
JOURNAL OF RESEARCH of the National Bureau of Standards-B. Ma thematics and Mathematical Physics 
Vol. 64B, No. 2, April- June 1960 

Upper and Lower Bounds for the Center of Flexure 
Lawrence E. Fayne 

(February 1, 1960) 

There is d isagreement in t he li terature as to how t he center of flex ure of an isotropic 
elastic beam should be defined . In either of t he two most widely accepted definition s, upper 
a nd lower bounds for t he coordin ates of t he cente r of fl exure are obtained . 

1. Introduction 

We consider a cantilcver beam of uniform cross section and choose the z-axis to coincide 
with the line of cross-section centroids. The plane end z= O is assumed fixed and the other 
end z= l is loaded by some distribution of forces which is sta tically equivalen t to a single force 
with components (vVx , Wy , 0) acting at a load point (XL , YL, l) . In the treatment of the flexure 
problem [9]1 (a similar treatment appears in [3]) we seek a load point (XfJ YfJ l) which has the 
property that any load (Wx, W11' 0) applied through th is point produces no local twist at the 
centroid of the section, i. e., the mean value of the local twist over the cross section vanishes 
(see [9] p. 200) . This point (XfJ YfJ l) is referred to as t he center of flexure [9 ]. The determina
tion of (XfJ YI, t) permi ts us to break up the general flex ure problem into two separate problems
one of pure torsion and one of pure fl exure. This point is som etimes referred to as the cen ter 
of shear (see, for instance, [3]), and it is well known that there is difference of opinion in the 
literature as to the way in which the point should be defined (see, for instance, [1 , 2,4,10, 11]. 
A discussion of these differences has been given in a recent paper by P earson [7], who demon
strates that in general the two expressions for the center of shear yield resul ts which are very 
near to one another. 

It is not our poin t here to en ter into the discussion of the relative meri ts of the two defini
tions. We merely point ou t tha t the expression of Trefftz [10] is simpler and independen t of 
Poisson's ratio . The center of flexure of [9], on the other hand, permits an easy decomposition 
of the general flexure problem. 

In order to avoid confusion we shall hereafter refer to th e point defined in [9] as the cen ter 
of flexure and that given by Treff tz [10] as the center of shear . 

In this paper then we derive upper and lower bounds for the coordinates of t he cen ter of 
flexure (XfJ YfJl) and the center of shear (xs, Yo, l ). In the first case we use the formulation of the 
flexure problem derived in [9] and thus concern ourselves wi th the problem of pure flexure. 

It is of course well known (see, for instance, [7]) that if we have the solution to the pure 
torsion problem for the beam in question then we can determine both the center of sh ear and 
the center of flexure without knowledge of the solution to the flexure problem . As would be 
expected it is possible in each case to obtain upper and lower bounds for the coordinates of the 
point by approximating the solution to the torsion problem alone. 

2 . Bounds for the Center of Flexure 

We denote by 9} the cross section of the beam and let C be its boundar.v. (The r egion 
may be simply or multiply connected. ) The origin of a rectangular coordinate system is 
taken at the centroid of ~. For simplicity the x and Y axes ar e chosen to be principal axes of 
inertia, i .e., 

II xyclA= O. (2. 1) 
~ 

1 Figures in brackets indicate the literature references at thc end of this paper. 
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According to [9J the pure flexure problem is solved once the solutions to the following boundary 
value problems have been determined: 

i)2<'o1 ()2'1'1 ()Z":,2+ 02'1'2=0 
ox2 + oy2 =0, ox" oy2 in ~ (2.2) 

~= [(1 + 0" )x2-O"y2]nx (2.8) 

where 0" is Poisson's ratio and nx and ny are the x and y components of the unit normal on C. 
(The normal is assumed directed outward from 9).) The coordinates of the center of flexure 
(XI> Yr) are defined by: 

where 

Thus 

xr 2(1~0")Ix ff [x ~~2_y ~;-(1+0")xy2+ O"x3JdA, 
9) 

Yr 2(1~0")Iy ff[ x ~~l_y ~:I+(1+0")x2y- O"y31dA 
~ 

Using the divergence theorem we have 

where 

2(1 + 0" )Ixxr=~'1'2 (xny-ynx)ds- J 
c 

J = ff[(1 + 0")xy2_ O"x3JdA. 

