The Minimum of a Certain Linear Form

Karl Goldberg

(March 23, 1959)

The positive minimum of the integral linear form $L(x_1, \ldots, x_n) = a_1x_1 + \ldots + a_nx_n$ is found subject to the conditions $a_i > 0$ and $L(x_1, \ldots, x_n) \ge 2a_i x_i$ for $i=1,2,\ldots, n$.

Let $a_1 \leq a_2 \leq \ldots \leq a_n$ be $n \geq 3$ positive integers. We seek the positive minimum M of the linear form

$$L(x_1, x_2, \ldots, x_n) = a_1 x_1 + a_2 x_2 + \ldots + a_n x_n$$

over all non-negative integers x_1, x_2, \ldots, x_n such that

$$L(x_1, x_2, \ldots, x_n) \ge 2a_i x_i$$
 (1)

for all i = 1, 2, ..., n.

Let $[a_1, a_2]$ denote the least common multiple of a_1 and a_2 .

For each $i=3, 4, \ldots, n$, define r_i in the following way: If either a_1 or a_2 divides a_i , or if $a_i = a_j$ for some $j \pm i$, set $r_i = 0$. Otherwise, let r_i be the minimum of the least non-negative residues modulo a_1 of

$$a_2 - a_i, 2a_2 - a_i, \ldots, [(a_i - 1)/a_2]a_2 - a_i.$$

We shall prove

THEOREM: M is the minimum of $2[a_1,a_2], 2a_3+r_3,$ $2a_4 + r_4, \ldots, 2a_n + r_n$.

As a consequence we have the inequality

$$2a_3 + a_1 - 1 \ge M \ge 2a_2$$
.

Also, if $L(x_1, x_2, \ldots, x_n) = M$, then at most three of the x_k are positive. At least two must be positive. If exactly two are positive, then either $x_1 = [a_1, a_2]/a_1$ and $x_2 = [a_1, a_2]/a_2$, or $x_1 = a_i/a_1$ and $x_i = 1$, or $x_2 = a_i/a_2$ and $x_i=1$, or $x_i=x_j=1$ for some $j>i\geq 3$. If three of the x_k are positive, then both x_1 and x_2 are positive; the other positive x_i equals 1 and we have $x_1 =$ $-[(a_2x_2-a_i)/a_1]$ for that i. Under any conditions M is achieved only with $x_i \leq 1$ for all $i \geq 3$. We shall prove all this.

M. Newman² refers to our theorem in the case n=3. We shall treat this case first.

positive minimum M of the linear form

$$L(x_1, x_2, x_3) = a_1 x_1 + a_2 x_2 + a_3 x_3$$

over all non-negative integers x_1, x_2, x_3 satisfying

$$L(x_1, x_2, x_3) \ge 2a_i x_i$$
 $i=1,2,3.$ (2)

Let $x_1' = -[(a_2 - a_3)/a_1]$. Because $a_2 \leq a_3$, x_1' is non-negative. It satisfies

$$a_1 - 1 \ge a_2 - a_3 + a_1 x_1' \ge 0. \tag{3}$$

Because $a_1 \leq a_2$, this implies

$$a_3 \ge a_3 - (a_2 - a_1) - 1 \ge a_1 x_1'. \tag{4}$$

Now consider $L(x_1', 1, 1) = a_1 x_1' + a_2 + a_3$. From (3) we have

$$2a_3 + a_1 - 1 \ge L(x_1', 1, 1) \ge 2a_3.$$
⁽⁵⁾

We know that $2a_3 \ge 2a_2$, so that $L(x'_1,1,1) \ge 2a_3 \ge 2a_2$. Finally, (4) yields $L(x'_1, 1, 1) \ge 2a_3 \ge 2a_1x'_1$.

This proves that $x_1 = x'_1$, $x_2 = x_3 = 1$ satisfies (2). It follows that the left-hand inequality in (5) holds for M:

$$2a_3 + a_1 - 1 \ge M.$$
 (6)

From this point we assume that x_1, x_2, x_3 satisfy (2) and

$$L(x_1,x_2,x_3) = M.$$

Since $L(x_1, x_2, x_3) \ge 2a_3x_3$, we have from (6) and $a_3 \ge a_1$ that $x_3 = 0$ or $x_3 = 1$.

If $x_3=0$, than (2) implies $a_1x_1=a_2x_2$. Under this condition the minimum value of $L(x_1, x_2, x_3)$ is $2[a_1, a_2]$, occurring for $x_1 = [a_1, a_2]/a_1$ and $x_2 = [a_1, a_2]/a_2$.

