) #0 for [a,b].
To every function u(t) € C"! one can compute the
2n real numbers

w(a),w (a),...,u"V@),ud),w ®),..., u"0b). ()
We regard these 2n numbers as the components of a
vector u of the 2n-dimensional linear number space
1" and call it the boundary value vector of wu(t).
The correspondence between the function wu(t)
and its boundary value vector u is a linear mapping

5 The restriction to real-valued functions is not essential, as can be readily
ascertained.



(u@®) € O, ug B (5)

u=p(u)

from ("' onto R*".

Let @ be a given subspace of the *". Then the
boundary value problem in consideration assumes
the form

ul=f(0),

with given f(£) € (.
neous problem is

L{u]=0,

P(u) E Q, (WN)

The corresponding homoge-

p(u) € Q. (Ta)

For any two functions wu(t), »(t) € O, the integral

z):be[u]vdt

is defined and by repeated partial integrations can
be written as

(6)

(L{u, v) = (u, L*[o]) + [u,0]2, )
where
*[@]:y’z;g—l)v(an_y) o, ®)
=3 3 (—1)sr @ (g, (9)
v=0 p=r+1

Equation (7) is the well-known Green’s formula.

The linear differential operator L* is called the
adjoint operator of L. The expression [u]; is a
bilinear form in the two boundary value vectors
p(u), p(v). For arbitrary vectors

x={., 8%, 5., &7, ..}, {. }

of the 12?7, this bilinear form can be written in the
form

(a)

5 b
37={] cop T2 c0f oop T Lgec

n—1 n—v=1 n—v—

A
=2 3 = ()
[a;)\ v#))\—- (b)g;b),’h(bb) a/;b)\ yl-l))\ (@)E(a) <a)] (10)
With this notation we get Green’s formula,
(Llu], v) = (u, L*[v]) +-¢(p(u), p(v)).  (11)

It is obvious that the correspondence L — L* is
linear. Furthermore, the adjoint operator to L* is
again L. To show this, apply Green’s formula to
any u,» & C" with p(u)=p(v) =0

(Lu], ) = (u, L*[]) =
(L*], w)— (v, L**[u])=0,
which results in
(Llu]

— L*¥*[u], v)=0
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(for all w,p € O™ with p(u)=
to

p(r)=0) and thus leads

I =165l

for all functions u(t) € ™. In the last step one has
to use the same technique used in calculus of varia- .
tions for the proof of Kuler’s condition.

The differential operator L is said to be self-adjoint
if L*=L. On comparing the forms (3) and (8) of
L and L* one sees immediately that n must be even
if the operator is self-adjoint.

In the case of a self-adjoint operator L the left-
hand side of (11) is skew-symmetric with respect to
% and », and this implies that the bilinear form
o(u,v) is also skew-symmetric.

We will now show that ¢(X,y) is not degenerate.
To prove this it is sufficient to verify the following
statement: If for a fixed vector y& R*® we have
o(x,y)=0 for every X€& R?" then 1t follows that |
y=0.

We prove this first for a fixed vector y of the form
., 0} (12a)

Ya:{m()a); o . -;"Ifz“-)h O) LI

or

b
"In( )1

}

taking x correspondingly as x, or x,, analogously de-
fined. In this case the expression ¢(X., ¥.) for a=a
or a=0 is a bilinear form in the two n-dimensional
vectors {£¢, . . ., &%} and {9, o 1R}

Therefore, if (X, ya)~0 holds for every x, and a

fixed ye, then in expression (10) the coefficient of

yb:{oz o9 0; 77(3)7 ¢ o (12b>

every £ must vanish separately. Thus
n—v—1 n—r—1
2 25 (=DMO) ad5Eyo1 (@) 09 =0
pn=0 A=pu
(z=0" ., n—1).
For v=n—1 this has the form a,(«) ¥ =0, and since

ay(a) #0 1t follows that

((69) —

=0.

For n=n—2 we get now

a

() 19 —ag(a) NP —ao(@ 1P =—ao(a) 7P =0

and
7P =0.

