The Minimum of a Certain Linear Form ¹

Karl Goldberg

$(March 23, 1959)$

The positive minimum of the integral linear form $L(x_1, \ldots, x_n) = a_1x_1 + \ldots + a_nx_n$ is found subject to the conditions $a_i > 0$ and $L(x_1, \ldots, x_n) \ge 2a_ix_i$ for $i = 1, 2, \ldots, n$.

Let $a_1 \le a_2 \le \ldots \le a_n$ be $n \ge 3$ positive integers. positive minimum M of the linear form We seek the positive minimum M of the linear form form $L(x_1, x_2, x_3) = a_1 x_1 + a_2 x_2 + a_3 x_3$

$$
L(x_1,x_2,\ldots,x_n) = a_1x_1 + a_2x_2 + \ldots + a_nx_n
$$

over all non-negative integers x_1, x_2, \ldots, x_n such that

$$
L(x_1, x_2, \ldots, x_n) \ge 2a_i x_i \tag{1}
$$

for all $i = 1, 2, \ldots, n$.

Let $[a_1, a_2]$ denote the least common multiple of a_1 and a_2 ,

For each $i=3, 4, \ldots, n$, define r_i in the following way: If either a_1 or a_2 divides a_i , or if $a_i = a_j$ for some $j \neq i$, set $r_i = 0$. Otherwise, let r_i be the minimum of the least non-negative residues modulo a_1 of

$$
a_2-a_i, 2a_2-a_i, \ldots, \lfloor (a_i-1)/a_2 \rfloor a_2-a_i.
$$

We shall prove

THEOREM: *M* is the minimum of $2[a_1, a_2]$, $2a_3+r_3$, $2a_4+r_4, \ldots, 2a_n+r_n.$

As a consequence we have the inequality

$$
2a_3 + a_1 - 1 \ge M \ge 2a_2
$$
.

Also, if $L(x_1, x_2, \ldots, x_n) = M$, then at most three of the x_k are positive. At least two must be positive. If exactly two are positive, then either $x_1 = [a_1, a_2]/a_1$ and $\hat{x}_i = [a_1, a_2] / a_2$, or $x_1 = a_i / a_1$ and $x_i = 1$, or $x_2 = a_i / a_2$
and $x_i = 1$, or $x_i = x_j = 1$ for some $j > i \geq 3$. If three of the x_k are positive, then both x_1 and x_2 are positive; the other positive x_i equals 1 and we have $x_i =$ $-[(a_2x_2-a_i)/a_1]$ for that i. Under any conditions M is achieved only with $x_i \leq 1$ for all $i \geq 3$. We shall prove all this.

M. Newman ² refers to our theorem in the case $n=3$. We shall treat this case first.

$$
L(x_1,x_2,x_3)\!=\!a_1x_1\!+\!a_2x_2\!+\!a_3x_3
$$

over all non-negative integers x_1, x_2, x_3 satisfying

$$
L(x_1, x_2, x_3) \ge 2a_i x_i \qquad i = 1, 2, 3. \tag{2}
$$

(1) Let $x'_1 = -[(a_2 - a_3)/a_1]$. Because $a_2 \le a_3$, x'_1 is non-negative. It satisfies

$$
a_1 - 1 \ge a_2 - a_3 + a_1 x_1' \ge 0. \tag{3}
$$

Because $a_1 \le a_2$, this implies

$$
a_3 \ge a_3 - (a_2 - a_1) - 1 \ge a_1 x'_1. \tag{4}
$$

Now consider $L(x'_1,1,1) = a_1x'_1 + a_2 + a_3$. From (3) we have

$$
2a_3 + a_1 - 1 \ge L(x'_1, 1, 1) \ge 2a_3. \tag{5}
$$

We know that $2a_3\geq 2a_2$, so that $L(x'_1,1,1)\geq 2a_3\geq 2a_2$. Finally, (4) yields $L(x'_1,1,1) \geq 2a_3 \geq 2a_1x'_1$.

This proves that $x_1=x'_1, x_2=x_3=1$ satisfies (2). It follows that the left-hand inequality in (5) holds for *M:*

$$
2a_3 + a_1 - 1 \ge M. \tag{6}
$$

From this point we assume that x_1, x_2, x_3 satisfy (2) and

$$
L(x_1,x_2,x_3) = M.
$$

Since $L(x_1,x_2,x_3) \geq 2a_3x_3$, we have from (6) and $a_3 \ge a_1$ that $x_3 = 0$ or $x_3 = 1$.

If $x_3=0$, than (2) implies $a_1x_1=a_2x_2$. Under this condition the minimum value of $L(x_1,x_2,x_3)$ is $2[a_1,a_2]$, occurring for $x_1 = [a_1, a_2]/a_1$ and $x_2 = [a_1, a_2]/a_2$.

From now on $x_3 = 1$. From $M = a_1x_1 + a_2x_2 + a_3$ and (2), we have $M>2a_3$. From (6) we have

$$
2a_3+a_1-1\!\ge\!2a_3+a_1x_1+(a_2x_2-a_3),
$$

from which it follows that $x_1 > 0$ implies $a_3 - 1 \ge a_2 x_2$. If $x_1 = 0$, then (2) implies $a_2x_2 = a_3x_3$, so that $M = 2[a_2, a_3]$.

We have $a_1 \le a_2 \le a_3$, and we want to find the

¹ The preparation of this paper was supported in part by the Office of Naval Research. 2 M. Newman, Construction and application of a class of modular functions, II, Proc. London Math. Soc. **9.** 373 (1959).