From now on $x_3=1$. From $M=a_1x_1+a_2x_2+a_3$ and (2), we have $M \ge 2a_3$. From (6) we have

$$2a_3 + a_1 - 1 \ge 2a_3 + a_1x_1 + (a_2x_2 - a_3),$$

from which it follows that $x_1 > 0$ implies $a_3 - 1 \ge a_2 x_2$. If $x_1=0$, then (2) implies $a_2x_2=a_3x_3$, so that $M=2[a_2,a_3]$.

We have $a_1 \leq a_2 \leq a_3$, and we want to find the

¹ The preparation of this paper was supported in part by the Office of Naval Research. ² M. Newman, Construction and application of a class of modular functions, II, Proc. London Math. Soc. **9**, 373 (1959).

But $2[a_2,a_3] > 2a_3 + a_1 - 1$ unless a_2 divides a_3 . Thus $x_1=0$ is possible only if a_2 divides a_3 , in which case $x_2 = a_3/a_2$ and $M = 2a_3$. Similarly $x_2 = 0$ is possible only if a_1 divides a_3 , in which case $x_1 = a_3/a_1$ and $M = 2a_3$. Since a_3 divisible by either a_1 or a_2 leads to $M=2a_3$ which is the best possible result with $x_3 = 1$, we may now assume that neither a_1 nor a_2 divides a_3 and that $x_1x_2 > 0.$

With $x_1 > 0$ we must have $a_3 - 1 \ge a_2 x_2$. Fix x_2 . We shall find that permissible value of x_1 which minimizes $L(x_1, x_2, x_3) = a_1x_1 + a_2x_2 + a_3$. Clearly this is the least positive value of x_1 satisfying (2). We have

$$L(x_1, x_2, x_3) = a_1 x_1 + 1 + (a_3 - 1 - a_2 x_2) + 2a_2 x_2 \ge 2a_2 x_2$$

for any value of x_1 . The other inequalities require

$$\frac{a_3 + a_2 x_2}{a_1} \ge x_1 \ge \frac{a_3 - a_2 x_2}{a_1}$$

Since $2a_2x_2 \ge 2a_2 > a_1$, there are values of x_1 satisfying these inequalities. The least such x_1 is the least integer greater than or equal to $(a_3 - a_2 x_2)/a_1$. This last quantity is positive, so this value of x_1 is positive. It can be written

$$x_1^{\prime\prime} = - \left[\frac{a_2 x_2 - a_3}{a_1} \right]$$

Let $r_3(x_2)$ be the least non-negative residue modulo a_1 of $a_2x_2 - a_3$. Then $r_3(x_2) = a_2x_2 - a_3 + a_1x_1''$. It follows that

$$L(x_1'', x_2, 1) = 2a_3 + r_3(x_2).$$

We want the least of these values for x_2 lying between 1 and $[(a_3-1)/a_2]$. Under our assumptions on the divisibility of a_3 , this is just $2a_3 + r_3$ with r_3 as defined in the theorem. This proves the theorem for n=3. Now assume n>3. We have $a_1 \le a_2 \le \ldots \le a_n$,

and we want to find the positive minimum M of the

linear form $L(x_1, x_2, \ldots, x_n)$ over all non-negative integers x_1, x_2, \ldots, x_n satisfying (1).

If x_1, x_2, x_3 satisfy (2), then $x_1, x_2, x_3, 0, \ldots, 0$ satisfy (1). Therefore our new M satisfies (6). Let

 $L(x_1,x_2,\ldots,x_n)=M.$

Then

$$2a_3 + a_1 - 1 \ge a_1x_1 + a_2x_2 + a_3x_3 + \dots + a_nx_n$$

$$\ge a_1(x_1 + x_2) + a_3(x_3 + \dots + x_n).$$

It follows that

$$x_3 + x_4 + \ldots + x_n \le 2$$

and that $x_3+x_4+\ldots+x_n=2$ requires $x_1+x_2=0$. On the other hand,

$$3a_i > 2a_3 + a_1 - 1 \ge L(x_1, x_2, \ldots, x_n) \ge 2a_i x_i,$$

 $i = 3, 4, \ldots, n,$

implies

$$x_i \leq 1, \quad i=3,4, \ldots, n.$$

Assume $x_3 + x_4 + ... + x_n = 2$. Then $x_i = x_j = 1$ for some $i,j \ge 3$ and all other $x_k = 0$. Then (1) implies $a_i = a_i$ and $M = 2a_i$. Again this is the best possible result with $x_i = 1$.

If $x_3+x_4+\ldots+x_n=0$, then (1) implies a_1x_1

 $=a_2x_2$. As before, this implies $M=2[a_1,a_2]$. If $x_3+x_4+\ldots+x_n=1$, then $x_i=1$ for some $i\geq 3$ and all other $x_k=0$ for $k\geq 3$. The problem then reverts to the case n=3 with a_i replacing a_3 . Our previous arguments complete the proof of the theorem, and the statements in the subsequent paragraph.

WASHINGTON, D.C.

(Paper 64B1-20)