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Formulas are derived for the accurate calculation of the Jowest-mode, lumped-eiement
representation of perfectly conducting half-round inductive obstacles in rectangular wave-
guide. These obstacles consist of either one or two opposed semicircular cylindrical indenta-
tions extending across the narrow sides of the waveguide. They seem especially suitable for
use as precise calculable standards of reflection or impedance in waveguide. Schwinger’s
integral equation approach [1,2]1 is used to obtain stationary expressions for the desired
parameters as functionals of the surface currents on the obstacles. Upper bounds are ob-
tained for one of the two parameters. Explicit formulas are derived for the values of the parameters
under the assumption of n-term Fourier sine-series expansions for the obstacle currents. Rapid
convergence is indicated by numerical evaluations for n=1, 2, and 3. In the process of
obtaining expressions suitable for numerical calculation, an expansion (believed to be new)
of the Green’s furction of the problem is obtained and the sums of certain infinite series of
Bessel’s funetions occurring in this expansion are expressed in terms of definite integrals.
A brief numerical table of these sums, sufficient for the evaluation of the n=1 approximation,
is included.

1. Introduction

In this paper formulas are derived for the accurate calculation of lowest-mode, lumped-
clement parameters for what may be identified as ‘“‘single half-round” and “double half-round”
inductive obstacles in rectangular waveguide. As shown in figure 1, the obstacles consist of
semicircular eylindrical indentations extending across the narrow sides of the waveguides.

The particular geometry considered seems especially suitable for obstacles to be used as
calculable standards of reflection or impedance in waveguide. The geometry is well suited to
clectroforming, so that obstacles may be fabricated by this process as well as by machining.
For obstacles producing standing-wave ratios of moderate values, the obstacle radius is large
compared to high-standard machining tolerances, so that unduly close tolerances are not
required. A change in waveguide cross section before and after the obstacle is avoided, elim-
inating the need for waveguide components in odd sizes and permitting maximum flexibility
of interconnection.

In the present work the obstacle and waveguide surfaces are assumed perfectly conducting.

The Waveguide Handbook [3] contains approximate formulas for semi-elliptical obstacles,?
which can be specialized to apply to the present problem. However, for the contemplated use
in standards work, formulas with very much greater accuracy (10° or 10* times greater) are
wanted.

Brief descriptions of the present and some related work have been given previously [4].

2. Formulation of Problem

We employ the customary complex electric and magnetic field vectors E=E(r), H=H(r),
which satisfy Maxwell’s equations in the form
3
VX E=—jwuH,

. (2.1)
VX H=jweE+J,

1 Figures in brackets indicate the literature references at the end of this paper.
2 The pertinent formulas are afflicted with a number of misprints; correct forms of these results for half-round obstacles are given later in this
paper.
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under the assumption of time-dependence represented by the (omitted) factor exp (jwt). Here
¢ is the time, «/(2r) is the frequency, j is the imaginary unit, J is the complex current-density
vector, and u and e are respectively the permeability and the permittivity of the homogeneous,
isotropic, nondissipative medium in the waveguide. The MKS system of units is employed.
As shown in figure 1, we choose a rectangular coordinate system Oxzyz such that the in-
terior of the waveguide is the space 0<<z<la, 0<y<b, —o<z<x and the surfaces of the
obstacles are given by the loci

o 3\
R=x*+22, 0<z<R,

— — 2.2
R’=(a—u)?+22 0<a—x<RJ 22)

in the double half-round case and by
Ri=ax+422, 0<z<R (2.3)

in the single half-round case.
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Ficure 1. Single and double half-round inductive obstacles
in rectangular waveguide.

The fields incident on the obstacles are, by hypothesis, to be in the TE;, mode. Traveling-
wave forms for this mode may be written
= 1 Fijgz h
E+=sin (mx/a)e™Pe,,

. . . (2.4)
H==[Fysin (mz/a)e,+jr(wpa)™t cos (w/a)ez]ﬁfﬂz'J

The upper and lower signs refer respectively to waves going in the positive and the negative
z-directions; the phase constant g is equal to [k*— (x/a)?'?, where k=w(ue)'?; the wave-ad-
mittance 7=38/(wu); and e,, e,, e, are the unit vectors of the system Oxyz. It is assumed that
< ka<2m, so that the TE;, mode, but no higher mode of the type TE,,, will have real propaga-
tion.

We define “voltage” and “‘current” ,,(z,),in(z,) for the TE, mode by means of the
equations

N

& —=1,2 2.6
H, .= (—)"™n(2n)n sin (m",/a).J e G

Emy: Om (Zm) sin (Wx/a)a

Here the indices m=1,2 refer respectively to the “left-hand” side (z,<—R) and the “right-
hand” (z,>R) of the obstacle considered, and E,,, [,, are components (identified by the
subscripts) of the TE -mode part of whatever total electromagnetic field may be present in
the waveguide at z=z,. From (2.6) and (2.4) it follows that the waveguide characteristic
impedance, defined as the value of v,,(2,)/i,(z,) for a pure traveling wave incident on the side
m of the obstacle, is equal to unity for m=1,2.
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The desired lowest-mode, lumped-element deseription of an obstacle is contained in its
impedance matrix 7, which characterizes the linear relations

0= Lty + Lot 0y =Lty + Ll (2.7)

imposed by the obstacle on the terminal variables 2,,,7,. The values of the Z,,, depend upon
the location of the terminal planes z=z, and z==z,; in the present problem it turns out to be
convenient to extrapolate these planes to z;,=z,=0.

Now, the equality 7, =75 follows from the structural symmetry (and the symmetrical
disposition of the terminal planes) with respect to the plane z=0; Z,,—Z,, is assured by both
symmetry and reciprocity; and, since losslessness has been assumed, 7 is pure imaginary.
Thus 7 is of the form

JXu Xy,
X jXu

and there are only two independent parameters to be determined.

We do not obtain formulas for X, and X}, directly; but rather, to exploit the symmetry
of the problem more fully, we consider the impedances obtaining under modes of excitation in
which the electromagnetic field is either symmetric or antisymmetric with respect to the plane
==0. Thus in the svmmetric case, »,(0)=u(0), 7,(0)=17(0), and the impedance may be
written

Zee=01,6(0) /11,(0), (2.9a)
where we have added a subscript distinguishing the “even’ case.  In the antisymmetric
(“odd”) case, 2,(0)=—,(0), 7;(0) = —1,(0), and the impedance may he written

Zoo="1,0(0) /i1,0(0), (2.9b)

again adding a distinguishing subscript.  The relations
Q,Il\llifzufi’/tm. '~)JA\1::* Zige— Zia (2.10)

follow directly from (2.7), (2.8), and (2.9). (It may be noted that the symmetric and anti-
symmetric field distributions correspond to the eigenvectors of the matrix (2.8) and the quanti-
ties Z,, and Zy, are the eigenvalues of this matrix.)

An equivalent network for the obstacles is of interest and is presented here for convenient
reference.  For a T-network, using the sign conventions shown in figure 2, we find

ZI:Z()W 2Z3:Z,‘,‘*ZOU, (2.11)

where 7, and Z, are respectively the series and the shunt elements of the symmetrical 7. It
may be remarked that the obstacles considered are called “inductive’” because for small radii
the important element, Z,, is a positive reactance.

2. 73
o AA'AY 9 AA"A% o
vy i) Z; Q v,
O & -0

Zl:ZOO Zz=—;(Zee-Zoo)

Fraure 2.  Equivalent network.
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3. Analysis
3.1. Reduction to Scalar Form
Maxwell’s equations directly imply the general differential equation for E,
VAVXE=FE—joud, (3.1)

which must be specialized appropriately for the present problem. E is morcover subject to
the boundary condition that its tangential components vanish on perfectly conducting surfaces.

