Moebius Function on the Lattice of Dense Subgraphs

R. E. Nettleton and M. S. Green

(August 3, 1959)

The Moebius function f_k on the lattice of k-dense subgraphs of a connected graph, defined in a previous paper, is calculated for graphs G containing isthmuses and articulators. f_1 evaluated for the null graph ϕ is shown to vanish if G contains an isthmus, while for any integer q there exist graphs containing articulators for which $f_1(\phi) = q$. The "lattice of path sets" joining a pair of points and the lattice of graphs "associated with G and a subgraph G" are defined and the Moebius functions on these lattices are shown in certain cases to be related to f_1 .

The concepts "k-dense subgraph," "isthmus," and "articulator" were defined in a previous paper [1], where it was shown that the k-dense subgraphs of a given connected graph G, together with the null graph ϕ , form a lattice. The Moebius function f_k on this lattice will be defined in the present paper, and $f_k(\phi)$ and, in particular, $f_1(\phi)$ will be evaluated for various types of graphs. It is found that $f_1(\phi) = 0$ if G contains an isthmus, and $|f_1(\phi)| \leq 1$ unless G contains an articulator. However, for every integer q, there exists a graph containing an articulator for which $f_1(\phi) = q$. A second lattice is formed by the sets of paths joining a given pair of points and containing among them all the points of G, and when G contains an articulator in which there are just two points, $f_1(\phi)$ can be expressed in terms of the Moebius function defined on the second lattice. The graphs "associated with a graph G and a subgraph G''' are defined and shown to form a lattice. A relation is found between the Moebius function on this lattice and the functions $f_1(\phi)$ defined for the individual lattice elements.

1. Definitions

A linear, undirected graph G is a set of elements, called points, together with a set of ordered pairs of these elements which define a symmetric nonreflexive, binary relation. For any given graph G, the number of points will be assumed finite and unless otherwise specified this number will be denoted by the symbol n. A subset of the set of points in G, together with all the ordered pairs which contain only points in the subset, is called a subgraph. The union, intersection, or difference of two subgraphs is the subgraph determined respectively by the union, intersection or difference of the sets of points in the two subgraphs. If G' is a subgraph of G, we say G' is contained in G and write $G' \subset G$. Two points appearing in the same ordered pair in G are said to

be *neighbors*. For any given pair of points, p and q, a sequence of distinct points $\{p_1, \ldots, p_r\}$, with the property that $p_1 = p$, $p_r = q$, and p_i and p_{i+1} are neighbors for $1 \le i < r$, is called a *path* joining p and q, in which p_1 is the *initial point* and p_{τ} the *terminal point.* A path containing r points will be called an *r-cycle* if its initial and terminal points are neighbors and no point of the path is a neighbor of more than two other points of the path. If the sequence of points of a path P contains a proper subsequence which is also a path, the subsequence is called a subpath contained in P. Two points joined by a path are said to be connected. A graph is connected if it has only one point, or more than one point and each pair of points connected. If every pair of points are neighbors, G is said to be completely connected. A graph which not connected is *disconnected*. The null graph ϕ is disconnected. Unless otherwise specified, the symbol G will denote a connected graph

If G' is a subgraph and G-G' is not connected, G' is said to disconnect G. If G' disconnects G and G-G' contains, and is contained in, a set of connected graphs, the union of any pair of which is not connected, this set is called the partition of G-G'. If G' contains precisely m points, the partition of G-G'consists of at least k+1 connected graphs, and G' contains no proper subgraph which disconnects G, then G' is called an [m, k]-isthmus if it is completely connected and an [m, k]-articulator if it is not completely connected. An [m, 1]-articulator or [m, 1]isthmus will be called an articulator or isthmus respectively when the number of points is not relevant.

For any subgraph G', G(G') will denote the subgraph determined by the set of all points in G-G'which have neighbors in G'. If G' is a single point p, we shall denote this set by G(p). A connected subgraph G' is said to be *k*-dense provided there are at most *k*-1 points in G-G' which are not points of G(G'). A *k*-dense subgraph which contains no *k*dense proper subgraph is D_k -minimal. A *k*-dense

¹ Figures in brackets indicate the literature references at the end of this paper.

proper subgraph of G, which is contained in no other k-dense subgraph except G itself, is called D_k maximal. The symbol Γ_k will denote the union of all the D_k -minimal subgraphs of G.

Let S_k denote the set of all the k-dense subgraphs of G which contain at least k points, together with the null graph. It has been shown in a previous paper [1, theorem 2.2] that the set S_k form a lattice under the relation of set inclusion, in which the l.u.b. of two subgraphs is their union; and the g.l.b. of two subgraphs is their intersection, if it is in S_k , and otherwise is either ϕ or a graph in the partition of the intersection, if the latter is not connected. The lattice formed by the graphs in S_k will be called the *lattice of k-dense subgraphs.* For any finite lattice composed of elements partially ordered by the relation \geq there is a greatest element I such that $I \geq x$ for every element x [2, ch. II]. The Moebius function on the lattice is a relation which associates with every lattice element x a unique integral number M(x), defined by

$$\begin{split} M(I) = & 1 \\ M(x) = -\sum_{y > x} M(y) \end{split}$$

For any lattice element x, M(x) given by this definition is equal to the number given for the same element by the usual definition of the Moebius function [2, ch. I] on the dual lattice obtained by replacing \geq by \leq . On the lattice of subgraphs in S_k for which G is the greatest element and \geq is understood to mean \supseteq , the Moebius function will be denoted by f_k and the number which it associates with a given subgraph G' by $f_k(G')$. A second function, defined on the entire set of non-null subgraphs of Gis the size σ . For any subgraph $G' \neq \phi$, $\sigma(G')$ is the number of points in G'.