Continuing in this way, we ultimately show that

7= (u=0, . . ., n—1)

and thus y.=0. |
Now the proof is readily completed. From defini-

tion (10) 1t is seen that for arbitrary x=x,-+x, and
YZYH*}’D;
(Xa, ¥a).

o(X, ¥) =¢(Xy, ¥u) —¢



For a fixed y this expression shall be zero for every
x € R and m particular for arbitrary vectors x=x,
orx=X,. Hence the two terms ¢(X,, y,) and ¢(x;, y,)
have to vanish separately for every x, and x,, re-
spectively. In accordance with the first part of the
proof, this is only possible for y,=0 and y,=0, i.e.,

y=0.
3. The Adjoint Problem

The bilinear form ¢ was shown to be nondegener-
ate. Accordingly, it can be employed to define
“orthogonality” of vectors x, y€ **. We will say
x and y are g-orthogonal if ¢(x, y)=0. It should be
observed that this g-orthogonality is not necessarily
symmetrical.

One can speak, in particular, of the g-orthogonal
space to Q that is the space QL of all vectors y € R*"
which are g-orthogonal to all vectors x € Q.

For the dimension of @+ evidently holds

dim @+=2n—dim Q=m. (13)
Equation (13) implies
dim (Q1)L+=dim @,
and hence, together with (1)L € Q, that
(@b)l=aq. (14)

It is worth while pointing out that the relation
QNQ2+L=0is not, in general, valid; there may exist a
nonzero vector x€Q which is g-orthogonal to all
vectors of Q.

With this terminology we define the adjoint
boundary value problem of (my):

(%)  L*ul=¢9@®),

with given ¢(t) € C°.

From L**=1 and (14), it follows that the adjoint
problem of (7%) is again (my).

In particular, (my) will be termed self-adjoint ® if

E=N (15)

p(u) €Q

Q=0L.
4. Homogeneous Problems

Consider the homogeneous problems (mz) and
(r%). Tt is known from the theory of homogeneous
linear differential equations that all solutions w € "
of the equation

Lu]=0 (16)

form a m-dimensional function space K. The solu-
tions » € C" of L*[p]=0 form another n-dimensional
function space K*. These two spaces K and K*
are mapped by the operator p into two subspaces
K=p(K) and K*=p(K*) of R*".

6 For self-adjoint problems Green’s formula states

(L[u], v)=(u,L[p])  for p(u), p(v) €2
Usually one uses this relation to define self-adjointness of (wn). The two defini-
tions are equivalent as can beshown in a way similar to that used for the proof of

Jhr=

=L,
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In these subspaces K and K* the operator p has a
unique inverse p~'; hence, K=p '(K) and K*=
p~'(K*). This is immediately clear because p(u)=0
implies that all initial values «®(a) (»=0,1, . . .,
n—1) are zero; hence u(t)=0 owing to the unique-
ness theorem for the initial value problem of eq (16).

The operator L and the bilinear form ¢(z,7) deter-
mine the ¢-orthogonal space K=p(K)+ of K.

TuroreM 1: The subspaces p(K*) and K+=p(K)+-
of R*" are identical, i.c.,

K=o (K&H)% (17)

Proor: For any two functions u(t) € K, o(t) € K*
Green’s formula gives ¢(p(u), p(v))=0, which implies

p(K¥) € p(K)+-=K*. (18)

Since the mapping p is regular in K and K*, it follows
on the other hand that

dim p(A)=dim K=mn
and
dim p(K*)=dim K*=n.

Thus, we find
dim Kt=2n—dim K=n,

and the inclusion (18) must constitute equality.

To this point the boundary conditions [in (7z) and
(r3) have not been used. To consider them now we
introduce the space A of all admissible functions of
(), 1.e., the space of all functions u(t) € O* with
p(u)eQ. Thus, the solutions of () are, exactly the
functions

u(t) € ANK. (19a)

For these functions the boundary value vectors are

p(u) € QNp(K). (19b)

We handle (7%) in the same way. Let A* be the

space of all () € 0" for which p(u) € 2. Then, the

solutions of (%) are exactly the functions

v(t) € A*NK*, (20a)

In view of relation (17) the boundary value vectors
of these functions are

p(0) € QLNKL= QLN p(K)"L. (20b)

Thus, the number of linearly independent solutions
of (my) or (v%) is given by

k=dim (ANK)=dim (2Np(K)) (21)
and

*=dim (ANK*)=dim (QLNp(K)L),  (22)

respectively.



