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Upper and Lower Bounds for the Center of Flexure
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There is disagreement in the literature as to how the center of flexure of an isotropic
elastic beam should be defined. In either of the two most widely accepted definitions, upper
and lower bounds for the coordinates of the center of flexure are obtained.

1. Introduction

We consider a cantilever beam of uniform cross section and choose the z-axis to coincide
with the line of cross-section centroids. The plane end z=0 is assumed fixed and the other
end z=/1s loaded by some distribution of forces which is statically equivalent to a single force
with components (W,, W,, 0) acting at a load point (x,, 1., £). In the treatment of the flexure
problem [9] ! (a similar treatment appears in [3]) we seek a load point (z, v, [) which has the
property that any load (W,, W,, 0) applied through this point produces no local twist at the
centroid of the section, i.e., the mean value of the local twist over the cross section vanishes
(see [9] p. 200). This point (z,, y,, {) is referred to as the center of flexure [9]. The determina-
tion of (x,, y,, /) permits us to break up the general flexure problem into two separate problems—
one of pure torsion and one of pure flexure. This point is sometimes referred to as the center
of shear (see, for instance, [3]), and it is well known that there is difference of opinion in the
literature as to the way in which the point should be defined (see, for instance, [1, 2,4, 10, 11].
A discussion of these differences has been given in a recent paper by Pearson [7], who demon-
strates that in general the two expressions for the center of shear yield results which are very
near to one another.

It is not our point here to enter into the discussion of the relative merits of the two defini-
tions. We merely point out that the expression of Trefftz [10] is simpler and independent of
Poisson’s ratio. The center of flexure of [9], on the other hand, permits an easy decomposition
of the general flexure problem.

In order to avoid confusion we shall hereafter refer to the point defined in [9] as the center
of flexure and that given by Trefftz [10] as the center of shear.

In this paper then we derive upper and lower bounds for the coordinates of the center of
flexure (x,, y,, 1) and the center of shear (v, y,,7). In the first case we use the formulation of the
flexure problem derived in [9] and thus concern ourselves with the problem of pure flexure.

It is of course well known (see, for instance, [7]) that if we have the solution to the pure
torsion problem for the beam in question then we can determine both the center of shear and
the center of flexure without knowledge of the solution to the flexure problem. As would be
expected it is possible in each case to obtain upper and lower bounds for the coordinates of the
point by approximating the solution to the torsion problem alone.

2. Bounds for the Center of Flexure

We denote by Z the cross section of the beam and let (7 be its boundary. (The region
may be simply or multiply connected.) The origin of a rectangular coordinate system is
taken at the centroid of Z. For simplicity the z and 7 axes are chosen to be principal axes of

inertia, 1.e.,
ffxydA:O. @.1)
9

1 Figures in brackets indicate the literature references at the end of this paper.
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According to [9] the pure flexure problem is solved once the solutions to the following boundary
value problems have been determined:

fo) §01+a ‘Pl ’ iﬁ"f %:0 in _(j (22)
ox
% [(14-)at oy 2.3)
a@z
=[(1+0)y*—oa?] on C

where ¢ is Poisson’s ratio and n, and 7, are the  and y components of the unit normal on C.
(The normal is assumed directed outward from Z.) The coordinates of the center of flexure
(zs, y,) are defined by :

1 o) b
(Y [ aZQ ‘” —(140)ay+or®ldA, (2.4)
7
a¢’1 a‘Pl dA 25
Y= 2(]+U)] +(1+‘7)T?/_6?/] 4 (2.5)
where
o f f FdA (2.6)
9
I— J f 2dA. @.7)
g
Thus
o) o}
2(1+0) L= [ [ [ 57 (o) 55 o= (o) +oa’ | da. (28)
Using the divergence theorem we have
2(1—[»0)[“%2?@ (xn,—yn,)ds—J (2.9)
G
where
szf[(1+o)xy2—ax3]dA. (2.10)
oL

Since o/ is a geometric quantity it can be computed explicitly.