2. Completely Connected Graphs and **Graphs** Containing Isthmuses

The Moebius function on the lattice of k-dense subgraphs will be shown to depend on the size of Gand on the way in which the points are connected. First, we shall prove some preliminary combinatorial theorems.

LEMMA 2.1. If G_1 is a subgraph containing a proper 1-dense subgraph G_2 and S is the set of all subgraphs of G_1 which are 1-dense and contain G_2 , then²

$$\sum_{G' \epsilon S} (-)^{\sigma(G')} = 0.$$

It has been proved [3, lemma 2.1] that a subgraph which contains a 1-dense subgraph is 1-dense. Therefore a subgraph in S is formed by taking G_2 alone or the union of G_2 and the subgraph determined by any set of points from G_1 - G_2 . If $\sigma(\hat{G}_1) - \sigma(G_2) = m$,

the number of subgraphs in G_1-G_2 which have k points is $\binom{m}{k}$ and so

$$\sum_{G' \in S} (-)^{\sigma(G')} = (-)^{\sigma(G_2)} \sum_{k=0}^{m} {m \choose k} (-)^k = (-)^{\sigma(G_2)} (1-1)^m = 0.$$

A sequence of subgraphs $\{H_1, \ldots, H_q\}$, for any positive integer q, will be called an *H*-sequence if, and only if, it has the following properties: (1) H_1 is connected; (2) for every $i \ge 1$, $H_i \subset G(H_{i-1})$ $-\sum_{i=1}^{j-2} G(H_i) - H_1$. If $H_1 = G'$, for a given connected subgraph G', the *H*-sequence is said to be based on G'.

LEMMA 2.2. If $\{H_1, \ldots, H_q\}$ is an H-sequence, then:

1. For any $r \ge 1$, $\sum_{i=1}^{r} H_i$ is connected. 2. If $q \ge 1$ and $\sum_{i=1}^{q} H_i$ is 1-dense, then either there exists a non-null subgraph H_{q+1} such that $\{H_1, \ldots, H_q, H_{q+1}\}$ is an H-sequence, or $\sum_{i=1}^{q} H_i$ is 1-dense.

To prove part 1, suppose p_k is a point in H_k for $k \leq r$. Then p_k has a neighbor p_{k-1} in H_{k-1} , and given a point p_i in H_i for $i \le k-1$, p_i has a neighbor p_{i-1} in H_{i-1} . Thus there exists a path $p = \{p_k, \ldots, p_k\}$ p_1 joining p_k in H_k to a point p_1 in H_1 and which contains no other point in H_1 . Similarly, if p' is any point in $\sum_{i=1}^{r} H_i$ distinct from p_k , p' is in some H_a for $a \leq r$, and there exists a path P' joining p' to a point p_1' in H_1 and containing no other point in H_1 . Since H_1 is connected, there is a path P_1 in H_1 joining p_1 and p_1' . If these three paths are all disjoint, i.e., no two have any point in common except for the distinct points p_1 and p_1' , they form, taken together, a path $\{p_k, \ldots, p_1, \ldots, p_1', \ldots, p'\}$ joining p_k and p'. If these paths are not disjoint except for distinct p_1 and p_1' there exists a point p_b in $P \cap H_b$ which is also a point of P'. If b is the greatest integer for which this is the case, then the segments $\{p_k, \ldots, p_b\}$ and $\{p', \ldots, p_b\}$, of Fand p' respectively, when taken together, form a path $\{p_k, \ldots, p'\}$ joining p_k and p'. To prove part 2, suppose that there is no non-null

 H_{q+1} such that $\{H_1, \ldots, H_q, H_{q+1}\}$ is an *H*-sequence. Then every point in $G(H_q)$ has a neighbor in one of the H_i for $1 \le i < q$. Furthermore every point in H_q has a neighbor in H_{q-1} . From part 1, we know that $\sum_{i=1}^{q-1} H_i$ is connected and since it contains a neighbor of every point in H_q and of every point which has a neighbor in $\sum_{i=1}^{q} H_i$, it must also be 1-dense.

LEMMA 2.3. If G'' is a connected subgraph and G'is a 1-dense subgraph containing G'', then there is a unique H-sequence based on G'' such that G' is equal to the union of all the subgraphs in the H-sequence.

Define $H_1 \equiv G''$ and for $i \geq 1$ let $H_i \equiv G' \cap G(H_{i-1})$ $-\sum_{j=1}^{i-2} G(H_j) - H_1$. Suppose that for some r, there are points of G' not in $\sum_{i \leq r} H_i$. At least one of these points, p say, must have a neighbor in some these points, p say, must have a height in term H_j for some $j \leq r$ since otherwise G' would not be connected. If j < r, p must be in H_i for $i \leq r$. This is contrary to hypothesis, and so p is in H_{r+1} . Thus since G' has only a finite number of points, there must be a positive integer q such that $\hat{G}' \subset \sum_{i=1}^{q} H_i$,