~ Turorem 2: The numbers k and k* of linearly
independent solutions of (ry) and (7)) are connected
by the relation

k*=m—n+Fk. (23)

To prove this we use the following well-known
lemma from linear algebra:
hLet A be a linear space and Ay, A, two subspaces,
then

(24)
where A+ A, is the linear closure of A, and A,.

This relation is employed in a slightly different
form. We introduce the orthogonal subspaces
ATEA and A€ A of A; and A, with respect to
a given (nondegenerate) bilinear form. Whence,
we have

dim At=n—dim A4,
and

dim (A1NA43)=dim (4,4 4,)L=n—dim (A4,+A4?).
Thus (24) becomes

dim A;—dim (4;NA4y) =dim A7—dim (ATNA3).

(25)
In the present case,
A=R*, A,=Q, Ay=p(K);
therefore
dim A;=2n—m, dim At=m, dim Ay=n;

hence,
n—dim (2Np(K))=m—dim (QLNp(K)L),

which completes the proof.

5. The Nonhomogeneous Problem

Consider the nonhomogeneous problem (my) to-
gether with its adjoint homogeneous problem (7).

We shall prove the “alternative” theorem of the
theory of systems of linear equations.

TaroreEM 3 (Alternative theorem): (wy) has a solu-
tion if and only if (f,v)=0 for all solutions v(t) of
(r#). This can be expressed in the form 7

LIA]=A*NK*)L, (26)
Here the symbol |l denotes orthogonality in the
function space C° with respect to the scalar product

(f,9)-

7 L[A] is the subspace of C° containing all functions L[u] with u € A.
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Proor: (1) Assume (my) is solvable and u(?) is a
solution. Then, for any solution »(f) of (x7), it fol-
lows from Green’s formula that

(fw) = (L{ulp) = (u, L*[p]) +-¢(p(u) 0 (v)).

Since L*[p]=0, then (u,L*[»])=0; and from p(u) €Q
and p(v) € QL it follows that ¢(p(w), p(»))=0. Thus
it 1s seen that (f,»)=0.

(2) Assume that (f,v)=0 for all solutions of (7).
We shall show that (ry) has a solution.

From the existence theorem for ordinary differential
equations it is known that the differential equation
Liul=f must have at least one solution wuy(t).
For this function wu,(t) and any solution »(¢) of (wz)
we find from Green’s formula that

0=(f, v)=(Lluol, v) =(uo, L*[v]) +-0(p(uo), p(v))
=¢(p(uo), p()).

Thus p(ug) is g-orthogonal to all p(v) €EQLNp(K)L
and

p(1o) (N p(K) L) =0+ p(K)

where the -+ sign again denotes the linear closure
of @ and p(K).

This inclusion states the existence of two vectors
U, €Q, w€p(K) such that p(ug) =u;+u,. From the
fact that p has a unique inverse p~! in K 1t follows
that there is exactly one function u,(t)=p '(u,) € K
for which L[u,]=0 and p(u,)=u,. We form a new
function w(t) =wuy(t) —uy(t). This function u(?) is a
solution of (my), for obviously Llu|=f and p(u)=
() — p(us) =, € Q. )

Taking the orthogonal complement on both sides
of (26) we find

LA = (A*NK*) L= A*NK*. (27)

Thus we get the following
CorOLLARY: [f for a given function v(t) € C°,

(v(t),Liu))=0 for every u(t)EcA,

then L*[p]=0, p() €EQ and in particular v(t) € C".

6. Green's Function

The solution of the nonhomogeneous problem
(my)—provided that it is solvable—is determined
up to a solution of the homogeneous problem (my).
In order to obtain an explicit formula for the solution
of (my), it is necessary to assume an additional
condition which uniquely determines the solution
of (my). Furthermore, it is desirable to modify (my)
in such a way that it is always solvable.

With these two aims in mind we introduce an
orthonormalized basis in each of the spaces

ANK

and A*NK*,



Let

Uy, Usy o o oy Uy and V1, Vay . . ., U (28)
be these two bases. With the functions »,(f) we
define the new boundary value problem

*

Liu)=f(t)—

v

(f(&),00())0u(2), p(w) € Q. (29)

k
=1

Owing to the orthonormality of the »,(f), the right-
hand side of the differential equation is orthogonal
to all »,(t) (»=1, .. . k), and thus to all solu-
tions of (7). Therefore (29) is solvable for every
function f(t) €C°. To find an additional condition
which uniquely determines the solution of problem
(29), we recall the following fact: If u(f) is a solution
of (29), then

k
UUH—ZI Vulu(?)
=
is also a solution for any real coeflicients v,. We
can determine the v, in such a way that
k
(vD+ 2 w00 0))=0 =1, . . B,
=1

Owing to the orthonormality of the wu,, these rela-
tions are satisfied for

—y#:~(u(t'),u,,(z‘)) (I-‘Zly ..