We note now that the coeflicient of ¢, in the boundary integral in (2.9) is proportional
to the boundary value of the normal derivative of the warping function ¢ in the pure torsion
problem. In fact

o)
b—;’;zynz—xnu on (. (2.11)
Thus if we let
=2(1+0) La,+J (2.12)
we find
X=— o 2 ds——D(0,01) (2.13)
(2 on (212 .
c
where
([T 2% des.y 20 e

The determination of bounds for z,is thus equivalent to the determination of bounds for x.
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Note that if the warping function ¢ is known the value of 2, can be determined explicitly
since

X:—g)ga[(l—{~a)]/2—ax2]ny(ls. (2.15)
&
If ¢ is not known we introduce two arbitrary harmonic functions » and u, and define

a,=—D(pu,)= —(}Sug(ynz~ an,)ds, (2.16)

¢
ay=—D(u,p)=— (ﬁu[(l‘*"f)?ﬁ_“x?]nnd& (2.17)

roj
az=—D(u,u,)- (2.18)

With % and u, prescribed we can determine a,, a,, and a; explicitly. We now form the expression

X—a,— a9+a3— QO U, 00— 0)

:—Cﬁ((p—?l){ (14a)y*—oa?n,— 5 } ds. (2.19)

An application of Schwarz’s inequality yields

(X—tty— @y +-25)2 < C]S@—u)z(zssﬁ { [(1+0)y2— oz _aa? 2 b ds. (2.20)
v ¢ ’

It remains now to approximate the first boundary integral on the right of (2.20) in terms of
known quantities.

By adding an appropriate constant (if necessary) it is possible to choose ¢—u in such a
a way that

56 (o—w)ds=0. (2.21)
(&

With ¢—u so chosen we shall estimate the first integral on the right of (2.20) in terms of the
boundary integral of the square of its normal derivative. To this end we note that

f(% (‘p_u)>2dx i(ap z

> min —, — (2.22)

? (p—u)ds fﬁw' =0 g)z 2ds
C C

where L denotes the length of the perimeter of (7, 0/0s denotes the tangential derivative on

C, and v is any function continuous on ' and satisfying the condition ? vds=0. The quantity
2
on the right of (2.22) is just the eigenvalue of the vibrating string equation, the differential

equation which arises as the Euler equation for the minimum of the quotient (ﬁ(bv/ bs)%ls)/

?v“’d& It follows then that

C 56 (o—u)ds < —95 [a (o— u)] de. (2.23)

We seek now an inequality which relates the integral on the right-hand side of (2.23) to the
boundary integral of the square of the normal derivative of o—u. We introduce therefore,
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an arbitrary continuous vector function with components f, and consider the generalized
Rellich identity (see [6, 8]). Letting w=¢—u, we have

ow bw _l . 2. [[Ofkow biw fbfk )
Mfffk Awd A= ?fk o, bn 3 S6jknk|g1 ad w|%ds ffbxl or, br, + lgrad w|?dA
¢ 9 7 (2.24)

where A denotes the Laplace operator (A= (0%0z?)+ (0%/0y?)) and summation is to be
carried out over the repeated indices k,/=1,2. The f; are now assumed to be so chosen that
p=fin;>0 on C. (2.25)

A decomposition of the derivatives of u in the boundary integrals into normal and tangential
components yields (see [8])

oWy’ ‘~(ﬁ ow'\? O, Ow Ow fbfk[ , ffbfkbw ow
§6p<bs>d5_b p <bn> dH_ZSBf’” ds 08 bnd +J grad wl’dA— ox; Oy, bxl
¢

(2.26)
Since the functions f;, are preseribed, we can find a constant vy such that (see [6, p. 555])
ey S f O ow ow
ffa“ lgrad w|*dA—2 o2, o0 brld 0 <yD(w,w). (2.27)
9 9
We make use also of the ordinary Green’s identity
D(w,w) :95@0 gi:;ds, (2.28)
@

which yields by Schwarz’s inequality
1 2 1
Dw,w) g((ﬁw2ds>*<<§(aﬂ> a’s>2~ (2.29)
N J\on
C G
In view of (2.23), eq (2.29) yields

<L [T

We now insert (2.27) and (2.30) back into (2.26), make use of the Schwarz inequality and

obtain
ow\?, |z
bs) do]

3l

(s U3 o > hgﬁp
A (R

where pui, 1s the minimum value of p on . This inequality yields

el E G g | (¢ F o]
LTy}
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From (2.32) it is thus always possible to obtain the inequality

2 2
Sﬁ(glf’) (1.\545(%%) iE (2.33)
C C

where
APmin= (B+ [Bz+l)xxlax]%) ? (2 .34)
and
f@ﬁ
s ;
p=4 — 1 Lk (2.35)
p? max 27"[112nin
\