In the present problem both the exciting field and the waveguide-obstacle structure are
independent of y in the range 0<y<b, and it follows that the whole field, secondary as well as
primary, will be independent of ¥ in the same range. Further, since the z- and z-components
of E must vanish in particular on the y=0 surface of the waveguide, these components must
vanish for all values of 5 involved. Thus the electric field is of the form E=¢(z, z)e,; cq (3.1)
(with J=0) reduces to

vio+Fkip=0 in S,

and the boundary_condition becomes

¢=10 on (]

o

where S'is the cross section and (7is the boundary of the structure in a plane y=constant (fig. .

0 z

Ficure 3.  Relevant geomelry and coordinates for the single
and double half-round problems.

The magnetic field corresponding to E of the above form is

, 0 ¢
H!wymﬂ‘1<5§ef—afe:) (3-2a)

The surface current K= H>Xn on ('is thus given by

K—=—(juu) 'n-vee, (3.2b)

(V)

evaluated on €, where n is the outward normal unit vector on (. Thus K has only a y-com-
ponent and may be written as K(x,z)e,.

Inasmuch as the whole problem can be dealt with in terms of ¢ and A the problem is es-
sentially a two-dimensional scalar one. In what follows it will be convenient to refer to ¢
simply as “the field”.
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3.2. Integral Equation Formulation

We now introduce a Green’s function '==1'(z, 2z, 2/, z) such that T'is the field that would
be produced in the unperturbed waveguide at the point (z, z) by a unit current filament par-
allel to e, at the point (z/, z/). As a function of (z, z), I' satisfies the differential equation

V4T =jou 6@—2’) 6(z—2') (3.3)

obtained from (3.1) with J=é@x—z") 6(z—2")e,, where § denotes the Dirac delta-function.
I’ further satisfies the boundary condition I'=0 for 2=0, ¢ and represents outgoing waves
for |.2—,2’]—»oo. An explicit form for T'is [5]

I'(z, 2, 2’,2")=—wu(Ba) "' sin (wx/a) sin (rz’[a)e P~

— (Jop/a)2 eyt sin (nax/a) sin (nwe’ ja)e= =1 (3.4)
n=2
where a,l:\/(llﬂ'/(l)z—kz for n>2 and the other symbols are as already defined.

[t 1s convenient to put

I'=—wp(F+56), (3.5)
where F and G are real. We observe that /' can be written in the form

F=(Ba) [¢.(z, 2) ¥.(a", 2") +o(z, 2) $o(a’, 27)], (3.6a)
with the definitions
V. (2, 2)=cos Bz sin(rz/a),
: 2 (3.6b)
Yo(x, 2)=sin Bz sin(mrz/a).

The functions ¢, and ¢, are respectively symmetric and antisymmetric with respect to re-
flection in the plane z=0.

With the aid of the Green’s function we can set up the fundamental equations of the prob-
lem in integral-equation form. Let ¢y=y(x, z) denote the exciting field—i.e., the field, due to
remote sources, that would exist in the absence of obstacles. Then, with an obstacle present,
the total field ¢ can be written as the sum of the exciting field and the secondary field due to
the current on the obstacle: '

o(x,2)=y(x,2)+ £ (22,2l 20 (@ 20dd 7, (3.7)

where K is the surface current on the obstacle and the integral is a line integral going over the
contour (; of the obstacle ((); consists of two parts in the case of the double half-rounds). If
the point (z, z) is taken on (;, ¢ must vanish and we have

0:¢(1~,z)+f (o a ez (@ =0)d O (x,2) on C,. (3.8)
CU

This is an inhomogeneous integral equation of the first kind determining A for a given ¢. The
equation reduces to slightly different forms in the symmetric and antisymmetric cases, which
we now consider.
a. Symmetric Case

Let the exciting field be Ay, (x, z), where A is an arbitrary amplitude and ¢,, as defined in
(3.6), is a symmetric function of z. The surface current on the obstacle will then also be a
symmetric function of z; we denote it by K,. We now examine (3.7) for z< <z, say, to find
the lowest-mode component and thus to find #; .(z) and 7, (). For z<<2’, (3.7) becomes

¢(x,z)=A cos Bz sin (mx/a)—(Ba) 'wu sin (rr/a)e’? fc v.K, dC, (3.9)
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since integrals of the type fo WK, dC vanish because of the mutual orthogonality of sym-
0

metric and antisymmetric funetions. By comparison with (2.6) it is seen that
vy,.(2)=A cos Bz— (Ba) ‘wu e””fc vK, dC. (3.10)
0

Using (3.2a) to obtain the z-component of the magnetic field associated with (3.9) and again
referring to (2.6) one finds

in(2)=— A sin Bz (80) an o [ 0K, dC. (3.112)

Equations (3.10) and (3.11a) hold directly from the definitions for z<Z— R and by extrapolation
for z=0. In particular (3.11a) yields

i,0(0) = (80)  an [ WG, dC. (3.11b)

Next, in the integral eq (3.8), we separate the Green’s function into real and imaginary parts as
in (3.5), use the orthogonality property of even and odd functions, and thus find

Yo(x,2) vl,e(O):jw,uJC G(x,z,2"2") K,(2’,2") dC". (3.12)

This equation and (3.11b) together furnish a definitive mathematical statement of the sym-
metric part of our problem.
b. Antisymmetric Case

In this case we let the exciting field be Ayy(x, z), where A is again an arbitrary constant and
Yo, defined in (3.6), is an antisymmetric function of z. The current, K, on the obstacle will
then also be antisymmetric with respect to z. In the same manner as in the symmetric case
one finds, for 2<0,

tua()=A sin B+ (80) “oue | oIl (3.142)
In particular, '
010) = (6) o | Wl (3.14b)
Further,
11,0(2)=74 cos 32—(3a)‘1jwu€j‘”L YKyl C. (3.15)
0

and the integral equation becomes

\po(z,Z)il'o(O):—qu G(a,2,2" 2" Ko(a' 2")d (. (3.16)
S}

This equation and (3.14b) together furnish a definitive statement of the antisymmetric cases
of our problem.

3.3. Summary of all Cases

In the case of the double half-rounds the above integrations go over a two-part contour
consisting of an upper semicircle ', and a lower semicirele ;. An equivalent problem involving
only one of the parts of the contours, say (;, can be formulated using the fact that the exciting
field as well as the structure is symmetric with respect to the plane z=a/2, so that the current
on the obstacles must also be symmetric with respect to this plane. This symmetry is quite
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independent of the symmetries with respect to z=0 distinguished by the subscripts “¢”” and
(X3 bR}

0,” and so these subscripts will be dropped for the moment. Thus, it is clear that

fc., VK d(,:JCu UK dC +Jq VK d(—2 fq K dC. (3.18)
Further,
fc G(x,z2’,2") K(x',2") (I(,"=JC G?(z,2,2’,2’) K(x’,2") dC’, (3.19)
o l
where G is defined by
G2(x,2,2’,2" ) =G (x,2,2’,2')+C(z,2,0—2’,2").

Equations (3.18) and (3.19) enable the desired restatement of the double half-round problems.