But $2[a_2,a_3]>2a_3+a_1-1$ unless a_2 divides a_3 . Thus $x_1=0$ is possible only if a_2 divides a_3 , in which case $x_2 = a_3/a_2$ and $M = 2a_3$. Similarly $x_2 = 0$ is possible only if a_1 divides a_3 , in which case $x_1 = a_3/a_1$ and $M=2a_3$. Since a_3 divisible by either a_1 or a_2 leads to $M=2a_3$ which is the best possible result with $x_3=1$, we may now assume that neither a_1 nor a_2 divides a_3 and that $x_1x_2>0$.

With $x_1 > 0$ we must have $a_3 - 1 \ge a_2 x_2$. Fix x_2 . We shall find that permissible value of x_1 which minimizes $L(x_1, x_2, x_3) = a_1x_1 + a_2x_2 + a_3$. Clearly this is the least positive value of x_1 satisfying (2). We have

$$
L(x_1,x_2,x_3)\!=\!a_1x_1\!+\!1\!+\!(a_3\!-\!1\!-\!a_2x_2)\!+\!2a_2x_2\!\!>\!2a_2x_2
$$

for any value of x_1 . The other inequalities require

$$
\frac{a_3 + a_2 x_2}{a_1} \ge x_1 \ge \frac{a_3 - a_2 x_2}{a_1}.
$$

Since $2a_2x_2 \geq 2a_2 > a_1$, there are values of x_1 satisfying these inequalities. The least such x_1 is the least integer greater than or equal to $(a_3-a_2x_2)/a_1$. This last quantity is positive, so this value of x_1 is positive. It can be written

$$
x_1^{\prime\prime} = -\left[\frac{a_2x_2 - a_3}{a_1}\right]
$$

Let $r_3(x_2)$ be the least non-negative residue modulo a_1 of $a_2x_2-a_3$. Then $r_3(x_2)=a_2x_2-a_3+a_1x_1'$. It follows that

$$
L(x_1',x_2,1)=2a_3+r_3(x_2).
$$

We want the least of these values for x_2 lying between 1 and $[(a_3-1)/a_2]$. Under our assumptions on the divisibility of a_3 , this is just $2a_3+r_3$ with r_3 as defined

in the theorem. This proves the theorem for $n=3$.
Now assume $n > 3$. We have $a_1 \le a_2 \le a_3$. and we want to find the positive minimum M of the

 $\frac{\partial \mathcal{L}_{\mathcal{L}_{\mathcal{M}}}(\mathcal{L}_{\mathcal{L}_{\mathcal{M}}}(\mathcal{L}_{\mathcal{L}_{\mathcal{M}}}(\mathcal{L}_{\mathcal{L}_{\mathcal{M}}})))}{2^{n+1} \sum_{i=1}^n \sum_{j=1}^n \mathcal{L}_{\mathcal{L}_{\mathcal{M}}}(\mathcal{L}_{\mathcal{L}_{\mathcal{M}}}(\mathcal{L}_{\mathcal{L}_{\mathcal{M}}}(\mathcal{L}_{\mathcal{L}_{\mathcal{M}}}(\mathcal{L}_{\mathcal{L}_{\mathcal{M}}}(\mathcal{L}_{\mathcal{M}})))})$

linear form $L(x_1, x_2, \ldots, x_n)$ over all non-negative integers x_1, x_2, \ldots, x_n satisfying (1).

integers x_1, x_2, \ldots, x_n satisfying (1).
If x_1, x_2, x_3 satisfy (2), then $x_1, x_2, x_3, 0, \ldots, 0$ satisfy (1). Therefore our new *M* satisfies (6). Let

 $L(x_1,x_2, \ldots, x_n) = M.$

Then

$$
2a_3 + a_1 - 1 \ge a_1x_1 + a_2x_2 + a_3x_3 + \ldots + a_nx_n
$$

$$
\ge a_1(x_1 + x_2) + a_3(x_3 + \ldots + x_n).
$$

It follows that

$$
x_3 + x_4 + \ldots + x_n \leq 2
$$

and that $x_3 + x_4 + \ldots + x_n = 2$ requires $x_1 + x_2 = 0$. On the other hand,

$$
3a_i > 2a_3 + a_1 - 1 \ge L(x_1, x_2, \ldots, x_n) \ge 2a_i x_i,
$$

$$
i = 3, 4, \ldots, n,
$$

implies

$$
x_i\leq 1, \qquad i=3,4,\ldots, n.
$$

Assume $x_3 + x_4 + \ldots + x_n = 2$. Then $x_i = x_j = 1$ for some $i, j \geq 3$ and all other $x_k=0$. Then (1) implies $a_i = a_j$ and $M = 2a_i$. Again this is the best possible result with $x_i = 1$.
If $x_3 + x_4 + \ldots + x_n = 0$, then (1) implies a_1x_1

If $x_3+x_4+\ldots+x_n=0$, then (1) implies a_1x_1 = a_2x_2 . As before, this implies $M=2[a_1,a_2]$.

 a_2x_2 . As before, this implies $M=2[a_1,a_2]$.
If $x_3+x_4+\ldots+x_n=1$, then $x_i=1$ for some $i\geq 3$. If $x_3 + x_4 + \ldots + x_n = 1$, then $x_i = 1$ for some $i \geq 3$
and all other $x_k = 0$ for $k \geq 3$. The problem then reverts to the case $n=3$ with a_i replacing a_3 . Our previous arguments complete the proof of the theorem, and the statements in the subsequent paragraph.

 $W_{ASHINGTON}, D_•C.$ (Paper 64B1-20)