If the boundary € is star-shaped with respect to some point (z,,) in &, the problem is
simplified considerably. The fact that the boundary is star-shaped with respect to (x,,,) 1s
equivalent to the condition that

q=(x—zo)ns+ Y—Yyo)ny, >0 (2.36)

at every point on (. Thus, in this case, (2.25) is satisfied if we let
Ji=t—a, J2=Y—". (2.37)

The left-hand side of (2.27) then vanishes identically, and hence we take y=0in (2.31), (2.32),
and (2.35).  We find in this case instead of (2.33) (see [5]) that

i 2
s[4, T $5 o)
& max

In the general case then, an inequality of the form

9€<a(¢,—u)>d < §61|: (o— u] Is (2.39)

is obtained, where A is a completely determined positive function. Inserting (2.39) and
(2.23) into (2.20), we find

2)
(X—a;—ay,+a;3)*< 4I1r ﬁ ynz—hcny] (1) {

(It is apparent that the quantity A may be placed in the second integral rather than in the
first if it is desirable.) We now use the Rayleigh-Ritz technique to make the two integrals
on the right of (2.40) small.

Note that it is possible to derive close upper and lower bounds for z, without approximating
the flexure function at all. In fact, if we use instead of u a conjugate function » defined by*

ou v o o o
e ) —=—) “~. 1
or oy oy ox ety

55[6 (”—_’2)] "‘96 {[(1—o)y*—oa’ln, }*ds. (2.42)

In this case the A term has been put in the second integral since this expression is a purely
geometrical quantity (independent of ») and can be computed explicitly.

bs

2
aus —[(140)y2—aa?n, } ds. (2.40)

we obtain (setting u,=0)

|x—a,|*<

2 The function » is not to be confused with that used in (2.22).
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In an entirely analogous way we find that

_o(14- o)+ f f [(1+0)22y—oyldA=D(p,p1). (2.43)
9

By introducing the two arbitrary harmonic functions u and u; and proceeding as before,
we obtain upper and lower bounds for y,. Note that if we choose u;,u,=0 and merely approxi-
mate the warping function (or the conjugate function) on the right, then the same minimizing
function « (or ») minimizes the error term in each case.

3. Bounds for the Center of Shear

We look now at the expression for the center of shear (v,y,1) as defined by Trefftz [10].
The coordinates x; and y; are given by

rm fﬁag/dA 3.1)
*
1
Ys=71 ffgo xd A. (3.2)
v
_CZ

Equation (3.2) may be rewritten as

=1 f
Y=61,

f (M%) dA. (3.3)

©

By Green’s formula we have
Y

__i o .3 %] 5
ys~61yi§ [‘33& Nap—a® = ds

=6LI fﬁ (3a*na0—a(yn,—awn,)| ds. (34)
Yy
C

The divergence theorem then yields

ys+2~11— szz’ydA:% TN ,ds. (3.5)
v @ v b
We introduce the notation
EEUURTIR S f S
o=yt 7, ffx ydA, (3.6)
9
and two harmonic functions h; and h,. Let
b1=§h1x"’mds, 3.7)
c
b= S ds=Plyn,—an s, (3.9)
) C
oh
b3:§h1 3_7],2 dS. (3.9)
C



Clombining (3.5) to (3.9) we obtain

—bl—b2+b3:¢(¢—hl)(xznz—kg)(ls. (3.10)

c

Then by Schwarz’s inequality

2
[®—b,—by— byt < ?(ga—hl)?dssﬁ@mz—%’jf) ds. (3.11)
G (0!

Again it is desirable to choose (¢—#h;) in such a way that
qS (o—hy)ds—0. (3.12)
Lej

Using (2.23) and (2.39), we obtain finally
L7 bw_% Cﬁ B _) & <
bbb < s P A( 32O Y (% s, (3.13)

We insert the known boundary value for ¢ on the right-hand side and use the Rayleigh-Ritz
technique to obtain close upper and lower bounds for y,. Note that if the boundary value
problem

Ahy=0 in 2
=22, on (O (3.14)

can be solved, it is then possible to determine y, explicity without solving either the torsion or
the flexure problem.
In a similar way it is possible to obtain upper and lower bounds for the coordinate ;.
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