In what follows, superscripts 1,2 will be used when it is desired to distinguish quantities
associated with the single and the double half-round problems, respectively (this means in
particular G=GY).  Integrals will be indicated by means of the convenient scalar product
notation, e.g.,

W, K)= f VK dC, (3.20a)

and by the operator notation
G’Kzfcl(}(x,z,r’,s’) K(x',2") dC". (3.20b)
As indicated, all such integrals are to be taken over (7;, the lower semicircle. As a further
notational convenience, we introduce the “normalized” surface currents,
IezjwﬂKe/l"l,e(O), Io:—w#Ka/il,o(O); (3.2])

for both the single and the double problems.
Our results thus far may now be summarized as follows. For the symmetric cases we have

Ye=G"1,  1/XZ=h,1)/(8a) (3.22)
and for the antisymmetric cases
V=G,  Xo=—h¥0L)/(Ba), (3.23)

where A=1 or 2 for the single or the double half-rounds, respectively, and X,,, X,, are the
reactances corresponding to the (pure imaginary) impedances Z,,, Z,, defined in (2.9).

4. Solution for the Reactances

4.1. Application of Rayleigh-Ritz Method

In each of the problems specified by (3.22) and (3.23), an unknown reactance or suscept-
ance is proportional to a scalar product

Z‘[: (‘l/y I)) (41}[)
where the function 7 is determined by an integral equation,
Gl=y, (4.1b)

in which ¢ and @ are given and G is symmetric. From these equations one may easily con-
struct the “stationary representation’ [1, 2]

M=, )/, GI) (4.2)
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for M. This constitutes the starting point for the method of Rayleigh and Ritz [6], which
we wish to use to obtain an approximate expression for M. One assumes in (4.2) an approxi-
mation for the surface current in the form

I=uf, (4.3)

where the z; are coefficients to be determined, the f;, are members of a suitable set of basis
functions (to be chosen explicitly), and summation from 1 to n over repeated indices 7, 7, . . .,
is understood. Expression (4.2) becomes an ordinary function of the z; and is to be subjected
to the conditions of stationarity oM /ox;=0, <=1, 2, . . ., n. This leads to the system of
equations

Gijwi= (zxer/M,)e,

a=W, 1), Gu=(, Gf), #4)

where

and M, denotes the now-determinate approximate value for M. If the aibitrary normalization
of the z; is chosen so that z,c,= M, then

z=(G1) ey,

where (G71),; denotes an element of the inverse of the n>n matrix of the G;;, and it immediately

follows that
Mn: (G_l)ijcicj'.

Finally, we write this quadratic form as a ratio of determinants,

[0 ¢ o Cn
C Gu o e s Gln
—M,= ‘ (4.5)
Gn .. ... G,
.Gn.l .............. Gnn

Thus M, is expressed in terms of the known quantities (4.4); if the objective is only to calculate
the reactances, it is not necessary to calculate the ;.

4.2. Definiteness of G; Upper Bounds for X,

Although in our problem G is not a definite kernel, it does have definite character with
respect to a suitably restricted class of admissible functions. In fact, G is positive definite
with respect to functions that are antisymmetric with respect to z and vanish for |z[>\,/4,
where \,=2r/8 is the “‘guide wavelength” of the single propagating mode.> In terms of the
integrals of interest here, this means that if 71, is any assumed surface current distribution,
continuous, not identically equal to zero, and antisymmetric with respect to z, then

(Lo, GI,) >0, (4.6)
provided R<\,/4.

Now, for a positive definite kernel it is well known that the right-hand side of (4.2) is not
only stationary, but also a maximum for the true /. For this result we offer the following
brief proof based directly on the Schwarz inequality.* Assuming G to be positive definite,
we wish to compare the approximate value for M given by

M=, vy, 6D,

3 This result is suggested by qualitative physical considerations and has been verified analytically by the author. It has also been verified
that @ is not definite with respect to functions symmetric with respect to z.

4 Proofs of this result in the literature known to the author, e.g., [1,2], employ the so-called bilinear expansion fer the kernel involved and do
not yield the “only if”’ part of the result (4.7).
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where 7 is an admissible approximation for the surface current, with the true value given by
(4.1a) (as well as by (4.2)) when [/ satisfies (4.1b). From (4.1b) it follows that (/,¢)= (1, GI);
the Schwarz inequality for positive-definite symmetric transformations [7] gives

1, e17z{, 6D 1, GI.
Since (I, GI)=(I,¢)=M, we have the result
M<ZM. (4.7)

Moreover the sign of equality holds in the Schwarz inequality and hence in this result if and
only if 7 is proportional to /.

Clearly, (4.7) is applicable when G is merely positive definite with respect to all functions
that need be admitted; by (4.6) this will be the case in the antisymmetric parts of our problem
provided R<\,/4. Hence, subject to this inequality, in the antisymmetric cases we shall have
M, <M (we do not anticipate an exact result for finite 2); this in turn implies that numerical
values for X, will be (algebraic) upper bounds for the true values—assuming, of course, that
numerical evaluations involved are sufficiently precise.

Unfortunately one can not obtain a bound for X,, in this simple manner. Furthermore,
derived quantities of practical interest (such as (4.17)) will usually depend upon both X, and
Xy Thus in general no bounds for such derived quantities are determined.

4.3. Basis Functions
We introduce plane polar coordinates 7,0 such that
Ty, (2 z=7 cos 0. (4.8)

The path of integration (;is then given parametrically by
r=~R sin 6, z=R cos 0, (4.9)

where R is the obstacle radius and 0<0<x. On this path the surface current /=171(R sin 6,
R cos 6) becomes a function of 6, which we denote simply by 7(f). We observe that sym-
metries with respect to z=0 are equivalent to symmetries with respect to 6 =m/2.

As basis functions we take

fi=2(@R)*sin (2:—1)8 (4.10)
for the symmetric cases (expansion of 7.), and
fi=2(@R)™* sin 2i6 (4.11)

for the antisymmetric cases (expansion of 7;). The two sets of functions are complete for the
expansion of symmetric and antisymmetric functions, respectively, in the interval (0,7). The
completeness gives good assurance that for sufficiently large n, M, will approach arbitrarily
close to the true M. For practical numerical calculation it is vital that the convergence of M,
be rapid. In the present instance rapid convergence might be anticipated on the grounds that
the true /, and 7, may be expected to be smooth (possibly infinitely smooth) functions of 6
vanishing at 0 and 7, so that their Fourier sine series should converge rapidly.®

5 The points (R, 0) and (R, ) are the vertices of the corners formed where the half-round centered at 0 meets the waveguide wall. The van-
ishing of the surface current in these vertices is equivalent, by (3.2), to the vanishing of the components of the surface magnetic field normal to
the vertices. That these field components should vanish in the limit as a vertex is approached follows from properties of Sommerfeld’s solution
[14] of the problem of diffraction by a wedge of arbitrary angle.
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4.4. Evaluation of Integrals

Integrals of the type (¢, f;) may be obtained relatively easily with the aid of the well-known
expansion [8]

e B (e,

=

wherein oJ, is the n'® order Bessel function of the first kind. In this expansion we put (=kR
and a=+0—x-+ (7/2), with £ sin x==/a, k cos x=8, and employ (4.9). The expansion

€% gin (w;t/a):QZ”j"‘l L(ER) sin nf sin nx (4.12)
n=1

is then easily obtained. The integrations yielding the desired quantities are now elementary;
one obtains

¢;=2(—)®=v72 J (kR) sin px, p=2i—-1, (4.13a)
for the symmetric cases, and
¢—2(—)@-72 J (kR) sin px,  p—2i, (4.13b)

for the antisymmetric cases. (It is encouraging that these quantities decrease rapidly with
increasing index.)

