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Non-Self-Adjoint Boundary Value Problems In Ordinary 
Differential Equations 

Werner Greub 1 and Werner C. Rheinboldt 

(Octo her 15, 1959) 

It is shown that the t heory of non-self-adjoint lin"ar ordinary differential eq uat ions ca n 
be simplified and unifi ed if, instead ot specifying linear boundary conditions in the conven­
tional way, one merely specifies the linear subspace determined by the boundary co ndi tions. 
If this is rlone, the corresponding linear space of the adjoint problem is the orthogonal 
complement of the original space with respect to the scalar product defined by the r ight-hand 
side of Gree n's boundary form ula. 

1. Introduction 

The theory of boundary-value problems 1'01' or­
dinary differential equ ations of the form 

(1) 

is now r egarded as more or less complete. The self­
adjoint case is presented in most textbooks owing 
to its importance in applications. A complete 
treatment of the non-seH-adjoint problem is less 
common but may be found in Coddington, Levinson ,2 
and Ince.3 However, in these as well as in the 
original publications, c.g., B6cher,4 the boundary 
cond itions are stated in the form 

w~ (u ~a), ... , U cn- I ) (a),u(bj, ... , U Cn- 1) (b)) 
n- l 

=~ (A~,uC') (a)+B~,uC')(b))=O 
V~O 

(,u= 1, ... , m) (2) 

where the WI' are m linearly independent linear 
functions in the 2n dimensional number space 
R 2n (0~m~2n). 

The m linear equations w~= O (,u = 1, ... , m ) 
define a (2n - m) dimensional lineal' subspace Q E R 2n . 
The set of solutions u(t) of the problem (1) / (2) 
remains unehanged if the functions WI' are replaced 
by another system of equations w~= O (,u= 1, .. . ,m) 
which define the same subspace Q E R 2n . 

1 'rhc work was carri ed out while both au thors were employed at the University 
of j\II al'y land , the first in the D epartmen t of lVi athematics, the second in tho Inst i­
t u te for Fluid D yn amiCS and Appli ed Mathematics . 1' ho paper was prepa red 
while both a uthors were aflil iatcd with the National Bureau of Standa rds, t he 

J first working under a National Burea u of Stand ards contract with The American 
Uni versi ty. The au thol's' prcsen t add resses are, respect ively : ~1athcmatics 
Institute, U ni versity of ZUl'ich, Zurich, Switzerland ; a nd Compu ting Center, 
Syracuse UniverSity, Syracuse. N. Y. 

2 E arl A. Coddington, No rman Le\-ill f:On, 'rheory of ordi nary differenti al 
equations (M cG raw- lI ill Book Co., Inc., New York, !\ .Y., 1955). 

3 E . L. Inc~, Ordinary differential equations, London (1927). 
4 M . B och er, A pplications and generalizations of the conception of adjoint 

systems, 'l' rall s. Am. Math. Soc. 14,403 to 420 (1913). 
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This fact causes an unnecessary complication 
for the theoretical investigation of such bOlmdal'Y 
value problems. It results especially in a somewhat 
artificial definition of the adjoint problem. These 
difficulties do not occur if one prescribes instead of 
the boundary cond itions (2) only the subspace 
Q of R 2n, disregarding the manner in which Q is 
represented . If this is done, the corresponding 
linear space of the adjoint problem is the orthogonal 
complement of the original space Q with respect to a 
scalar product defined by the right-hand side of 
Green's boundary value formula . 

It is shown in this article that the theory of the 
non-self-adjoint problems can be simplified and 
unified by a consequent use of these ideas and the 
methods of linear algebra. 