² The notation $\Sigma_{A \in B}$ will denote the sum over all subgraphs A belonging to the set B of subgraphs, while $\Sigma_{C \subset A \in B}$ will denote the sum over all subgraphs A which belong to B and which contain the subgraph C, and $\Sigma_{C \supset A \in B}$ the sum over all A in B which are contained in C.

and it follows that $G' = \sum_{i=1}^{q} H_i$, since the H_i contain only points of G'. Furthermore the sequence $\{H_1, \ldots, H_q\}$, by its construction, is an H-sequence. Suppose that there is a second H-sequence $\{H'_1, \ldots, H'_m\}$ based on G'' such that $G' = \sum_{i=1}^{m} H'_i$, $H_i = H_i'$ for i < j and $H_j \neq H'_j$. It then follows that H'_j must be unequal to $G' \cap G(H_{j-1}) - \sum_{i=1}^{j-2} G(H_i) - H_1 \equiv H_j$. We have $H'_j \subset H_j$, and therefore there are points in $H_j - H'_j$ which are in graphs H'_k for k > j. Since these points have neighbors in H'_{j-1} , this result is contrary to the definition of an H-sequence and thus $H_j = H'_j$. Since $H_1 = H'_1 = G''$, it follows by induction that the two H-sequences are identical.

An H-sequence based on a connected subgraph G'' with the property that the union of all its graphs is 1-dense will be called a *D*-minimal *H*-sequence if it contains no proper subsequence which is also an H-sequence based on G'' with this property. By 2. 3, for a given connected subgraph $\tilde{G}^{\prime\prime}$ in \tilde{G} , to every 1-dense subgraph G' containing G'' there corresponds a unique H-sequence based on G'' such that G' is the union of the graphs in the H-sequence. This H-sequence contains a subsequence which is a Dminimal H-sequence based on G'' and which is also unique. We can see this by observing that given two *H*-sequences $\{H_i'\}$ and $\{H_i''\}$ which are sub-sequences of an *H*-sequence $\{H_i\}$, if for some *r*, $H'_j = H''_j = H_j$ for all $j \leq r$ and $H'_{r+1} \neq H''_{r+1}$, then either H'_{r+1} or H''_{r+1} is $\neq H_{r+1}$ and one of these must be equal to H_i for $j \ge r+1$, which is impossible by definition of an *H*-sequence. Thus $\{H'_i\}$ and $\{H'_i\}$ must be identical if they are both *D*-minimal. Accordingly the H-sequences based on G'' and corresponding to 1-dense subgraphs containing G'' may be divided into families such that all the H-sequences in each family contain a particular D-minimal Hsequence based on $G^{\prime\prime}$, and then the H-sequence corresponding to a particular 1-dense subgraph containing G'' will belong to one, and only one, family. Let S be the set of all 1-dense subgraphs for which the corresponding *H*-sequences belong to a particular family; let $\{H_i, \ldots, \hat{H}_q\}$ be the *D*-minimal *H*-sequence contained in every *H*-sequence of the family; and let $G_2 = \sum_{i=1}^{q} H_i$. Then every *H*-sequence in the family may be denoted by $\{H_1, \ldots, H_q, H_{q+1}\}$ where H_{q+1} is the graph determined by any set of points, empty or nonempty, in $G(H_q) - \sum_{i=1}^{q-1} G(H_i) - H_1 \equiv G_1$. There can be no H_k for $k \ge q+1$ in any *H*-sequence of the family, since otherwise H_k would have a neighbor in some H_i for $i \leq q$, which is imhave a heighbor in some H_i for $i \leq q$, which is impossible. By part 2 of 2.2, we know that G_1 is non-null if $q \geq 1$. If q=1, G_1 is non-null if $G''=H_1$ is a proper subgraph. Assume, therefore that $G'' \neq G$, so that $G_1 \neq \phi$. The set S is the set of all 1-dense subgraphs in $G_1 \cup G_2$ which contain G_2 . By 2.1, $\sum_{G' \in S} (-)^{\sigma(G')} = 0$. and this must be true of every family of H-sequences based on G''. Thus if S_a is the get of all 1-dense which contain G''. the set of all 1-dense subgraphs which contain G'', $\sum_{G' \in Sa}(-)^{\sigma(G')} = 0$. This establishes the theorem:

THEOREM 2.4. If G'' is a proper connected subgraph in G and S_a is the set of all 1-dense subgraphs which contain G'', then $\sum_{G' \in S_a} (-)^{\sigma(G')} = 0$. The preliminary theorems and lemmas are now established which will make possible the determination of the value of f_k corresponding to any particular lattice point. Since the Moebius function is uniquely defined, any function must be equal to f_k if it satisfies the equations which define f_k recursively on the lattice of k-dense subgraphs. Consider in particular the function g_k whose domain is the set of subgraphs in S_k , defined by

$$g_k(G') = (-)^{n + \sigma(G')}$$

for $\phi \neq G' \epsilon S_1 \cap S_k$,

$$g_k(G') = 0$$

if G' is in $S_k - \phi$ but not 1-dense, and

$$g_k(\boldsymbol{\phi}) = (-)^{n+1} \sum_{\boldsymbol{\phi} \neq G' \boldsymbol{\epsilon} S_{1 \bigcap} S_k} (-)^{\sigma(G')}.$$