~ 

Since J is a geometric quantity it can be computed explicitly. 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

We note now that the coefficient of '1'2 in the boundary integral in (2.9) is proportional 
to the boundary value of the normal derivative of the warping function 'I' in the pure torsion 
problem. In fact 

on C. (2.11) 

Thus if we let 
(2.12) 

we find 

(2.13) 

where 

D( )=55[°<,0 0<,02+ 0'1' O<'o2J dA. 
'1', '1'2 ox ox oy oy (2 .14) 

~ 

The determination of bounds for Xr is thus equivalent to the determination of bounds for x. 
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Note that if the warping function cp is known the value of XI can be determin ed explicitly 
mce 

X = -~cp[ ( 1 + cr )y2_ crx2]nyds. 
c 

(2. ] 5) 

If cp is not known we in trodu ce two arbitrary harmonic fun ctions u and U2 and define 

al=-D(cp ,U2)=-~U2(ynx-xnIJdS, 
c 

a2= - D ( U,CP2) = - ~U[ (1 + cr )y2_ crx2]n yds, 
c 

(2 .1 6 ) 

(2. 17) 

(2.18) 

With U and U2 prescribed we can determine ai, a2, and a3 explicitly. We now form the expression 

x - al- a2+a3=-D( cp- u,cpz- u2) 

=-~(cp-U) { [(1+ cr )y2- crx2]n y - ~:2 }ds. 
c 

(2. 19) 

An application of Schwarz's inequali ty yield s 

(X-al-a2+a3)2::; ~ (cp-u)2dS~ { [(1 + cr )y2- crx2]ny - ~~:} 2ds. 
c c 

(2 .20) 

It remains now to approximate the first boundary integral on the righ t of (2 .20) in terms of 
known quan tities. 

By adding an appropriate constan t (if necessary) it is possible to choose cp---"U in such a 
a way that 

~ (cp- u)ds= O. 
c 

(2.21 ) 

With cp-----1L so chosen we shall estimate the first integral on tb e righ t of (2.20) in terms of the 
boundary integral of the square of its normal derivative. To this end we note that 

(2.22) 

where L denotes the length of the perimeter of 0, a/os denotes the tangential derivative on 

0, and v is any function continuous on ° and satisfying the condition ~ vds= O. The quantity 
c 

on the right of (2.22) is just th e eigenvalue of the vibrating string equation , the differential 

equation which arises as the Euler equation for the minimum of the quotient (~(ov/ os)2ds); 
c 

pV2ds. It follows then that 
c 

(2.23) 

We seek now an inequality which relates th e integral on the right-hand side of (2 .23) to the 
boundary integral of the square of the normal derivative of cp-u. We introduce therefore. 

107 



an arbitrary continuous vector function with components i k and consider the generalized 
Rellich identity (see l6, 8]). Letting w=cp-u, we have 

where Ll denotes the Laplace operator (Ll= (02 joX2) + (02joy2» and summation IS to be 
carried out over the repeated indices k ,l= 1,2. The i k are now assumed to be so chosen that 

(2.25) 

A decomposition of the derivatives of u in the boundary integrals into normal and tangential 
components yields (see [8]) 

thp (OW)2ds=rhp (OW)2ds+2 rt,fk OXk ow ow ds+Jfofk I grad wl2dA-2Jfo fk ow ow dA . Y as j on j os as on OXk oXz OXk oXz 
C c c ::» !!) 

(2.26) 

Since the functions i k are prescribed, we can find a constant l' such that (see [6, p. 555]) 

JJ·Ofk I . d 12dA Jf ofk ow ow d D( ) ::;- gr a W - 2 ::;- ::;- ::;- a:::; l' W , W . UXk U XI UXk uXz (2.27) 

!!) (» 

We make use also of the ordinary Green's identity 

(2.28) 

which yields by Schwarz's inequality 

( rt, )t(rh(OW)2 )!' D(w,w):::; jw2ds j on ds '. (2.29) 
c c 

In view of (2.23), eq (2.29) yields 

L [r-h(OW)2 J' [rt,(OW)2 JJo D(w,w):::; 27r j as ds 2 j on ds '. (2 .30) 
c c 

We now insert (2.27) and (2.30) back into (2.26), make use of the Schwarz inequality and 
obtain 

where Pmin is the minimum value of P on C. This inequality yields 

[ 'lL" p(OW)2 J!)2 P (OW)2 'I~ ! + - 2-- - ds +p - ds. 
47r pOlin on on 

c c ) 

(2.32) 
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From (2.32) it is thus always possible to oMain the inequality 

(2.33) 

·where 

(2.34) 

and 

{ iJi)Xki} os ,,(L 
(3= - ].- +-_. 