2. G reen's Formula 

As usual we denote by ('k (/c= O,l, ... ) the space 
of all real-valucd 5 functions u(t) which possess k 
continuous derivatives on a given closed interval 
[a,b]. Let L[u] be the linear differential operator of 
order n(~ 1) defined by 

(3) 

where an-, (t) E O', u(t) E On and ao(t) ~O for [a ,b]. 
To every function u(t) E On- lOne can compute the 
2n real numbers 

u(a),u' (a) , . . . , u cn - 1l (a),u(b), u'(b) , . . . , u Cn- 1l (b) . (4) 

vVe regard these 2n numbers as the components of a 
vector u of the 2n-dimensional linear number space 
R2n and call it the boundary value vector of u(t) . 
The correspondence between the hmetion u(t) 
and its bOlmclary value vector u is a linear mapping 

6 '1'he res tri ction to real-valued fWl ctions is not essential, as can be readily 
asccltaincd. 



u = p(u) (5) (for all u,vE Cn with p(u)= p(v)= O) and thus leads 
to 

from Cn- I onto R,2n. 
Let £1 be a given subspace of the H2n. Then the 

boundary value problem in consideration assumes 
the form 

L[u] = j(t), p(u) E £1, 

with given jet) E Co. The corresponding homoge­
neous problem is 

L[u] = O, p(u) E £1. 

For any two functions u(t), vet) E cn, the integral 

(L[u], v)= i b L[u] vclt (6) 

is defined and by repeated partial integrations can 
be written as 

(L[u], v) = (u, L*[vD +[u,v]~, (7) 

where 
n 

L*[v] = ~(- l) v(an_v) cv) , (8) 
v=o 

'1'1,-1 n 
[u,v]~=~ ~ (_ l) rv-IuCv)(an_vv)I'- V-I I ~. (9) 

v=O I'=p+l 

Equation (7) is the well-known Green's formula. 
The linear differential operator L* is called the 

adjoint operator of L. The expression [u,v]~ is a 
bilinear form in the two boundary value vectors 
p(u), p(v). For arbitrary vectors 

X - { t Ca) • I: Cb) } - ",';v , .. , 'o , ';v , .. , Y_ { ", Ca) • ", Cb) } 
- ." 'I V J", •. , 'I V", 

of the R,2n, this bilinear form can b e written in the 
form 

<p(X,y) = ~ n3S1 n3S1 (-1)A (A) 
v=O 1'=0 },.=I' f.1. 

. [a~},._~~\ - I (b) ~~b ) TJ ~b) -a;'?,-~':..\ -I (a) ~~a)TJ1a)]. (lO) 

With this notation we get Green's formula , 

(L[u], v)=(u, L*[vD+rp(p(u), p(v)) . (11) 

It is obvious that the correspondence L -7 L* is 
linear. Furthermore, the ad joint operator to L* is 
again L. To show this, apply Green's formula to 
any u,v E Cn with p(u) = p(v) = 0: 

(L[u], v)-(u, L*[vJ) = 0 

(L*[v], u) - (v, L**[uJ) = 0, 

which results in 

(L[u]-L**[u], v)=O 
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L[u] = L**[u] 

for all functions u(t) E Cn In the last step one has 
to use the same technique used in calculus of varia­
tions for the proof of Euler's condition. 

The differential operator L is said to b e self-adjoint 
if L * = L. On comparing the forms (3) and (8) of 
Land L* one sees immediately that n must be even 
if the operator is self-adjoint. 

In the case of a self-adjoint operator L the left­
hand side of (11) is skew-symmetric with respect to 
u and v, and this implies that the bilinear form 
rp(u ,v) is also skew-symmetric. 

, Ve will now show that rp(x,y) is not degenerate. 
To prove this it is sufficient to verify the following 
statement: If for a fixed vector yE R,2n we have 
rp(x,Y) = ° for every x E R,2n, then i t follows that 
y= O. 