The evaluation of the integrals of the type (f;, Gf;)=G; is considerably more complicated
than the evaluation of the ¢;, and the task has been relegated to the appendix The results
obtained may be summarized conveniently in the following form, which comprehends four
cases:

G 1
= — [0, (k R)8,,+ o7y (ka)] (4.14)

CiC; 45,5,

Here s,=sin px; p,(kR)=Y ,(kR)/J,(kR); in the symmetric cases, p=2i—1 and ¢=2j—1; in
the antisymmetric cases, p=2i and ¢=27; the functions oy; are defined in the appendix (and
tabulated briefly in table 2); Y, denotes the Bessel function of the second kind; and all other
symbols involved have been defined previously.

4.5. Results

The value of a reactance element corresponding to an n-term expansion (4.3) will be
called an “‘n™ approximation’” and will be written simply X’ or X’ without special notation
indicating the value of n being considered. An explicit expression, in determinantal form, for
X{¥ in the n'™ approximation may be obtained by combining (3.22), (4.5), and (4.14); viz,

h h
Pl+‘71(1) o o o Ul<.2)n~1
(h) h)
X(h)_@ O1,9n-1 s e - P?n—1+aén—l,2n—1 (415)
=45 10 5 A T
h h)
$1 p1toit’ ce a{"an-1
h) h)
Son—1 0'1(,2VL~1 ... P2n~1+0'2(nf1.2n—1
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(In this and in the following equation the arguments kR and ka are understood.) Similarly,
(3.23), (4.5), and (4.14) yield

0 85 e Son
: (n (h
S p2t035’ ‘72.2)n
s (h)
@ 4h [Son 09, 9n S Po ")+0971 on;. 4.16
00" — (h) (h) P
Ba p2t o3y’ <. . T3, 2n
............................ i
(h) (h)
09 9n .. p2n+02n, on |

The determinantal form of these expressions seems convenient enough for practical calcula-
tions with 7 at least as large as 3. However, it may be remarked that, because of the special
form of the diagonal elements, the determinants can be expanded in the same way as certain
determinants occurring in the Fredholm theory of integral equations. This expansion may
be convenient for the consideration of arbitrarily large n, but is not needed here.

Once the reactances X,, and Xy are determined, other quantities or parameters associated
with the representation of an obstacle are of course also determined. In particular, the “volt-
age’’ standing-wave ratio seen on one side of an obstacle when the other side is terminated
in a matched (reflectionless) load is a familiar quantity having immediate physical significance,
and it is convenient to discuss some of the results in terms of this quantity. Recalling that
waveguide characteristic impedances were chosen equal to unity and referring to the equivalent
network, figure 2, it is easily found that the standing-wave ratio in question is given by

n=(1+18])/(1—|8]), (4.17a)

where | S|, the magnitude of the associated reflection coefficient, is

—-1/2
| SI [1+(4Yu4\rrm+1> ] (4- 1 7}))

In order to get some idea of the behavior of the sequence of approximations, the reactance
elements and the related VSWR (4.17) have been calculated for n=1, 2, and 3 and for a range
of values of ka and kR. Table 1 presents more or less typical results in terms of the values
of VSWER. The convergence of the sequence of approximations, judged on the basis of
numerical results exemplified in the table, appears to be very rapid; by the same token, the
first approximation furnishes a rather good result for VSWR’s up to about 2

Thus far it has not proved feasible to determine the manner of convergence of the sequence
of approximations by theoretical means. In view of the character of the particular problem
at hand, it seems probable that the numerical evidence may be relied upon.

TaBLE 1. Convergence of VSWER

ka=4.5
Approxi- VSWR, VSWR,
kR mation Single half- | Double half-
round round
l 1 1. 0370968 1. 0776492
0.2 2 1. 0370970 1. 0776499
1 3 1. 0370970 1. 0776499
1 1. 4547668 2. 8411581
0.7 2 1. 4554655 2. 8416266
3 1. 4554655 2. 8416268
1 2.1070625 15. 900756
1.0 | 2 2.1125072 16. 009131
l 3 2.1125112 16. 009479

Note: Maximum computational inaccuracy in
the above figures is estimated to be approximately
+1 in the sixth significant figure; eight figures, as
given, may be significant in indicating the behavior
of successive approximations.
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VSWR

VSWR

Further calculations have been made regarding ke and R/a as independent variables.
This choice of variables corresponds to the practical situation where one has a given obstacle
(having a given value of R/a) that is to be operated at various frequencies. Figures 4 and 5
show the matched-termination VSWR (4.17) resulting for various values of R/a and f/f.,
where f is the operating frequency and f, is the cut-off frequency for the 7/, mode (and
flfe=Fka/r). (Precise tables (based on the third approximations) giving basic parameters and
possibly some derived quantities are being prepared for separate publication.)

The first approximations appear to be of useful accuracy for some purposes and represent
an appreciable extension of previously available results. Consequently, a brief tabulation
of the s-functions, sufficient for the calculation of first approximations, is presented as table 2.
For convenience of reference we write down (4.15) and (4.16) for the special case n=1,

(1 -
(h) __ ﬂ (h)
\ \ <X ¢e ——'W [Pl(k]?)‘}‘a']l (ka>]7 (418)
N - 2
\ R/a=0.28
i a __4hs3 R) L g -1
0.24 X :E [o2(kR)+ 05y (ka)] ™", (4.19)
\ 0.20 \
\ \ and note that s;=n/(ka) and s,=2rp/(k%a).
\\ \\ \ TasrLe 2. Values of o) (x)
20 \\ N N - T - .
& £ e ) R | B
N \ \ B
g N L\ 3,80 2.055435 —0. 3170852 3.960997 —2. 544410
~ \ 3.85 1.976710 —. 1982432 3.857142 —2. 21567
0.12 I~ \ 3.90 1.899606 —. 09078960 3. 756554 —1.912736
\i\ — \\\\ 3.95 1.823995 006197600 3. 659060 —1.633535
aen |1, T o= \\\§ 4.00 1. 749764 . 09356160 3. 564510 —1.376168
; 4.05 1. 676799 L 1720644 3.472757 —1.138910
o —— 1 4.10 1. 604988 . 2424036 3.383659 —0. 9201812
10 t t 4.15 1. 534222 . 3052036 3.207087 —. 7185580
1.2 14 K k
/1, e ‘€ 420 1.464400 3610476 3.212023 —. 5327088
4.25 1.395414 . 4104564 3.131048 —. 3614372
. e . 4.30 1.327159 . 4539056 3.051353 —. 2036444
Frcure 4. VSWR versus f/f. for single half-rounds. 4.35 1.259533 . 4918312 2.973735 —. 05831720
4,40 1.192430 . 5246272 2. 898094 . 07546600
4.45 1. 125746 . 5526568 2.824341 - 1985600
4.50 1. 059372 . 5762488 2. 752387 . 3117472
3 4.55 0. 9931968 . 5956964 2. 682146 . 4157360
\ 4,60 .9271072 . 6112796 2. 613542 . 5112028
4.65 . 8609836 - 6232416 2. 546500 . 5987500
R/0:0.20 \ 4.70 . 7946988 - 6318024 2. 480946 . 6789328
30 4.75 . 7281208 . 6371680 2. 416812 . 7522756
0:16 \ 4.80 6611076 6395192 2. 354034 8192564
4.85 . 5935064 6390196 2. 292551 . 8803180
N\ \ 4.90 . 5251500 . 6358108 2. 232301 - 9358596
N X 4.95 . 4558572 . 6300236 2.173228 - 9862656
\ \ 5.00 . 3854276 6217692 2.115279 1.031884
N 5.05 . 3136376 .6111440 2. 058400 1.073038
Yom AN 5.10 2402376 5082284 2. 002545 1. 110027
N 5.15 . 1649416 . 5830836 1. 947661 1.143125
N 5.20 . 08742720 . 5657628 1. 893705 1.172594
26 5. 25 . 007320000 . 5462944 1. 840631 1. 198667
N N 5.30 —. 07581400 . 5246972 1. 788397 1.221571
N N 5.35 —. 1624856 . 5009664 1. 736963 1. 241508
~_ N 5. 40 —. 2533004 L 4750804 1. 686288 1. 258672
5.45 —. 3489884 - 4469912 1. 636332 1.273236
5. 50 —. 4504328 . 4166292 1. 587059 1. 285370
~_008 | 5.55 —. 4587224 ©L3838912 1. 538434 1. 295225
— — 5. 60 —. 6752200 3486376 1. 490420 1. 302940
i e 5.65 —. 8016548 . 3106864 1. 442981 1. 308654
— 5.70 —. 9402632 - 2697956 1. 396088 1. 312488
0.04 5.75 —1. 094004 . 2256488 1. 34970+ 1. 314555
I
10 = % e = 5.80 —1. 266887 . 1778340 1. 303798 1.314964
f/fe
Note: Accuracy of the above figures is estimated to be approximately one
Ficure 5. VSWR versus f/f. for double half-rounds. part per mmion,y & e X
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For sufficiently small £2, the expressions just given may be simplified still further. For
small 2R, the quantities p,(kR) and py(kR) become large, in accordance with the formula