This shows that there is always a solution of (29),
which is orthogonal to all %, and thus to the whole
space ANK; obviously, this solution is uniquely
determined.

Consider instead of (my) the following problem:

o k).

L[u]:f(t)~é (f,00) 0u(0)

p(u) €Q (x)

(u(®),us(t))=0  (u=1, . .

We know that this problem (7ry) has exactly one
solution u(t) € C™ for every function f(t) € C°. The
correspondence between w(f) and f(¢) is denoted by
an operator @, i.e.,

k).

u(t)=G[f()].

This operator is obviously linear. It will be shown
that G is an integral operator of the form

(30)

=6 O1= . "9t £ dr, 31)

where ¢(t, 7) is the so-called Green’s function in the
generalized sense.

To prove this, we consider functions ¢(¢, ) having
the following properties:

(P 1) ¢(¢, 7) is a continuous function of ¢, 7 for
a=<t7=<b;
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(P 2) For every arbitrary but fixed r=r,,a <7, <b,

g(t,7g) possesses = continuous derivatives for
a=t=<7,and 7,=<t=<b such that
0% 0, 79) 0'g(ry—0

9(ro+0, 7o) _ 0% (70 —’L‘)zo (»=0,1,...,n—2)

at" af()

0"~ 1g (1910, Tﬁ_a"q.’/ (19—0, 7o)

1
'atn-l atn717 -

_(’0 (10)’

(P 3)® For every arbitrary but fixed r=7, in
a§7'0§b;

k*

I [{/ (If, 703]:—2 O (I) Vu (TU)

u=1

fora<t=<b but t#7,;

(P 4)* For every arbitrary but fixed 7=r,in a<r,<b,
pe (9 (t,p0)) €2;

(P 5) For all functions u,(t) (u=1, .

., k) of
the basis (28)

j'”w,r) ua (£) At =0

identically in a <7 <9.

It shall be proved that there exists exactly
one function ¢(¢,7) having these properties which
satisfies (31).

TraEOREM 4: [f there exists a function g(t,7) possess-
ing properties (P 1) through (P 5), it is uniquely
determined.

Proor: Let ¢,(t, 7) and ¢:(t, 7) be two functions
which both possess properties (P 1) through (P 5).
For an arbitrary but fixed r=7, in e +<b we define
the function

go(t) =gq1(t, 7o) —ga(t, 7).

Then, according to (P 3) it is seen that
Lig,(t)]=0

In view of (P 2), go(t) € C"7'; hence it follows from(32)
that the jump in the (n—1)-th derivative of g,(¢) at
t=7, must be zero. Thus, go(t) € C* ' and in view of
(32), go(t) € K. From (P 4) it follows that g,(t) € A;
therefore, ¢o(t) € KNA. On the other hand, it can
be concluded from (P 5) that g,(t) € (KNA)'-. Thisis
possible only if go(f) =0 for a <t<b. Because 7, was
arbitrarily chosen in the open interval a<_+<b, this
is equivalent to the statement g,(¢, 7)=g¢,(¢, 7) for
a<t=<b, a<+<b,and in view of (P 1) for the whole
a<t, r<b.

for a<t=<bh, t#7. (32)

§ The subscripts ¢ in L:[g] and p:(¢) denote that the differential operator L and
the mapping p operate on g(¢, ) regarded as a function of ¢.