We prove this first for a fixed vector Y of the form 

Y - { Ca) Ca) ° O} a- TJo , ... , TJ n-l, ,"', (12a.) 

or 

- {O ° (b ) (b) } Y b - ,..., , TJ 0 , • • . , TJn-1 (12b) 

taking x correspondingly as Xa or Xb, analogously de­
fined . In this case the expression <p(xa, Ya) for a= a 
or a= b is a bilinear form in the two n-dimensional 

to . { I: (a) I: Ca )} nd { Ca) Ca) } vee IS so, ... , Sn-l a TJ 0 , ... , TJ n- l· 
Therefore , if rp(xa, Ya) = 0 holds for every Xa and a 
fixed Ya, then in expression (10) the coefficient of 
every ~ (~) must vanish separately. Thus 

(11= 0, ... , n-1). 

For lI = n-1 this has the form ao(a) TJ c(j)= O, and since 
ao (a) ~O it follows that 

For TJ=n- 2 we get now 

and 

Continuing in this way, we ultinlately show that 

(f.1. = 0, ... , n-l) 

and thus Ya=O. 
N ow the proof is readily completed. From defini­

tion (10) it is seen that for arbitrary x = xa+ x b and 
Y= Ya+ Yb, 



For a fixed Y this expression sh all be zero for every 
xEB2n and in particular for arbi trary vectors X= Xa 
or X= Xb. H ence the two terms 'I'(xa , Ya) and 'I'(Xb, Yb) 
have to vanish separately fOl' every Xa and X b, r e­
specLively. In accordance with the first part of the 
proof, this is only possible for Ya= O and Yb= O, i.e., 
y = O. 

3. The Adjoint Problem 

The bilinear form 'I' was shown to b e nondegener­
ate. Accordingly, it can b e employed to define 
" orthogonality" of vectors x, Y E B,2n . vVe will say 
x and y are 'I'-orthogonal if 'I'(x, y) = 0. It should be 
observed that this 'I'-orthogonality is no t necessarily 
symmetrical. 

One can speak, in particular, of the 'I'-or thogonal 
space to [l that is the space [l .L of all vectors Y E R2n 

, which are <p-orthogonal to all vectors x E fl. 
For the dimen sion of [l .L evidently holds 

(13) 

Equation (13) impli es 

dim ([l .L).L = dim [l, 

and hence, together with ([l .L).L E [l , that 

(14) 

It is worth while pointing Ollt that th e relation 
[In [l.L= 0 is no t , in gen eral, valid ; there may exi st a 
nonzero vector x E [l which is <p-orthogonal to all 
vectors of fl. 

With this tenninology we define the adjoin t 
boundary value problem of (7rN): 

L *[u]= g(t) , 

with given get) E Co . 
From L** = L and (l4), it follows that the adjoint 

pro blem of (7rAr) is again (7rN) ' 
In particular, (7rN) will be termed self-adjoin t 6 if 

In these subspaces K and K * th e operator p has a 
unique inverse p- l ; hence, K = p- l(K ) and K* = 
p- l( K *). This is immedia tely clear b eeau e p(u) = O 
implies that all initial values u (v)(a) (p= O,I , ... , 
n - l ) are zero; h ence u(t) = O owing to the uniqu e­
ness theorem for the initial value problem of eq (16 ). 

The operator L and the bilinear form 'I'(x,y) deter­
mine th e <i>-orthogonal space K = p(K ).L of K. 

THEOREM 1: The subspaces p(K *) and K .L = p(K ).L 
of HZn aTe identical , i.e., 

(1 7) 

PROOF: For any two fUllctioll s u(t) E K, vet) EK* 
Green 's formula gives 'I'(p (u ), p(v)) = O, which impli es 

(18 ) 

Since th e mapping p is r egular in K and K* , i t follows 
on the oth er hand that 

dim p(K ) = dim I{ = n 
and 

dim p(K* )= dim K *= n. 