1 D INEd i
pq(klx’)g—;q! (g—1)! (TI?) (¢>1),

and thus determine the qualitative behavior of X,, and Xy. Using this approximation for
the p’s, neglecting the ¢’s, and introducing the guide wavelength X\,=2x/8, one obtains

-y 20 ¢
X@=g (W A) (4.20)

= R\
X (%) . (4.21)

(These are the correct forms of the results in the order of approximation of the more general
formulas in the Waveguide Handbook [3].) Although these formulas give a rather good picture
of the )olmvior of the reactances, they fail to reflect the interesting qualitative feature that
X and XU must eventually become equal to each other as 1 approaches a/h (as can be seen
physically).

5. Appendix

5.1. Expansion of Green's Function in Terms of Cylindrical Wave Functions

In order to arrive conveniently at the respective types of Green’s functions needed for
the single and the double half-round problems, we consider a waveguide of width w (instead
of a), bounded by the lines z=0 and z=w; and, in addition to the electric boundary condition
at =0, we consider both electric and magnetic boundary conditions at z=w (by “electric”
or “magnetic” boundary conditions it is meant that the Green’s function or its normal deriva-
tive, respectively, vanishes on the boundary). The radius vectors of the source-point and the
field-point will be denoted by r” and r, respectively.

Now, it is well known that the two-dimensional “free-space’” Green’s function, satisfying
(3.3) and representing outgoing waves at infinity, is — (ww/4)H(k|r'—r|), where I, denotes
the Hankel function of the second kind (as is appropriate for exp (jot) time dependence).
It is also well known that the desired Green’s function, ®, satisfying (3.3) and the required
boundary conditions at =0, z=w, and at z= -+, can be obtained in the form of a sum of
free-space Green’s functions by the method of images [9]. In fact

B——(

n[

—Hoy(klpz—r1)], (5.1)

nN=—owo

where p"= (2nw+a’)e,+z"e. and s=-+1 or —1 according to whether the boundary condition
at 2=w is electric or magnetic. By inspection of the array of sources (fig. 6) it can be seen
that this function has the proper symmetry to satisfy the boundary conditions: it is anti-
symmetric with respect to =0 and it is antisymmetric or symmetric with respect to z=w
according to whether s=-1 or —1.

Equation (5.1) can be transformed into a sum of elementary wave-functions of polar
coordinates by repeated application of Graf’s addition theorem for Bessel functions [10].
We introduce polar coordinates (r, ), (/,6”), and (p,, 6,) for r,r’ and p, in the manner shown in
(4.8), and we assume » and 7/ l)oth to bo less than w, so tlmt pn>w for n # 0. Considering
the triangles with sides p,, r, and p,—r and applying the addition theorem, we obtain

o J,(ker) H ,(kr")
O G DR I

(;jpe((; TIpeLy e]‘po/)

+?" o > (k)M H, (ko h)e % — H,(kp7)e™ 7],

© p=—c
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Ficure 6.

Relative signs

Source points in the method of images.

of sources are indicated by the adjacent symbols +, —,

+s, and —s; the role of s is defined in connection with (5.1).

where the terms arising from n=0 appear in the first line and are to be omitted from the primed
summation in the second line; the upper and lower alternatives in the first line apply according
as 7<7’ or r>7’, respectively. Again, by the addition theorem,

}Ip(kpjr}fM;jwi:qgm J (k' )H 4 o(|2nkw]) exp [j(x/2) (g—p) sgn ntjgb’]-
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Combining the last two equations and rearranging terms, one finds that (5.1) can be written
in the form

B S8 o S (kr)H (k")
W p;l ?:,‘1 sin pf sin ¢ {J,,(kr’)l[,,(kr) i

+2J,(kr)dJ,(kr") cos [(r/2)(p—q)] i‘i s"[H,,_,,(‘anw)—II,,+,,(2nkw)J}~

If now one puts w=a and s=-1, this expression becomes the desired representation of I' of
the text; similarly, if w=a/2 and s=—1, (5.2) becomes the desired representation of a Green’s
function I'® related to G in the same way as I' is related to @ (ef.3.5). Thus, employing the
relation (3.5), the relation /1,=.J,—7Y,, the notation (3.20), the basis functions (4.10, 4.11),
and carrying out the integrations with respect to 6, 6, one obtains

2
(7—3—1) (sin p, G® sin g8 = — J,(kR)Y y(kR)8,5— o, (kR) J,(kR) cos [(x/2) (p— o (ka),  (5.3)

where the functions ¢%) are defined as

oS0 (ka)=2 Z Y,_,2nka)—Y ,+,(2nka)], (5.4a)
@ (ka)—=2 S (— )Yy o (ka)— Y py o (nka)]. (5.4b)

n=1

We note that the above expressions are needed only for positive integer indices p, ¢ that
are both even or both odd. We observe also that the form of the expressions is such that
those with unequal subscript indices can be evaluated simply in terms of those with equal
subseript indices. Further, in view of the easily-verified relation

o) (ka)=203) (ka)— o (ka/2), (5.5)

)

values or formulas for the ¢’s “‘of the second kind’” can be derived readily from the same for
43 . .
the o’s “of the first kind.”” Thus, the evaluation of the (’mu which, on the face of it, originally

involved double integrals with /m, kR, p, q, and h as independent parameters, has l)vvn reduced

essentially to the evaluation of sums of the form >V, (nz) with 7<a< 27 or 2r<z<47 and
n=1

s=0, 1, 2 It should be observed, however, that these sums converge extremely

slowly: for the accuracy desired in the present circumstances the number of terms required

would be of the order of 10 or more, at least for the most important ¢’s. Needless to say,

some method of evaluation other than direct summation is indicated.

y e e e

5.2. Evaluation of the Bessel-Function Series
Two methods of evaluating the series defined in (5.4) will be discussed briefly here.
a. Conversion to Definite Integrals

An evaluation of the desired series may be obtained in terms of definite integrals as follows.
We start with the series of Hankel functions (of the second kind)

S)\(Z) E Hx(nx), (5.6)

n=1

where z is real, positive, and not an integer multiple of 2r. For the Hankel functions we
use the integral representation [11]