To state the existence of ¢(¢, ) we first prove the
following:

Leymma 1: There exists at least one function h(t, 7)
which possesses properties (P 1), (P 2), (P> 3), and
125
( PIzOOF For fixed arbitrary rin a<_+<_b, consider
the ordinary differential equation

k*

Lz [g(t) T)]:'_'; pl-‘(t)UM(T) (33)
and the two sets of initial values
9L o =01, .. .,n—1) (34a)
at” t=T1
and
o lg(t,r) | 1 .
atn~1 z=a_a0 (T) (341))

Both initial value problems (33)/(34a) and (33)/(34b)
possess unique solutions A, (¢, 7) and hy(t, 7), respec-
tively. These solutions &, and h, are continuous
functions of #, 7 in the whole square, a<t,7<b.
Furthermore, they possess n continuous derivatives
with respect to ¢ in this square. Accordingly, the
funection

for t

" [ hyt,7)
T)_ﬁ ho(t.7)

obviously possesses properties (P 1), (P 2), and
(P 3).

We define the coefficient-functions

eu(r)= (hs(t, 7), uu(t))

which in view of the continuity properties of hy(t, 7)

S
IIA
IA

T

for T<t<bh

(“:1: ’ k);

are continuous functions of 7. Hence, the function
k
h(t,m)=hy(t,7)— Z (1) uu(t)

evidently satisfies properties (P 1), (P 2), and (P 3).
Furthermore (P 5) obtains, since

(h(t, ), wa(®)) = (hs(t, 7), u(t)) —cu(r) =0

owing to the orthonormality of the w,(t).

Lemma 20 There exists a linear transformation

which maps every wvector XEQ+p(K) wnto one vector
y € p(K) such that

(7' (¥), wa(®)=0 " (u=1, ..

Proor: Let XxEQ+p(K) be given.
exist at least two vectors X;,X, for which

o k). (35)

Then there
XEEp(K

X=X;+X, X, €Q
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x; and X, are determined to within a vector belonging
to the intersection QUp(K). With coefficients

cu=(p7"(Xa), uu(t)) (=1, ... ., k),
the following new vectms are deﬁned
YI—X1+ZCuP W), Yo=X,— chp(’u,,)
Since
k
2 cup(uy) € QMNP (K,
=
then
X=Y:1+Y: Yi€Q Y2 € p(K), (36)

and, furthermore, in view of the orthonormality of
the u,,

(p7H(y2), w)=(p™"(X2),
l(xz); uy)

The two vectors y; and y, are uniquely determined
by conditions (36) and (37). This is rather obvious;
for any other decomposition X=y;-}+y, of X \\}11(11

Zcu(p p (), u)

— (0" (u=1,.., k). (37

satisfies (36) and (37) it follows that p=* (y.—ys) € ANK.
However, the relations
(' (¥o—¥2), w)=0  (w=1, .. ., k)

obtain only if yo=y, which then implies yl—yl

Hence, it has been shown that we can associate
with every Xx€ Q-+ p(K) exactly one vector ¥y, € p(K)
which fulfills (36) and (37). This was the statement
of the lemma.

It is necessary at this point to obtain an extension
of Green’s formula for functions having discontinuity
properties similar to (P 2). Let the function y(f)
possess the following properties:

a) y(t) possesses n continuous derivatives for
a<t=<7, 7=t=b, where ris a certain fixed point.

b) ¥y (r4+0) =y (r—0)=0
Yy (r+0)—y

(»=0,1, ...m—2),
=il —
n=1)(r+—0)=c,
where ¢ is a certain fixed constant.
For any arbitrary chosen o(¢) € C", it can be
shown by repeated partial integration that

Llylp) — (@, L*[) =e(p(y), p(v))—c ao(r)o(7).

This is the generalized Green’s formula.

(38)

TaEOREM 5: There exists a function g¢(t,7) which
possesses the five properties (P 1) through (P 5).

Proor: Let h(t,7) be the function which has prop-
erties (P 1), (P 2), P 3), and (P 5). For every
arbitrary but fixed 7 in a<7<b, insert h(t,7) and

the basic functions »,(t) (v=1, . .i., k) in the

generalized Green’s formula:

(Lfhl, v,) = (h, L*[0,]) +¢(p.(h) ,p(vu))—v (1)
=¢(pi(h), p(v:))—0, (7) (r=1, . . ., k¥¥).



On the other hand, for a <t <b,

(P 3),

t#7, according to

(LA, m)=— 22 0ult), B () =—0(7),

and in view of the orthonormality of the v,(t)

o(p.(h),p(v,)) =0 k*).

This is equivalent to
pi(h) € (2+Up(K)L) L=+ p(K).