Thus, we find 

dim K.L= 2n - dim K = n, 

a nd the inclusion (18) must co nsti tute equality. 
'fo this point th e boundary condi tions lin (7rH) and 

(n}f) have not b een used. To consid er them now we 
introduce the space A of all admissible functions of 
(7rH) , i .e., the space of all functions u(t) E On with 
p (u) ~[l. Thus, the solu tions of (7rH) are, exactly th e 
functions 

u(t) E AnK. (19a) 

For these funcLions the boundary value vectors are 

p(u) E [lnp (K). (19b) 

L *-== L , (15) W e handle (7r'jJ) in the sam e way. L et A * b e the 

4 . Homogeneous Problems 

Consider the homogeneous problems (7rH) and 
(7rtf)' It is known from the th eory of homogeneous 
linear differential equations that all solut iolls u Eon 
of th e equat ion 

L[u] = O (16) 

form. a n-dimensional function space K. The solu­
tions v E On of L*[v]= O form another n-dimenslOnal 
function space K*. These two spaces K and K* 
are mapped by the operator p into two subspaces 
K = p(K ) and K* = p(K*) of R 2n. 

6 For seif·adjoint problems Green's formula states 

(L[u). v) ~ (u,L[v]) for p(u), p(v) , n 

space of all vet ) E On for which p(u) E fl. Then , the 
solut ions of (7r'Ji) arc exactly the functions 

vet) EA *nK*. (20a) 

In view of r elation (17) the boundary value v ectors 
of these functions arc 

Thus, th e number of linearly independent solu tions 
of (7rH) or (7r'Ji) is given by 

k = dim (AnK) = dim ([ln p(K )) (21) 

and 

(22) 
Usual1 v one uses t.his relation to defin e self-ad jointness of ("N). The two defmi-
2z~£~e equivalent as can beshowll in a way similar to that used for the proof of r especti vely. 
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THEOREM: 2: The numbers k and k* oj linearly 
independent solutions oj (7rH) and (7rI~) are connected 
by the relation 

k* = m-n+ k. (23 ) 

To prove this we use the following well-known 
lemma from linear algebra: 

Let A be a linear space and AI, A2 two subspaces, 
then 

(24) 
where Al + A2 is the linear closure oj Al and A 2. 

This relation is employed in a slightly different 
form . Ill{ e introduce the orthogonal subspaces 
A+ E A and At E A of Al and A2 with respect to 
a given (nondegenerate) bilinear form. Whence, 
we have 

dim At = n - dim AI 
and 

dim (A-tnA-i) = dim (A I + A2)l. = n - dim (A1+ A2). 

Thus (24) becomes 

dim A2- dim (A1nAz) = dim At- dim (A t nAt). 

(25) 
In the present case, 

A = B 2n, 

therefore 

dim A t = m , 

hence, 

which completes the proof. 

5. The Nonhomogeneous Problem 

Consider the nonhomogeneous problem (7rN) to­
gether with its adjoint homogeneous problem (7rJ) . 

We shall prove the "al ternative" theorem of the 
theory of systems of linear equations . 

THEOREM 3 (Alternative theorem): (7rN) has a solu­
tion if and only if (f,v ) = 0 jor all solutions vet) oj 
(7rJ ) . This can be expressed in the form 7 

L[A] = (A * nK*) l!.. (26) 

Here the symbol JL denotes orthogonality in the 
function space Co with respect to the scalar product 
(l,g)· 

1 L[A] is the subspace of G O containing all functions L[u] with uEA. 

PROOF: (1) Assume (7rN) is solvable and u(t) is a 
solution . Then, for any solution vet) of (7riI), it fol­
lows from Green's formula that 

(j,v) = (L[u],v ) = (u,L * [v]) + ",(p(u) ,P (v». 

Since L*[v] = O, then (u,L*[v]) = 0; and from p(u ) E n 
and p(v) E nl. it follows that ",(p(u) , p(v» = O. Thus 
it is seen that (f,v )= O. 

(2) Assume that (f,v) = O for all solutions of (7rI1). 
We shall show that (7rN) has a solution. 

From the existence theorem for ordinary differential 
equations it is known that the differential equation 
L[u] = j must have at least one solution uo(t). 
For this function uo (t ) and any solution vet) of (7rJ) 
we find from Green's formula that 

o= (j, v) = (L[uo], v) = (uo , L*[v]) + ",(p(uo) , p(v») 
= ", (p(110) , p(v». 