Since every subgraph which contains a 1-dense subgraph is 1-dense and thus k-dense, the set S of all subgraphs in S_k which contain a given 1-dense subgraph G'' in S_k is the set of all subgraphs which contain G''. Thus

$$-\sum_{G'' < G' \in S_k - G''} g_k(G') = (-)^{n+1} \left[\sum_{G' \in S} (-)^{\sigma(G')} - (-)^{\sigma(G'')} \right]$$
$$= (-)^{n+\sigma(G'')} = g_k(G'').$$

which follows by 2.1 if we set $G_1 = G$ and $G_2 = G''$. If $G'' \epsilon S_k - S_1$, the set of all subgraphs which properly contain G'' and for which g_k does not vanish is identical with the set of S of all 1-dense subgraphs containing G''. Since G'' is not 1-dense, $G'' \neq G$, and since G'' is k-dense, it is connected. Therefore, by 2.4,

$$-\sum_{G'' \subset G' \in S_k - G''} g_k(G') = (-)^{n+1} \sum_{G' \in S} (-)^{\sigma(G')} = 0 = g_k(G'').$$

Thus it is established that $g_k(G')$ satisfies the recurrence relations which define f_k for all $G' \neq \phi$ in S_k , and so $g_k(G') = f_k(G')$ for $G' \neq \phi$. It then follows from its definition that $g_k(\phi) = f_k(\phi)$. Accordingly, we have proved

THEOREM 2.5. On any lattice of k-dense subgraphs, $g_k = f_k$.

Since for any non-null G' in S_k , $f_k(G')$ depends only on $\sigma(G')$ and on whether or not $G' \epsilon S_1$, attention will be given to $f_k(\phi)$, and in particular $f_1(\phi)$, for which the value depends on whether G is completely connected, or contains an articulator or isthmus, and on other properties of G.

THEOREM 2.6. If G is completely connected, $f_1(\phi) = (-)^n$.

If G is completely connected, every point is a neighbor of all other points and is therefore 1-dense, as, in fact, is every non-null subgraph. Thus, for every $k \ge 1$, G contains $\binom{n}{k}$ 1-dense subgraphs hav-

ing k points each, so that by 2.5,

$$f_1(\phi) = (-)^{n+1} \sum_{k=1}^n \binom{n}{k} (-)^k = (-)^n,$$

a result which follows from the binomial expansion of $(1-1)^n$.

LEMMA 2.7. If S is a set of subgraphs of G, F_i for $i=1,2,\ldots,n$ the set of all families of subgraphs in S such that each family contains precisely i subgraphs, for any particular family C, B(C) is the union of all the subgraphs in C, and S' is the set of all subgraphs of G which belong to a given set R and which contain one of the subgraphs in S, then

$$\sum_{G' \in \mathcal{S}'} (-)^{\sigma(G')} = -\sum_{i=1}^{n} \sum_{C \in F_i} \sum_{B(C) \in G'' \in R} (-)^{\sigma(G'')+i}.$$
(A)

Consider a particular subgraph $G' \epsilon S'$ and suppose that G' contains precisely q subgraphs from S which form a family F_q . The subgraph G' will occur once in the triple sum in (A) for every subfamily of the family F_q , and since F_q contains $\begin{pmatrix} q \\ k \end{pmatrix}$ subfamilies of precisely k graphs each, the total contribution to the triple sum in (A) of the summands corresponding to G' is

$$-\sum_{k=1}^{q} \binom{q}{k} (-)^{k+\sigma(G')} = (-)^{\sigma(G')}.$$

Since this result holds for every subgraph G' in S', the right and left members of (A) are equal.

THEOREM 2.8. If G contains at least k disjoint subgraphs, each of which disconnects G and at least one of which is an isthmus, $f_k(\phi)=0$.

If G_1, \ldots, G_k are k disjoint subgraphs each of which disconnects G, then every 1-dense subgraph contains at least k points, one from each G_i $(i=1, \ldots, k)$. Otherwise for some $j, (1 \le j \le k),$ $G-G_j$ would be 1-dense and thus connected. Thus $S_1=S_1 \cap S_k$ and $f_k(\phi)=g_k(\phi)=g_1(\phi)$ by 2.5. Suppose one of the G_i, G_1 say, is completely connected, so that every subgraph of G_1 is a connected proper subgraph of G. If S is the set of non-null subgraphs of G_1 and S' the set of 1-dense subgraphs containing a graph from the set S, we have $S'=S_1$, and thus

If C is any subfamily of S and B(C) the union of the graphs in C, B(C) is connected because G_1 is completely connected, and thus by 2.4,

$$\sum_{B(C) \subset G'' \in S_1} (-)^{\sigma(G'')} = 0$$

Since this is true of every family C, we find from 2.7 that $g_1(\phi) = 0$.

Let us now suppose that S denotes the set of minimal subgraphs which belong to $S_1 \cap S_k$, i.e., the subgraphs with this property which have no proper subgraphs belonging to $S_1 \cap S_k$, while R is the set of 1-dense subgraphs. Since every 1-dense subgraph having at least k points contains a minimal subgraph with this property, 2.5 implies if S' is the set of all subgraphs in R which contain one of the subgraphs in S, then

$$f_k(\phi) = (-)^{n+1} \sum_{G' \in S'} (-)^{\sigma(G')} \cdot$$

If C is any family of subgraphs in S and B(C) is the union of the graphs in C, then B(C) is connected, since the union of two 1-dense subgraphs is 1-dense [2, lemma 2.1] and therefore connected. If G is not equal to the union of all the subgraphs in S, B(C) is a proper connected subgraph. Then by 2.4,

$$\sum_{B(C) \subset G'' \in R} (-)^{\sigma(G')} = 0 \cdot$$

Since this holds for every family C, 2.7 implies

$$\sum_{G' \epsilon S'} (-)^{\sigma(G'')} = 0;$$

so that f_k vanishes. Thus we have proved

THEOREM 2.9. If G is not equal to the union of all the minimal subgraphs with the property that they are 1-dense and contain at least k points, then $f_k(\phi)=0$.