H)‘(JJ) :}r fce—jz sin {-I-J'M‘dg—
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where {=£&-jn and (' is a suitable path, to be chosen in a moment, between the limits —jo
and 7+jo. With the aid of the well-known expression for the sum of a finite number of terms
of a geometric series, one finds that the M-term partial sum of (5.6) can be written

M * IN —JjMz sin ¢
712=1 I{)\<nr) :%JC ejresln(gg; 1 ,’]r fC i]: sin¢_ 1 e»‘r(lf‘ (57)
Among the infinitely many poles of the integrands in these integrals, we note in particular
£, [an(l g, =r—*&,, where £, is the principal value of sin ~!(2mn/z), m=0,1,2, . . ., ¢, and Q
is the largest integer such that 2Qr/z<1. The path ' is now chosen to comprise (except for
indentations) the negative imaginary axis, the real axis between 0 and 7, and the upper half of
the line 7-/7; indentations, of radius p, are made at each of the above identified poles in the
manner shown in figure 7, which illustrates €' for the case ¢=1. Taken on this path, the
second integral in (5.7) approaches 0 as M increases indefinitely; as a detailed examination
shows, this happens because on the various parts of the path the integrand approaches 0 or it
becomes increasingly oscillatory (or both) as M—w. Hence we have

1 eNd¢
Sx(x)=— fc P

This result can be expressed in terms of real integrations plus contributions from the
indentations. In the limit as p—0, the indentations yield

! R G .
IU:(TIJ lo:7 ) ({).821‘)

in

T+joo

-joo
Ficure 7. Path of integration.

and for m>1,
(;J')\E'm

(,/j)\(""_ E;/z )
et § -
V' — @mr)?

"
m=— "

Ry— e
" Yai—(2mm)?

(5.8b)

Here the notation corresponds to that used for the respective poles and the factor 1/r standing
in front of the integral is included. Provided X is an even integer, the straight-line segments of
the path of integration yield

1 e ) ® cosh \g dn /A i
s 01 0) R =~ b 5.¢
5 6(,)-{—&1301 7R|: fp o] pr COSPAE cot (2 i sm&) (ZE:I (5.9)

where é,, is the Kronecker delta. It should be noted that when the integrand in the finite
integral is singular, the Cauchy principal value is to be taken, as indicated by the symbol P
(the indicated limit as p—0 essentially is also a Cauchy value).

Upon comparing (5.4) and (5.6) it is seen that

oyy (ka)=2 Im [S,, (2ka)— S, (2ka)].
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It happens that for \=2p (where p=0, 1, 2, . . .) the net imaginary contribution of (5.8) to
S, vanishes.  Consequently (5.9) vields

8 (** sinh? pyd
S (]m):,j ;Slml s‘m{iﬂ’l’_” —{— i j sin® p¢ cot (ka sin §) dé (5.10)
TJo €
wherein the integrands are now well-behaved at their lower limits and thus we were permitted
to put p=0. The corresponding result for o’ is
8 inh? pndn 4, ((77?
o (ka)=— J iza—s:,;,—f%(_l{~ it J sin? p¢ tan (k, sin §)dg, (5.11)

which is easily obtained from (5.10) with the aid of (5.5).
(An interesting by-product of the above development, obtained by taking the real parts of
(5.6), (5.8), and (5.9), 1s

coS ‘?p sin~! (2 m7r/r)]

‘) 01;+ZJ)/;<"-I")% +QZ

m=1 Va?— (2mmr)?
where p=0, 1,2, . . .; zand ) are as specified above. This result was obtained by Ignatowsky

[12] by a different method.)

Thus far numerical results for the ¢’s have been obtained primarily from (5.10). The
integrals were evaluated numerically by Paul F. Wacker and William W. Longley, Jr., using
Legendre-Gaussian quadrature formulas programed for machine computation.® Values
for ¢ were calculated from values of ¢{) using (5.5). Results for the two lowest values of
2 are given in table 2. (More extensive tables are planned for the previously-mentioned
separate publication.)

b. Conversion to More Rapidly Convergent Series

An alternative method of evaluating the ¢’s is afforded by a transformation of the Bessel-
function series involved into more rapidly convergent series. This was accomplished a good
many years ago by W. von Ignatowsky [12] in connection with his work on diffraction by
gratings—a subject that will be recognized as being rather closely related to the subject of the
present paper. Ignatowsky obtained

Q 1 =) 1 .
7 > Yo(na)=log ¢+Z —+ > (—== _) (5.12a)
n=1 n=1M a=Q+1\ N N\ n?k?—1
(2x)**(p+p—1)!B,,
Y, (nx)=——= D> ~— ——
" 5 V== 25
@ sin [2p sin~(nk : o (nk—Anie— 1)2"
S oy AU BT Bl Lo (5.12b)
= v1—n n=Q+1 VP — nil—1
In these expressions k=2x/z; p=1,2,3, . . . ; ¢ is as defined above;log y=0.57721566 . . . is

the Euler-Mascheroni constant; and the B, are the Bernoulli numbers, here so labeled that
B;=1/6, By=1/30, Bs=1/42, Bs=1/30, B,,=5/66, etc. Equation (5.12a) is fairl\' well known

at the present time. (A few numerical values are given for the series Z (—=)"Yo(nx)

n=1

6 The estimates of accuracy of computed quantities given in this paper were made by Mr. Longley, who was responsible for most of the detail
of the calculations.
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[13].) The series for ¢ obtained from (5.12a) and (5.12b) has been duplicated by an in-
dependent mode of derivation; this represents a partial check of the complicated expression
(5.13b). Thus far in the present work, Ignatowsky’s series have been used only to spot check
some of the numerical results obtained from the definite integrals. The series are especially
suitable for either estimation or calculation of the ¢’s when p is large.

The author has benefited from the discussion of many points with Paul F. Wacker and is
indebted to David F. Wait for assistance with some of the theory and computations.
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A comparison of experimental and theoretical rela-
tions between Young’s modulus and the flexural
and longitudinal resonance frequencies of uniform
bars, S. Spinner, T. W. Reichard, and W. E. Tefft,
J. Research NBS 64A, No. 2, 147 (1960).

The relations between Young’s modulus and the mechanical
resonance flexural and longitudinal frequencies of two sets of
steel bars has been established by an empirical method.
The agreement between theoretical and experimental curves
for flexural vibrations appeared somewhat better than that
for longitudinal vibrations.

On the mode theory of very-low-frequency propaga-
tion in the presence of a transverse magnetic field,
D. D. Crombie, JJ. Research NBS 64D, No. 3, 265
(1960).

The effect of a purely transverse horizontal magnetic field on
the propagation of VLF waves is considered. It is shown
that the magnetic field introduces non-reciprocity, and that
for propagation along the magnetic equator, the rate of
attenuation is less for west-to-east propagation than for east-
to-west propagation.

On the theory of reflection of low- and very-low-
radiofrequency waves from the ionosphere, J. R.
Johler and L. C. Walters, J. Research NBS 64D, No.
3, 269 (1960).

The rigorous application of the magneto-ionic theory to the
calculation of reflection coefficients for a sharply bounded
ionosphere model is discussed. This is a comprehensive
paper on the details which pertain to the rigorous evaluation
of the reflection coefficients. The paper is illustrated with
computations applicable to the D-region or the FE-region of
the ionosphere. The quasi-longitudinal approximation is
derived from this theory and the range of validity of this
approximation is illustrated. The restrictions imposed by
the use of a sharply bounded model ionosphere are discussed.

Focusing, defocusing, and refraction in a circularly
stratified atmosphere, K. Toman, J. Research NBS
64D, No. 3, 289 (1960).