Thus p(uo) is ",-orthogonal to all p(v) E n l. n p(K)l. 
and 

where the + sign again denotes the linear closure 
of nand p(K). 
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This inclusion states the existence of two vectors 
ul E n, uzE p(K) such that p(110)= U1+ U2. From the 
fact that p has a unique inverse p-l in K it follows 
that there is exactly one function u z(t ) = p- l(U2) E K 
for which L[U2 ]= 0 and P(U2 )=U2. We form a new 
function u (t) = uo (t) - U2 (t) . This function u(t) is a 
solution of (7rN) , for obviously L[u] = j and p(u ) = 
p(uo) - P(U2) = Ul E n. . 

Taking thc orthogonal complement on both Sides 
of (26) we find 

(27) 

Thus we get the following 
COROLLARY: Ij jar a given junction vet) E 0°, 

(v (t ) ,L[u]) = 0 for every u(t) E A , 

then L*[v]= O, p(v) E n and in particular vet) E o n. 

6. Green's Function 

The solution of the nonhomogeneous problem 
(7rN)- provided that it is solvable- is determined 
up to a solution of the homogeneous problem (~H) ' 
In order to obtain an explicit formula for the solutIOn 
of (7rN) , it is necessary to assume an additio~al 
condition which uniquely determines the solutIOn 
of (7rN) ' Furthermore, it is desirable to modify (7rN) 
in such a way that it is always solvable . 

With these two aims in mi.nd we introduce an 
orthonormalized basis in each of the spaces 

and A*nK*. 



Let 
Ul, U2, . . . , U k and VI , V2, . .. , Vk (28) 

be th ese two bases . Wi th the fun ctions v,(t) we 
define the new botmdary value problem 

k' 
L[u) = f(t)- :6 (f( t ),v,(t ))vv(t), p(u) E Q . (29) 

,,=1 

Owing to the orthonormality of the v,(t) , the righ t­
hand side of the differential equation is orthogonal 
to all vv(t) (v= 1, . .. , k), and thus to all solu­
tion s of (7rfr) . Therefore (29) is solvable fol' every 
funct ion J (t) E ('0. To find an additional condition 
which uniquely determines the solution of problem 
(29), we recall the following fact : If u(t) is a solu tion 
of (29), then 

k 

u(t)+:6 l'~u~(t) 
~= l 

is also a solu tion for any real coeffic icn ts 1'", We 
can determine the 1'~ in such a way that 

(v= 1, ... , k). 

Owing to the orthonormality of the U JJ , these r ela­
tions are satisfied for 

1'1'=- (u( t) ,up(t» ( /1- = 1, ... , k). 

This shows that there is always a solution of (29), 
which is orthogonal to all U JJ and thus to the whole 
space AnK; obviously, this solution is uniquely 
determined. 

Consider instead of (7rN) the following problem : 

(P 2) For every arbitrary bll t fLxed T = TO, a;£ TO;£ b, 
g(t,TO) possesses n con tinuous derivatives for 
a;£ t;£ TO and TO;£ t;£ b su ch that 

()'g (TO+ O, TO) 
at ' 

O'g(TO - O, TO) 
oto 

o (v= O,l, .. . ,n-2) 

On- Ig (TO+ O, TO) 
otn - I 

on- lg(TO- O, TO) 
otn 1 aO (TO)' 

(P 3)8 For every arbitrary bu t fixed T= TO m 
a;£ TO;£ b, 

k* 

L l [get, TO)] = - :6 vJJ (t)vJJ (To) 
1'=1 

for a;£t;£b but t~To ; 

(P 4)8 For every arbitrary butfL'XedT = Toina< To< b, 

PI (g (t, Po) ) ~ Q; 

(P 5) For all functions uJJ(t ) (/1- = 1, ... , k ) of 
the basis (28) 

( b 9 (t, T) U" (t) dt = O 
J" 

id entically in a;£ T;£ b. 
It shall b e proved that there exists exactly 

one fun ction g (t, T) having these properties which 
sa tisfies (3 1) . 