From 2.9 is is seen that $f_1(\hat{\phi})=0$ unless \hat{G} is equal to the union of the D_1 -minimal subgraphs. If $G=\Gamma_1$ and that D_1 -minimal subgraphs are mutually disjoint, it has been proved elsewhere [3, theorem 2.6] that G is completely connected, so that, by 2.6, $f_1(\phi)=(-)^n$.

Thus we have proved

THEOREM 2.10. If the D_1 -minimal subgraphs are mutually disjoint, $|f_1(\phi)| \leq 1$.

It has been proved [3, theorem 2.4] that if n > 1, G contains at least two D_1 -maximal subgraphs. Suppose n > 1 and there is a D_1 -minimal subgraph G' which is contained in every D_1 -maximal sugraph, and G'' is D_1 -minimal, $G'' \neq G'$. Then there is a point p in G'-G'', and G''+(G-p) is D_1 -maximal. This impossible, since this D_1 -maximal subgraph does not contain G'. Thus $\Gamma_1 = G'$, and Γ_1 is a proper subgraph, so that by 2.9, $f_1(\phi)=0$. This result is Hall's theorem [4] for the special case of the lattice of 1-dense subgraphs. It may be stated in the form:

THEOREM 2.11. On the lattice of 1-dense subgraphs of G, if $n \ge 1$ and ϕ is not the g.l.b. of any set of D_1 -maximal subgraphs, then $f_1(\phi)=0$.

It has been previously proved [3] that either G is completely connected, in which case $|f_1(\phi)|=1$ by 2.6, or G contains a disconnecting subgraph which in turn must contain an articulator or an isthmus. If G contains an isthmus, $f_1(\phi)=0$ by 2.7, and thus we have proved

THEOREM 2.12. $|f_1(\phi)| \leq 1$ unless G contains an articulator.

3. Graphs Containing Articulators

A simple example of a graph containing an articulator is an *r*-cycle for r > 3. Since each point is connected to only two other points, the two neighbors of any given point in the *r*-cycle constitute a disconnecting subgraph G', which is not connected, each point of which is connected to both graphs in the partition of G-G', and which is therefore a [2, 1]-articulator.

THEOREM 3.1. If G contains an n-cycle, then $f_k(\phi) = -1$ for $k \neq n-1$, and $f_{n-1}(\phi) = n-1$.

If G contains an n-cycle, every point is one of a sequence $\{p_1, \ldots, p_n\}$ such that each point is a neighbor only of those which immediately precede and immediately follow in the sequence, except for p_1 and p_n which are neighbors. We have from 2.5, $f_n(\phi) = (-)^{n+1} \cdot (-)^n = -1$. For any $i, G-p_i$ is 1-dense since $P \equiv \{p_{i+1}, \ldots, p_n, p_1, \ldots, p_{i-1}\}$ is a path connecting p_{i+1} and p_{i-1}, p_{i-1} being taken to mean p_n if i=1, which are neighbors of p_i , and any two other points in $G-p_i$ are joined by a subpath contained in P. Similarly for any $i, G-p_i-p_{i-1}$ is connected since there exists a path $\{p_{i+1}, \ldots, p_{i-2}\}$ containing all the other points. On the other hand, if p_a and p_b are not neighbors and a < b, there exists p_c and p_d such that a < c < b and either d > b or d < a. It is easily shown by induction that any path joining p_c and p_d must contain p_a or p_b , and thus $G-p_a-p_b$ is not connected. Thus for $n \ge 3, S_1-\phi$ consists of G plus n subgraphs $G-p_i-p_{i-1}$, so that by 2.5 $f_1(\phi) = (-)^{n+1} [n(-)^{n-2}+n(-)^{n-1}+(-)^n]=-1$. Also for $n \ge 2$ we have $f_{n-1}(\phi) = (-)^{n+1} [n(-)^{n-1}+(-)^n]=n-1$.

All graphs considered hitherto have been such that $|f_1(\phi)| \leq 1$. Consideration of graphs containing articulators, however, will show that there exist graphs for which $f_1(\phi)$ assumes arbitrarily large positive or negative values. First we must prove

Lemma 3.2 If G contains an articulator G' such that each point in G-G' is a neighbor of every point of G' then

$$f_1(\phi) = (-)^{n+1} [1 + \sum_{G' \ni G'' \in S_1 - \phi} (-)^{\sigma(G'')}].$$

If H is any subgraph containing a point p' in G' and a point p in G-G', then p and p' are neighbors; every point in G' is a neighbor of p; and every point in G-G' is a neighbor of p'. Thus the subgraph p+p' is 1-dense as is H which contains it. If $\sigma(G')=m$, there are $\binom{m}{k}$ subgraphs contained in G' having k points each and $\binom{n-m}{r}$ subgraphs contained in G-G' having r points each which can be combined to give $\binom{m}{k} \cdot \binom{n-m}{r}$ 1-dense subgraphs, each with k points in G' and r points in G-G'. If S'_1 is the set of all graphs in S_1 which have points in both G' and G-G', we have

$$\sum_{H \in S_1'} (-)^{\sigma(H)} = \left[\sum_{k=1}^m \binom{m}{k} (-)^k \right] \left[\sum_{r=1}^{n-m} \binom{n-m}{r} (-)^r \right] = 1.$$