Focusing, defocusing, astronomical refraction and path length
of rays as a function of the departure angle A of the ray at
the source is described for cases with the source outside,
inside, or on the boundary of a circular stratification. Rel-
ative to zero elevation angle symmetrical and centrosym-
metrical distributions are found.

Impedance characteristics of a uniform current loop
having a spherical core, S. Adachi, J. Research
NBS 64D, No. 3, 297 (1960).

The radiation impedance is derived by the EMF method in a
convenient form as the sum of the self-radiation impedance
of a loop in the free space and an additional term due to the
reaction between the loop and the sphere which is propor-
tional to the well-known expansion coefficient of a magnetic-
type scattered wave from a sphere in an incident plane wave.
The first antiresonance frequency has been given in the form
of a universal curve for a very small uniform current loop

with core of an arbitrary composition of u, and e, subject
to the condition that the refraction coefficient N=+/u.e, is
extremely large. Some numerical calculations show that
high-u core is desirable for a comparatively lower frequency
region, and high-e core is rather desirable in an antiresonance
region.

Basic theorems in matrix theory, M. Marcus, NBS
Applied Math. Series 57 (1960) 15 cents.

This is a survey of the basic identities and inequalities of
matrix theory. Included are results dealing with elementary

properties, canonical forms, invariance, congruence, com-
mutativity, orthogonalization, eigenvalues, determinants,

submatrices, rank, determinant and rank inequalities, nu-
merical methods for inversion and eigenvalues, condition
numbers.

Relaxation processes in multistate systems, K. K.
Shuler, Phys. of Fluids 2, No. 4, 442 (1959).

An analysis is made of the relaxation of “multistate’” systems,
i.e., systems with more than two quantum states or two
different chemical species, for linearized processes described
by the “Master EEquation’ of the theory of transport processes.
These results are compared with those obtained from the
analysis of two-state relaxation processes and the concept of
“relaxation time’” is discussed in this framework. A dis-
cussion is presented of the transformation of microscopic to
macroscopic relaxation equations. The existence of periodic
and/or aperiodic oscillatory solution of the linear multistate
relaxation equation is investigated. It is shown that the
multistate relaxation equations admit of aperiodic oscillatory
solutions.

Invariant and complete stress functions for general
continua, C. Truesdell, Arch. Rational Mech. Anal.
1, No. 4, 1 (1959).

This paper presents an organized survey of results, with
proofs, concerning exact general solution of the underdeter-
mined equations of motion of a continuous medium. Special
attention is given to a flat space of n dimensions, to an
n-dimensional space of constant curvature, and to a 2-dimen-
sional surface. Two methods are used: (1) the representation
of a solenoidal vector as the curl of a vector potential, and
(2) a variational formulation, essentially the converse of the
principle of virtual work.

The construction of Hadamard matrices, I£. C. Dade
and K. Goldberg, Mich. Math. J. 6, 247 (1959).

It is proved that a Hadamard matrix of order 4n can be
constructed if there exists a transitive permutation group of
odd order and degree 4n—1 whose subgroups leaving one ele-
ment fixed have three transitivity sets each.

Bending and stretching of corrugated diaphragms,
R. F. Dressler, ASME Trans. 81D, No. 4, 651 (1959).

Solutions of the exact linear elastic shell equations for all
stresses and displacements in a typical corrugated diaphragm
are presented for three cases over a 9 to 1 range of thicknesses.
Results were obtained by numerical integration in an elec-
tronic digital computer. The effect of thickness variation is
discussed with respect to both stresses and resultants, and
peak values needed for design purposes are presented. Cir-
cumferential and meridional stresses are found to be equally
important throughout the thickness range analyzed. Bending
and membrane stresses are likewise equally important
throughout the range. Peak values in some cases occur near
the outer rim.
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Modular forms whose coefficients possess multi-
plicative properties, M. Newman, Ann. Math. 70,
478 (1959).

Let ¢ be a prime, r and s nonzero integers, and o (r) the
Dodekind modular form. All modular forms of type
77(7)n°(¢qr) such that the related Dirichlet series possesses
an Euler product are determined.

The analysis of latin squares with a certain type of
row-column interaction, J. Mandel, Technometries 1,
Jo. 4, 8379 (1959).

A serious limitation in the use of latin squares is the con-
founding of the main effect of each factor with the interaction
of the remaining two factors. In some cases, the interaction
of rows and columns can be expressed as a multiplicative
term of assigned factors associated with rows and columns.
The analysis of such designs is presented in detail. An
example is discussed. The method is extended to the case
where the treatment effects are linearly related to a given
concomitant variable. A brief discussion is given of the
relation of the proposed method with other tests for non-
additivity.

A note on algebras, A. J. Goldman, Am. Math. Mo.
66, 795 (1959).

The usual sufficient conditions that both regular representa-
tions of an algebra A be faithful are shown not to be necessary.
A necessary and sufficient condition (viz, that no nonzero
member of A be either a left annihilator or a right annihilator)
is derived.

Linear differential equations of the second order with
a large parameter, F. W. J. Olver, J. Soc. Indust.
Appl. Math. 7, 306 (1959).

An investigation is made of the differential equation

Y (2 +0(@)}w

for large values of the parameter u.
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A carbon-14 beta-ray standard, benzoic acid—7-C! in toluene,
for liquid scintillation counters. W. F. Marlow and R. W.
Medlock.

A comparison of experimental and theoretical relations be-
tween Young’s modulus and the flexural and longitudinal
resonance frequencies of uniform bars. S. Spinner, T. W.
Reichard, and W. E. Tefft. (See above abstracts.)

Determination of copolymer composition by combustion
analysis for carbon and hydrogen. Lawrence A. Wood,
Irving Madorsky, and Rolf A. Paulson.

Some effects of aging on the surface area of portland cement
paste. C. M. Hunt, L. A. Tomes, and R. L. Blaine.

Conformations of the pyranoid sugars. I. Classification of
conformers. H. S. Isbell and R. 8. Tipson.

Tritium-labeled compounds ITI. Aldoses—7 —¢t. H. S. Isbell,
H. L. Frush, N. B. Holt, and J. D. Moyer.

Determination of alummum in precipitation hdrdemng stain-
less steel and high temperature alloys. Lawrence A.
Machlan, John L. Hague, and Idward J. Meros.

Journal of Research, Section 64D, No. 3, May-June
1960. 70 cents.

A theory of radar scattering by the moon.
and K. M. Siegel.

A theory of wavelength dependence in ultrahigh frequency
transhorizon propagation based on meteorological con-
siderations. Ralph Bolgiano, Jr.

T. B. A. Senior

A preliminary study of radiometeorological effects on beyond-
horizon propagation. F. Ikegami.

Trade-wind inversion as a transoceanic duct. M. Katzin,
H. Pezzner, B. Y.-C. Koo, J. V. Larson, and J. C. Katzin,

An analysis of propagation mea\ulement\ made at 418 mega-
cycles per second well beyond the radio horizon (a dlg(-‘\t)
H. B. Janes, J. C. Stroud, and M. T. Decker.

On the calculation of the departures of radio wave bending
from normal. B. R. Bean and E. J. Dutton.

On the mode theory of very-low-frequency propagation in the
presence of a transverse magnetic field. D. D. Crombie.
(See above abstracts.)

On the theory of reflection of low- and very-low-radiofre-
quency waves from the ionosphere. J. Ralph Johler and
Lillie C. Walters. (See above abstracts.)

Focusing, defocusing, and refraction in a circularly stratified
atmosphere. K. Toman. (See above abstracts.)