THEoHEM 4: Ijthere exists ajunction g(t ,T) possess­
ing properties (P 1) through (P 5), i t is uniquely 
determined. 

k' 

L[u)= f(t)-:6 (f,vJJ ) vi t) 
,,= 1 

p(u) E Q 

(u( t),uJJ(t» = O 

PROOF : Let gl(t, T) and g2(t, T) be two functions 
which both possess proper ties (P 1) through (P 5). 
For an arbitrary but fixed T= TO in a< T< b we defin e 

(~N) the function 

W e know that this problem (~N) has exactly one 
solution u(t) E On for every function jet) E 0 °. The 
correspondence b etween u(t) and j et ) is denoted by 
an operator G, i.e. , 

u(t) = G[j(t»). (30) 

This operator is obviously linear. It will be shown 
that G is an integral operator of the form 

where get , T) is the so-called Green's function in the 
generalized sense. 

To prove this , we consider functions get, T) having 
the following properties: 

(P 1) get, T) is a continuous function of t, T for 
a;£t,T;£b; 
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Then, according to (P 3) it is seen that 

L[go(t») = 0 for (32) 

In view of (P 2), go(t ) E On-I; hence it follows from(32) 
that the jump in the (n- l)-t.h derivative of go(t ) at 
t= TO must be zero. Thus, go(t) E On-1 and in view of 
(32), Yo(t ) E K. From (P 4) it follows that go(t ) E A ; 
therefore, go(t) E KnA. On the other hand , it can 
be concluded from (P 5) that go(t ) E (KnA) ll. . This is 
possible only if go(t ) = 0 for a;£ t;£ b. Because TO was 
arbitrarily chosen in the open interval a< T< b, this 
is equivalent to the statement gl (t, T) = g2(t, T) for 
a;£ t;£ b, a< T< b, and in view of (P 1) for the whole 
a;£t, T;£b. 

8 The subscripts t in L,[g] and p,(y) denote that the differential operator Land 
t.he mapping p operate on get, T) regarded as a function of t. 



To state the existence of get , T) we first prove the 
following: 

LEMMA 1: There exists at least one junction h(t, T) 
which possesses properties (P 1), (P 2), (P 3), and 
(P 5). 

PROOF: For fixed arbitrary T in a< T< b, consider 
the ordinary differential equation 

k* 

Ll [get, T)] = - ~ v,,(t)V,,(T) (33) 
1'=1 

and the two sets of initial values 

CYg(t, T)[ = 0 
ot ' I=T 

(11=0, 1, ... , n-l) (34a) 

and 

on-lg(t,T) [ = _ 1_ . 
ot,,- l 1=' ao (T) 

(34b) 

Both initial value problems (33) / (34a) and (33) / (34b) 
possess unique solutions hl(t, T) and h2(t, T), respec­
tively. These solu tIOns hI and h2 are continuous 
functions of t, T in the whole square, a;;;;; t,T;;;;; b. 
Furthermore, they possess n continuous derivatives 
with respect to t in this square. Accordingly, the 
function 

for 

for 

obviously possesses properties (P 1), (P 2), and 
(P 3). 