, ]) 2 max 27rP~in 
(2.35) 

If the boundary C is star-shaped with respect to some point (xo,Yo) in ~, the problem is 
simplified considerably. The fact that the boundary is star-shaped with respect to (xo ,Yo) is 
equivalent to the condition that 

(2.36) 

at every point on C. Thus, in this case, (2.25) is satisfied if we let 

(2.37) 

The left-hand side of (2 .27 ) then vanishes identically, and hence we take "(=0 in (2.31), (2 .32), 
and (2 .35). ' ''iTe find in this case instead of (2 .33 ) (see [5]) tllat 

~ (OW)2 [ 101'1 ] 2 1. 1'2 (OW)2 Y Z)S ds '5. q,~tQ 1 + os m ax 'Y q on ds. 
c c 

(2.38) 

In the general case then , an inequality of the form 

is obtained, where A is a completely determin ed positive function. Inserting (2 .39) and 
(2.23) into (2. 20 ), we find 

(2.40) 

(It is apparent that the quantity A may be placed in the second integral rather than in the 
first if it is desirable.) We now use the Rayleigh-Ritz technique to make the two integrals 
on the right of (2.40) small. 

Note that it is possible to derive close upper and lower bounds for XI without approximating 
the flexure function at all . In fact , if we use instead of u a conjugate function v defined by2 

(2.41) 

we obtain (setting U2=0) 

Ix- a212'5. ;:2 ~ [ : s (v-t1'2) ] 2ds ~ A{[(1 - cr )y2- crx2]ny }2ds. (2.42) 

c c 

In this case the A term has been put in the second integral since this expression is a purely 
geometrical quantity (independent of v) and can be computed explicitly. 

2 The fUllction v is not to be confused with tbat used in (2.22). 
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In an entirely analogous way we find that 

- 2(1 + u)IYYf+ J J[(1 + U) X2y- uy3]dA= D(IO,101)' 

t;2 

(2.43) 

By introducing the two arbitrary harmonic functions u and Ul and proceeding as before, 
we obtain upper and lower bounds for Yr. Note that if wc choose UJ,U2=O and merely approxi
mate the warping function (or the conjugate function) on the right, then the same minimizing 
function U (or v) minimizes the error term in each case. 

3 . Bounds for the Center of Shear 

We look now at the expression for the center of shear (x s,y.,l) as defined by Trefftz [10] . 
The coordinates Xs and Ys are given by 

Xs=-i JJlOydA 
t;2 

Ys=* JJlOxdA. 

9 
Equation (3.2) may be rewritten as 

By Green's formula we have 

- 1 rf, [3 2 3 010] is YS- 6I y j xnxlO-x on G 

e 

=6t P [3x2nxlO-x3(ynx-xny)] els. 
e 

The divergence theorem then yields 

We introduce the notation 

and two harmonic functions hi and h2 • Let 

b1=ph1x2n xds, 
e 

b2=plO ~~ ds= ph2[yn,,-xnv]ds, 
e c 

b3= ph1 ~~ ds. 
e 
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(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3 .6) 

(3.7) 

(3.8) 

(3 .9) 



Combining (3.5) to (3 .9 ) we on tain 

<I> - b1- b2+ b3=~(II'- hl) (x2n X- h2) ds. 
c 

Then by Schwarz's inequali ty 

Again it is desirable to choose (lI'- h1) in such a way that 

Using (2 .23) and (2.39), we ob tain finally 

(3. 10) 

(3 .11) 

(3 .12) 

(3 .13) 

"'iVe inser t Lhe k nown boundary value for II' on the righ t-hand side and usc t he R ayleigh-Ri tz 
techniq ue to obtain close upper and lower bounds for Ys. Note that jf Lhe boundary valu e 
p roblem 

on C (3 .14) 

can be solved, it is t hen possible Lo determine Ys explicity wi t hout solving eiLhcr the torsion or 
th e fl exure problem . 

In a similar way i L is possible Lo obtain upper and lower bounds for Lhe coordinate Xs . 
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