Since there are no 1-dense subgraphs contained in G-G', which would otherwise be connected, every graph in $S_1-S'_1$ is contained in G'. Thus, by 2.5,

$$f_{1}(\phi) = (-)^{n+1} \left[\sum_{H \in S_{1}'} (-)^{\sigma(H)} + \sum_{G' \ni G'' \in S_{l} - \phi} (-)^{\sigma(G'')} \right]$$
$$= (-)^{n+1} \left[1 + \sum_{G' \ni G'' \in S_{l} - \phi} (-)^{\sigma(G'')} \right].$$

THEOREM 3.3. If q is any positive integer, there exist graphs G and G' for which $f_1(\phi) = q$ and $f_1(\phi) = -q$ respectively.

Suppose there exists a graph G_a for which $f_1(\phi) = r$. Consider the graph G_b which has the following properties: G_b consists of an articulator G'_b isomorphic with G_a plus *s* points, p_1, \ldots, p_s at least two of which are not neighbors, and each of which is a neighbor of every point of G'_b . By 3.2, we have for G_b the result that

$$f_1(\phi) = (-)^{\sigma(G_a) + s + 1} \left[1 + g_{b'} = \frac{\sum_{G'' \in S_1 - \phi} (-)^{\sigma(G'')}}{G''} \right]$$

Since any subgraph which is 1-dense in G'_b contains neighbors of p_1, \ldots, p_s and is therefore 1-dense in G_b , it follows that

$$f_1^b(\phi) \equiv (-)^{\sigma(G_a)+1} \sum_{G_b' \supset G'' \in S_1 - \phi} (-)^{\sigma(G'')}$$

is the function $f_1(\phi)$ defined on the lattice of 1dense subgraphs of G'_b . Furthermore, if two graphs are isomorphic, to every 1-dense subgraph of one there corresponds a unique 1-dense subgraph of the other, and thus $f_1(\phi)$ for G'_b is equal to $f_1(\phi)$ for G_a , which we shall denote by $f_1^a(\phi)$. Thus

$$f_1(\phi) = (-)^{\sigma(G_a) + s + 1} + (-)^s f_1^a(\phi).$$

If $\sigma(G_a)$ is even, $f_1(\phi) = (-)^s [r-1]$. In particular we can suppose G_a contains an *n*-cycle, *n* even and >2, so that r=-1 and let *s* be odd, so that $\sigma(G_b)$ is odd and $f_1(\phi)=2$. If *s* were even, then $f_1(\phi)=-2$. However, we have also proved that if there exists G_a such that $\sigma(G_a)$ is odd and $f_1^a(\phi)=r$, then there exists a graph G'_a for which $f_1(\phi)=(-)^s [r+1]$, containing $\sigma(G_a)+s$ points. If *s* is even, $\sigma(G'_a)$ is odd and for G'_a , $f_1(\phi)=r+1$. If *s* is odd, $f_1(\phi)$ for G'_a is -[r+1]. By induction, it follows that for any integer *q* such that q=-1 or $|q|\geq 2$, there exists a graph *G* for which $f_1(\phi)=q$. If *G* is completely connected and n=2, $f_1(\phi)=1$ by 2.6, and thus the theorem is proved for all positive integers *q*. THEOREM 3.4. If p and p' are two distinct points of G, and S is the set of all families of paths joining p and p' such that each family contains n points among them, then the families of S, together with the null family, ϕ_{s} , form a lattice under the relation of set inclusion.

If a family F of paths contains all points of G, any family containing F is also in S, and thus the l.u.b. of two families in S is their union. If the intersection of two families in S is not in S, it cannot contain any family of S. Thus the g.l.b. of two families is either their intersection or ϕ_s . For any pair of distinct points p and p', the lattice formed by the families of paths which join p and p', such that the paths of each family contain all points of G, will be called a *lattice of path sets* associated with G and joining p and p'. For any given lattice formed by a set of S of path sets joining a given pair of points, $\tau(F)$ will denote the number of distinct paths in each lattice element $F \neq \phi_s$, two paths being called "distinct" if they differ in at least one point, and m_s will denote the greatest positive integer with the property that for some F, $m_s = \tau(F)$. The symbol h_s will denote the Moebius function on the lattice formed by path sets from S.

THEOREM 3.5. If S is a set of families of paths, including the null family, which form a lattice of path sets associated with G, then for each $F \epsilon S$,

$$h_{s}(F) = (-)^{m_{s} + \tau(F)}$$

for $F \neq \phi_S$, and if $m_s \ge 1$,

$$h_{S}(\phi_{S}) = (-)^{m_{S}+1} \sum_{\phi_{S} \neq F \in S} (-)^{\tau(F)}.$$

The proof is very similar to that of 2.5 and will be left to the reader.