We now consider the (continuous) linear transforma-
tion from Q4 p(K) into p(K) which exists by lemma
2. Let h€ p(K) with

(o~ (h), u,)=0

be the image vector of p,(h) under this transforma-
tion. Then h is a continuous function of 7 for
a=7=bh. 'This is obvious because p,(h) depends
continuously on 7, and the correspondence between
0:(h) and h is continuous. Let x;, ..., X, be a basis

of p(K) and

(v=1, ...,

(w=1, ..., k) (39)

h:i du(7)Xu
p=1

It is clear that the coefficients d,(7) are continuous

functions of 7 for a=7=<b6. Hence, the (uniquely
determined) function
b, D =p ) =23 du(r),  pTi(%)EK

is continuous in both variables ¢ and 7 for a<t,7=<.
We define the function
g(t, 1) =h(t,)) —h(t,7).

Then ¢(t,7) obviously possesses properties (P 1),
(P 2),and (P 3). (P 4) follows from

p(9)=p.(h)—h € Q.

Finally, as a consequence of (39),

(g(t,7) uu(®)) = (h(t,7) uu(®)) — (h(t,7) uu(t)) =0
for u=1, ..., k, since h(t,7) fulfills (P 5).

Thus g¢(t,7) possesses properties (P1) through
(P 5). 'This proves the theorem.

Now we are in a position to prove the following
final theorem:

| Turorem 6: Let g(t,7) be the uniquely determined
Sunction with the properties (P1) through (P5);
~ then

u(t)=GLf ()] f "9, D (dr,
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Sfor every given f(7) € C°, constitutes the (uniquely de-

termined) solution of (fy).

Proor: Let o(t) € A* be an arbitrary function.
For any fixed 7 in a<r<b we apply the generalized
Green’s formula (38) to g(¢,7) and »(¢). With regard
to (P 4) and p(v) € QL 1t is seen that

(Lalgl, v)= (g, L*[])—v(7);

thus, in view of (P3),

(Ldlgl, v) Z(v ) vu(r) = (g, L*[v]) —o(r)

for a=t<b, a<r<b, t=r1. We multiply this
equation by a continuous function f(7) and integrate

over 7. Because ¢ is a continuous function of ¢ and
7, it follows that

k*

—23(0,0) (0,)=(Gl]], L

v=1

LK) — (). (40)

For f(t) we consider the boundary value problem (29)
which is solvable no matter how f(¢t) was chosen.
Let wu;(f) be a solution. For the given function
v(t) € A* we obtain

(Ll )=o) =20 0,

and thus together with (40)
(L, )= (GIf], L¥0)).

Applying Green’s formula (11) to the left-hand
side we conclude that

(L*], wi) = (G ],
e(p(u), p
(G[f]—w, L*[v])=0.
This relation is valid for every function »(f) € A*.
Hence, it follows from the corollary to the &Iterna—
tive theorem that G[f]—u, € C"; thus, u(t)=G[f]
€ ™. Furthermore, it follows that
LIG[f]—ui] p(Glf]—w) €2,

which is equivalent to

LIGU 1= Elusl =1~ ()

L*[0]) —o(p(uy), p(v)),

and because (v))=0, then

=0,

p(GLI) €.
Finally, it follows from (P5) and (P1) that
(w®), wa@)=0  (u=1,.. . k).

In applying theorem 6 to the adjoint problem
(7rx*) we confirm that for any f,(t) € C° the uniquely



determined solution »(f) of (#x*) is given by

== [ grenroa. @

We will show that the integral operator G* is the
adjoint operator of G, 1.e.,

(Gl )=, G*[A])

for all £, f€ C°.
Let v(t)=G*[f1], i.e.,

(42)

TG All=fi— 2 )

p(GHAD €QY (GHfiu)=0 (u=1,.., k¥).

Wasuinaron, D.C. (Paper 64B2-24)

90

With another continuous function f(t) we find from
Green’s formula (11),

k
(U150 = (G, LA LA+ 30 0) G11],0)
(LG +o(o(GLI1) (G LA
+ 230w (G0

= KGR+ 200 (G

k
Te(p(GLFD),p(G*1 /i) + 25 (f1,w) (GLF], ).

Since G| f,] and G*[f,] are solutions of (#y) and (#x™),
respectively, the last three quantities must vanish,
which leads to (42).

From (42) follows for the corresponding Green’s
functions,

g*(t,7)=g(rt).
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