We define the coefficient-functions 

(M = I, ... , k), 

which in view of the continuity properties of h3(t, T) 
are continuous functions of T. Hence, the function 

" h(t,T) = h3(t,T) - ~ C,,(T)U,,(t) 
1'=1 

evidently satisfies properties (P 1), (P 2), and (P 3). 
Furthermore (P 5) obtains, since 

(h(t, T), u,,(t)) = (h3(t, T), UI' (t)) -c,,(T) = O 

(M = I , .. , k) , 

owing to the orthonormality of the u,,(t). 
LEMMA 2: There exists a linear transjormation 

which maps every vector x Efl+ p(K) into one vector 
y E p(K) such that ) 

(p-l(y), u,,(t))=O ' (M=I, ... , k ). (35) 

PROOF: Let x EQ+ p(K) be given. Then there 
exist at least two vectors Xl,X2 for which 
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Xl and X2 are determined to within a vector belonging 
to the intersection QU p(K). With coefficients 

(M = I, . . . , k ), 

the following new vectors are defined: 
k , 

Yl = Xl+ ~c"p (u,,), Y2= X2- ~c"p(u,,). 
1'=1 ,,=1 

Since 

then 
Y2 E p(K), (36) 

and, furthermore, in view of the orthonormality of 
the u", 

k 
(p-l (Y2) , u,,) = (p -1(X2), u,,) - ~cv(p -lp (Uv) , 'u,) 

v=1 

(37) 

The two vectors YI and Y2 are uniquely determined 
by conditions (36) and (37). This is rather obvious; 
for any other decomposition X= Y; + Y; of X which 
satisfies (36) and (37) it follows thatp- l(Y2-Y;) E A nK. 
However, the relations 

obtain only if Y2= Y; which then implies YI = Y;' 
Hence, it has been shown that we can associate 

with every X E Q+ p(K) exactly one vector Y2 E p(K) 
which fulfills (36) and (37). This was the statement 
of the lemma. 

It is necessary at this point to obtain an extension 
of Green's formula for functions having discontinuity 
properties similar to (P 2) . Let the function yet ) 
possess the following properties: 

a ) yet) possesses n continuous derivatives for 
a~t~T, T~t~b, where T is a certain fixed point. 

(11 = 0,1, .. . ,n-2), 

y (n-l) (T+O) _y (n- l) (T-O) = c, 

where c is a certain fixed constant. 
For any arbitrary chosen vet) E en, it can be 

shown by repeated partial integration that 

(L[y],v)-(y,L*[v])=rp(p(y), p(v))-c aoHvH. (38) 

This is the generalized Green's formula : 

THEOREM 5: There exists a junction g(t,T) which 
possesses the five properties (P 1) through (P 5). 

PROOF: Let h(t,T) be the function which has prop­
erties (P 1), (P 2), P 3), and (P 5). For every 
arbitrary but fixed T in a< T< b, insert h(t,T) and 
the basic functions v,(t) (11 = 1, .. ; i., k) in the 
generalized Green's formula: 

I " I ' 

(T=l, ... , k* ). I 



On the other hand, for a~t~b , 
(P 3), 

t r! r , according to jar every given j( r) E 0°, constitutes the (uniquely de­
termined) solution oj (~N)' 

k* 

(L e[h], vv) = - L.; (Vl'(t) , vv(t»v,(r) = -v,(r), 
1' = 1 

and in view of the orthonormality of the v,(t) 

(11 = I, . .. , k*). 

This is equivalent to 

We now consider the (continuous) linear transforma­
tion from Q+ p(R) into p(K) which exists by lemma 
2. Let hE p(R) with 

(M= I , ... , k) (3 9) 

be the inlage vector of Pe(h) under this transforma­
tion. Then h is a continuous fun ction of r for 
a~r ~ b . This is obvious because Pe(h) depends 
continuously on r , and the correspondence between 
Pe (h) and h is continuous. Let Xl, .. . , Xn be a basis 
of p(R) and 

n 
h= L.; dl'(r ) XI" 

1' = 1 

It is clear that the coefficients dl'( r ) are continuous 
functions of r for a ~ r~ b. Hence, the (uniquely 
determined) function 

A n 
h(t , r) = p- l(h )= L.; dl'(r) , 

1'= 1 

is continuous in both variables t and r for a~ t , r ~ b. 
W e define the function 

get, r) = h(t , r) - h(t, r). 