If G contains a [2, k]-articulator consisting of points p and p', every 1-dense subgraph must contain either p or p' since otherwise G-p-p' would be 1-dense and therefore connected. Accordingly if R is the set of 1-dense subgraphs in G and S' the set of all subgraphs in R which contain p, p', or p+p', we have R=S', and then 2.5 and 2.7 imply that

$$f_{1}(\phi) = (-)^{n+1} \sum_{G' \in S'} (-)^{\sigma(G')} = (-)^{n+1} \times \left[\sum_{p \in G'' \in R} (-)^{\sigma(G'')} + \sum_{p' \supset G'' \in R} (-)^{\sigma(G'')} - \sum_{p+p' \in G'' \in R} (-)^{\sigma(G'')} \right].$$

The first two terms in the brackets vanish by 2.4 since p and p' are each connected proper subgraphs. Every 1-dense subgraph containing both pand p' must contain a path from the set S of all paths joining these two points, and so again employing 2.7, we find that

$$f_1(\boldsymbol{\phi}) = (-)^{n+1} \sum_{i=1}^n \sum_{C \in F_i} \sum_{B(C) \subset G'' \in R} (-)^{\sigma(G'')+i},$$

where F_i is the set of all *i*-ples of distinct paths from S, and C, B(C), are defined as in the

hypothesis of 2.7. For each family C, B(C) is connected since the union of two connected subgraphs having a point in common is connected. Accordingly, by 2.4, $\sum_{B(C) \in G'' \in R} (-)^{\sigma(G'')} = 0$ unless B(C) = G, i.e., unless C is an element of the lattice of path sets joining p and p', in which case $\sum_{B(C) \in G'' \in R} (-)^{\sigma(G'')+i} = (-)^{n+\tau(C)}$. If S'' is the set of lattice elements, then $f_1(\phi) = -\sum_{\phi_{S''} \neq F \in S''} (-)^{\tau(F)}$, provided $\phi_{S''}$ is not the only element in S'', and $f_1(\phi) = 0$ otherwise. This result implies

THEOREM 3.6. If G contains a [2, k]-articulator and S is the set of elements forming the lattice of path sets associated with G and joining the points of the articulator, then $f_1(\phi) = (-)^{m_s} h_S(\phi_S)$ if S contains a nonempty set of paths, and $f_1(\phi) = 0$ otherwise.

Theorem 3.6 can be used to show that if G contains a [2,k]-articulator consisting of points p and p'and $f_1(\phi) \neq 0$, then $f_1(\phi)$ can be written as a product of factors, one factor for each connected graph in the partition of G-G'. Any path connecting p and p' cannot contain points from more than one graph in the partition of G-G', and so any set of paths forming one of the set S of elements of the lattice of path sets joining p and p' must contain a subset contained in $G_i + p + p'$ and containing all the points of G_i , for each connected graph G_i $(i=1, \ldots, w \geq$ k+1) in the partition of G-G'. Thus if S_i (i=1, $\ldots, w)$ denotes the elements of the lattice of path sets associated with $G_i + p + p'$ and joining p and p', we have by 3.5,

$$h_{S}(\phi_{S}) = (-)^{m_{S}+1} \prod_{i=1}^{w} \left(\sum_{\phi_{S_{i}} \neq G'' \epsilon S_{i}} (-)^{\tau(G'')} \right) = (-)^{m_{S}+1} \prod_{i=1}^{w} \{(-)^{m_{S_{i}}+1} h_{S_{i}}(\phi_{S_{i}}) \}.$$

Since $m_s = \sum_i m_{s_i}$, we have established

THEOREM 3.7. If G contains a [2, k]-articulator G', G_i for $i=1, \ldots, k+1$ are the connected graphs in the partition of G-G', and for each G_i, S_i is the set of elements which form the lattice of path sets associated with G_i \cup G' and joining the points of the articulator, then f₁(ϕ) \neq 0 implies

$$f_1(\phi) = (-)^{m_s + k} \prod_{i=1}^{k+1} h_{S_i}(\phi_{S_i}) \cdot$$

4. Associated Graphs

Given a graph G and a subgraph G' which is not properly contained in a completely connected subgraph, the set of graphs associated with G and G' is defined to be set of all graphs G'' which have the following properties: (1) A one-one correspondence exists between the points of G and those of G'' such

that neighbors in G are mapped into neighbors in G''; (2) G'' contains a maximal completely connected subgraph, which will be called K[G''], with the property that K[G''] contains the points in G'' which correspond to G' in G; (3) any pair of neighbors in G''such that both are not in K[G''], is mapped into a pair of neighbors in G. If G_1 and G_2 are any two graphs in the set associated with G and G', we shall say $G_1 \geq G_2$ whenever the points in G corresponding to $K[G_2]$ are a subset of the points corresponding to $K[G_1]$, and $G_1 > G_2$ whenever $G_1 \ge G_2$ but $G_1 \ne G_2$.

THEOREM 4.1. Given G and a subgraph G', the set of graphs associated with G and G', if nonempty, form a lattice under the relation \geq .

The proof will be left to the reader. We shall denote by h(G''; G, G') the Moebius function evaluated for any G'' in the lattice of graphs associated with G and G', while $f_1(\phi; G'')$ will denote the Moebius function evaluated for ϕ on the lattice of subgraphs 1-dense in G''. The function h_1 whose domain is the set of graphs associated with G and G' is defined by $h_1(G''; G, G') \equiv (-)^{\sigma(K[G''])+n}$, where $G^{\prime\prime}$ is any graph of the set.

THEOREM 4.2. On the lattice formed by the set of graphs associated with G and G', $h_1 = h$.