Response of a loaded electric dipole in an imperfectly con-
ducting eylinder of finite length. Charles W. Harrison, Jr.,
and Ronald W. P. King.

Impedance characteristics of a uniform current loop having
a spherical core. Saburo Adachi. (See above abstracts.)

Journal of Research, Section 64C, No. 2, April-June
1960. 75 cents.

Measurement of cobalt-60 and cesium-137 gamma rays with
a free-air chamber. H. O. Wyckoff.

Apparatus for the measurement of the normal spectral emis-
sivity in the infrared. Arthur G. Maki, Ralph Stair, and
Russell G. Johnston.

Electrostatic deflection plates for cathode-ray tubes. I. De-
sign of single-bend deflection plates with parallel entrance
sections. II. Deflection defocusing distortion of single-bend
deflection plates with parallel entrance sections. Lothar
Frenkel.

The functional synthesis of linear plots. J. P. Vinti and
R. F. Dressler.

Radiation field from a rectangular source. J. H. Hubbell,
R. L. Bach, and J. C. Lamkin.

Microwave attenuation measurements with accuracies from
0.0001 to 0.06 decibel over a range of 0.01 to 50 decibels.
G. F. Engen and R. W. Beatty.

Effect of oleophobic films on metal fatigue. H. E.

J. A. Bennett, and W. L. Holshouser.

Ratio-recording spectroradiometer. Harry K. Hammond ITT,
Warren L. Holford, and Milton L. Kuder.

An intermittent-action camera with absolute time calibration.
G. Hefley, R. H. Doherty, and E. L. Berger.

Frankel,

Screw-thread standards for federal services 1957, Amends in
part H28 (1944) (and in part its 1950 Supplement), NBS
Handb. H28 (1957)—Pt. IT (1959) 75 cents.

Specification for dry cells and batteries (supersedes Circular
559), NBS Handb. 71, (1959) 25 cents.

Report of the 44th National Conference on Weights and
Measures 1959, NBS Mise. Publ. 228, (1959) 65 cents.

Research Highlights of the National Bureau of Standards
Annual Report, Fiscal Year 1959, NBS Misc. Publ. 229
(1959) 55 cents.

Distribution of mail by destination at the San Francisco,
Los Angeles, and Baltimore Post Offices, N. C. Severo and
A. E. Newman, NBS Tech. Note 27 (PB151386) (1959)
$1.50.

A history of vertical-incidence ionosphere sounding at the
National Bureau of Standards, S. C. Gladden, NBS Tech.
Note 28 (PB151387) (1959) $2.00.

Photographic dosimetry at total exposure levels below 20 mr,
M. Ehrlich and W. L. McLaughlin, NBS Tech. Note 29
(PB151388) (1959) 50 cents.

An atlas of oblique-incidence ionograms, V. Agy, K. Davies,
and R. Salaman, NBS Tech. Note 31 (PB151390) (1959)
$2.25.

Resistance diode bridge circuit for temperature control, L. H.
Bennett and V. M. Johnson, NBS Tech. Note 34
(PB151393) (1959) 50 cents.

132



Service area of an airborne television station, M. T. Decker,
NBS Tech. Note 35 (PB151394) (1959) 75 cents.

Rotational transfer in the fluorescence spectrum of OH (=),
T. Carrington, J. Chem. Phys. 31, No. 5, 1418 (1959).

Determination of viscosity, J. F. Swindells, Ch. XII, Physi-
cal methods of organic chemistry, pt. I, p. 689 (Inter-
science Publishers Inc., New York, N.Y., 1959).

Triaxial tension at the head of a rapidly running crack in a
plate, J. M. Frankland, Trans. ASME [E] 26, No. 4, 570
(1959).

Poly (tetrafluorethylene)—a radiation-resistant polymer, L. A.
Wall and R. E. Florin, Letter to Ed., J. App. Polymer Sci.
IL, No. 5, 251 (1959).

On the approximate daytime constancy of the absorption of
radio waves in the lower ionosphere, S. Chapman and K.
Davies, J. Atmospheric and Terrest. Phys. 13, No. 1-2, 86
(1958).

An X-ray crystallographic study of Schroeckingerite and its
dehydration product, D. K. Smith, Am. Mineralogist 44,
1020 (1959).

A note on the scattering of electrons from atomic hydrogen,
A. Temkin, Phys. Rev. 116, No. 2, 358 (1959).

Design of free-air ionization chambers for the soft X-ray
region (20-100 kv), V. H. Ritz, Radiology 73, No. 6, 911
(1959).

Thermal conductivity of indium antimonide at low tempera-
tures, 1. V. Mielezarek and H. P. R. Frederikse, Phys.
Rev. 115, 888 (1959).

Model for vibrational relaxation of diatomic gases behind
shock waves, R. Herman and R. J. Rubin, Phys. of Fluids
2, No. 5, 547 (1959).

Absolute photometry of the aurora—I. The ionized molecu-
lar nitrogen emission and the oxygen green line in the dark
atmosphere, M. H. Rees, J. Atmospheric and Terrest.
Phys. 14, 325 (1959).

Direction findings on whistlers, J. M. Watts, J. Geophys.
Research 64, No. 11, 2029 (1959).
Geomagnetic and ionospheric phenomena associated with

nuclear explosions, S. Matsushita, Nature 184, BA33
(1959).
Stress corrosion cracking in low carbon steel, H. 1. Lozan,

Proc. Phys. Met. Stress Corrosion Fracture Conf. Pitts-
burgh, Pa., Apr. 2-3, 1959, reprinted from Met. Soc. Conf.,
p. 295 (Interscience Publishers, New York, N.Y., 1959).

Higher oxides of silver, H.IJ. Swanson, J. Electrochem. Soc.
106, No. 12, 1073 (1959).

Oscillatory behavior of magnetic susceptibility and electronic
conductivity, A. H. Kahn and H. P. R. Frederikse, vol. IX,
Advances in Solid State Physies, p. 257 (Academic Press
Ine., New York, N.Y., 1959).

Geomagnetic activity following large solar flares, C. S. War-
wick and R. T. Hansen, J. Atmospheric and Terrest.
Phys. 14, 287 (1959).

Simplification of systems of units currently evolving in the
electrical field, 1. B. Silsbee, Systems of Units, Am. Assoc.
Advance. Sci., p. 7 (1959).

Atoms and free radicals by y-irradiation at 4.2° K, L. A. Wall,
D. W. Brown, and R. E. Florin, J. Phys. Chem. 63, 1762
(1959).

*Publications for which a price is indicated (except for NBS
Technical Notes) are available only from the Swuperinten-dent of
Documents, U.S. Government Printing Office, Washington 25,
D.C. (foreign postage, one-fourth additional). Technical Notes
are available only from the Office of Technical Services, U.S.
Department of Commerce, Washington 25, D.C. (Order by PB
number). Reprints from outside journals and the NBS Journal
of Research may often be obtained directly from the authors.

133



	jresv64Bn2p_113
	jresv64Bn2p_114
	jresv64Bn2p_115
	jresv64Bn2p_116
	jresv64Bn2p_117
	jresv64Bn2p_118
	jresv64Bn2p_119
	jresv64Bn2p_120
	jresv64Bn2p_121
	jresv64Bn2p_122
	jresv64Bn2p_123
	jresv64Bn2p_124
	jresv64Bn2p_125
	jresv64Bn2p_126
	jresv64Bn2p_127
	jresv64Bn2p_128
	jresv64Bn2p_129
	jresv64Bn2p_130
	jresv64Bn2p_131
	jresv64Bn2p_132
	jresv64Bn2p_133
	jresv64Bn2p_134