Then g(t,r ) obviously possesses properti es (P 1) , 
(P 2), and (P 3). (P 4) follows from 

Pe(g)= Pe(h)-h E Q . 

Finally, as a consequence of (39), 

(g(t, r) ,Ul'(t» = (h(t, r) ,UI'(t» - (h(t, r) ,Ul'(t» = 0 

for /l = I , ... , k, since h(t,r) fulfills (P 5). 
Thus g(t,r) possesses properties (PI ) through 

(P 5) . This proves the theorem. 
N ow we are in a position to prove the following 

fmal theorem: 

THEOREM 6: L et g(t ,r) be the uniquely determined 
junction with the properties (PI ) thTOugh (P5); 
then 

U(t) = G(.f(t)l = 1" get , r).f (r)dr , 
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PROOF : Let vet) E A * be an arbitrary func Lion . 
For any fixed r in a< r< b we apply the gen eralized 
Green's formula (38) to g(t ,r) and v(t). With r egard 
to (P 4) and p(v) E Q 1- it is seen that 

(L eLq], v) = (g, L*[vJ) -v(r); 

thus, in vi ew of (P3), 

k* 

(L e[g], v) = - L.; (v,vv)vv(r) = (g,L *[vJ) -vCr) 
11= 1 

for a~t~b , a< r< b, t= r. W e multiply this 
equation by a continuous functionj(r ) and integrate 
over r. Because g is a continuous function of t and 
r, it follows that 

Ii· 
- L.; (v,vv) (vv ,.f) = (G(.f] , L * [v]) - (f,v). (40) 

p= 1 

Forj(t) we consider the boundary value problem (29) 
which is solvable no matter how jet) was chosen. 
Let UI(t ) be a solu tion. For the given function 
vet) E A * we obtain 

k* 

(L[u]],v) = U,v) - L.;U,vv) (Vv,v) , 
£1 = 1 

and thus together. with (40) 

(L [utl , v) = (G[j ], L *[v]) . 

Applying Green 's fonnula (ll ) to the left-hand 
side we conclude that 

(L*[v], UI) = (G[f]' L*[vJ) - CP(P(Ul ), p(v», 

and because CP (P(UI )' P (v» = O, th en 

(G[fl - u r, L*(vJ) = O. 

This relation is valid for every functIOn vet) E A *. 
Hence, it follows from the corollary to the alterna­
tive theorem that G[f] - u] EO"; thus, u (t)= G[f] 
E On. Furthermore, it follows that 

which is equivalent to 
k* 

L(G[.fll= L(u1l = i - L (f,vv)vv, 
11= 1 

p(G(.fJ) E Q. 

F inally, it follows from (P5 ) and (PI ) that 

(u(t ), Ul' (t) = 0 (/l = I , ... , 1c ). 

In applying theorem 6 to the adjoint problem 
(11-11'*) we confirm that for any jl(t) E 0° the uniquely 



determined solution v(t) of (1l-N*) is given by With another continuous function j(t) we find from 
Green's formula (11 ), 

(41) k 

vVe will show that the integral operator G* is the 
adjoint operator of G, i. e., 

(42) 

(G*[fd,v,,) = 0 (,u= l, .. , k*). 

VVASHINGTON, D.C. (Paper 64B2- 24) 
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(G[f ]'fl) = (G[f ],L * [G* [fl]]) + ~(fl'Uv) (G [f],uv) 
p=! 

= (L[G[fl],G*[fd) + so(p( G[! ]) ,p( G *[fd)) 
k 

+ ~(fl,uv)(G[f]'uv) 
p=l 

k 

+ so(p( G[f ]) ,p(G*[fd)) + 22 U1,Uv) (G[f ],uv). 
1'= 1 

Since G[jl] and G*[jl] are solutions of (1l-N) and (1l-N*), 
r espect ively, the last three quantities must vanish, 
which leads to (42). 

From (42) follows for the corresponding Green's 
functions , 

g* (t ,T)= g(T,t ). 
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