If G_m is the greatest element of the lattice $K[G_m]$ $=G_m$ and $\sigma(K[G_m])=n$, so that $h_1(G_m; G, G')=1$. If $G'' < G_m$ and $w \equiv \sigma(K[G_m]) - \sigma(K[G''])$ there are $\binom{w}{k}$ graphs H which satisfy the condition that G'' < H $\leq \tilde{G}_m$ and $\sigma(K[H]) - \sigma(H[G'']) = k$. Therefore

$$\sum_{H>G''} h_1(H;G,G') = (-)^{\sigma(K[G''])+n+1} \\ \times \sum_{k=1}^w \binom{w}{k} (-)^k = (-)^{\sigma(K[G''])+n} = h_1(G'';G,G').$$

Since h_1 satisfies the recurrence relations which uniquely determine h, the theorem follows.

Let R[G''] be the set of subgraphs 1-dense in G''and Q[G''] the set of all subgraphs in R[G''] which contain at least one point from K[G'']. LEMMA 4.3. If G'' is any graph in the set associated

with G and G' such that $K[G''] \neq G''$, then

$$f_{1}(\phi; G'') = (-)^{\sigma(G'')+1} \sum_{H \in R[G''] - Q[G'']} (-)^{\sigma(H)}.$$

by 2.5,
$$f_{1}(\phi; G'') = (-)^{\sigma(G'')+1} \left[\sum_{H \in O[G'']} (-)^{\sigma(H)} \right]$$

b

$$+ \sum_{H \in R[G''] - Q[G'']} (-)^{\sigma(H)}$$

By 2.7, the first sum in the bracket can be expressed as a sum over families of subsets of K[G'']. If C is such a family and B(C) the union of the graphs in the family, B(C) is a connected proper subgraph because K[G''] is completely connected and $\neq G''$, and thus

$$\sum_{B(C) \supset H \in K[G'']} (-)^{\sigma(H)} = 0$$

by 2.4. Since this is true for every family C of subgraphs of K[G''], we have

$$\sum_{H \in Q[G'']} (-)^{\sigma(H)} = 0.$$

THEOREM 4.4. If G'' is a graph belonging to the set associated with G and G', then

1) If
$$G'' - K[G'']$$
 is 1-dense in G'' ,

$$\sum_{H \ge G''} h(H; G, G') f_1(\phi; H) = 0.$$
2) If $G'' - K[G'']$ is not 1-dense in G'' ,

$$\sum_{H \ge G''} h(H; G, G') f_1(\phi; H) = (-)^{\sigma(G'')}.$$

By 4.2 and 4.3, we have for $G'' \neq K[G'']$

$$-\sum_{H>G''} h(H; G, G'') f_1(\phi, H) = \sum_{H>G''} \sum_{\substack{H' \in R[H] - Q[H] \\ (-)^{\sigma(K[H]) + \sigma(H')} + (-)^{n+1}. \quad (B)}$$

If H' is any subgraph of G'' which is one of the set S associated with G and G', H' corresponds to a unique subgraph $H'_1 \subset G$. In turn H'_1 corresponds to a unique subgraph H'' in any other graph of S, and these two correspondences determine a correspondence between H' and H''. If H > G'', every subgraph of H-K[H] corresponds to a sub-graph in G''-K[G'']. If G''-K[G''] is not 1-dense, it contains no 1-dense subgraph, and so there can be no corresponding 1-dense subgraph in H - K[H] and R[H] - Q[H] is empty for $H \ge G''$. Therefore, if $G'' \ne K[G'']$, $-h(G''; G, G') f_1(\phi; G'')$ can be added to both members of (B), and then the double sum vanishes, proving part 2 for this case. If $G'' = K[G''], f_1(\phi; G'') = (-)^n$ and part 2 is obvious. Suppose G'' - K[G''] is 1-dense, and $H' \epsilon R[G''] - Q[G'']$. If $w \equiv \sigma(G'' - H' - K[G''])$ and $k = 1, \ldots,$ w, there are $\binom{w}{k}$ graphs H > G'' with the property that K[H] = K[G''] + k and H - K[H] contains a subgraph which corresponds to H'. The contribu-

$$\sum_{k=1}^{w} \binom{w}{k} (-)^{\sigma(K[G^{\prime\prime})+k+\sigma(H^{\prime})} = (-)^{\sigma(K[G^{\prime\prime}])+1+\sigma(H^{\prime})}.$$

tion to the double sum in (B) of all the graphs which

correspond to a particular $H' \epsilon R[G''] - Q[G'']$ is

(B) contains a similar contribution for every $H' \epsilon R[G''] - Q[G'']$ except G'' - K[G'']. Thus

$$-\sum_{H>G''} h(H; G, G') f_1(\phi; H) = h(G''; G, G') f_1(\phi; G'') - (-)^{\sigma(K[G'']) + 1 + \sigma(G'' - K[G''])} + (-)^{n+1}.$$

Since $\sigma(G'') = \sigma(G) = n$, part 1 follows.

5. References

- [1] R. E. Nettleton, Some generalized theorems on connectiv-ity (to be published).
- [2] G. Birkhoff, Lattice theory, Am. Math. Soc. Colloq. Pub. 25 (1948). [3] R. E. Nettleton, K. Goldberg, and M. S. Green, Dense
- subgraphs and connectivity, Can. J. Math 11, 262 (1959)
- [4] P. Hall, Quar. J. 7, 134 (1936).

 $(Paper \ 64B1-19)$