JOURNAL OF RESEARCH of the National Bureau of Standards—B. Mathematics and Mathematical Physics
Vol. 64B, No. 1, January-March 1960

Moebius Function on the Lattice of Dense Subgraphs

R. E. Nettleton and M. S. Green

(August 3, 1959)

The Moebius function f; on the lattice of k-dense subgraphs of a connected graph,

defined in a previous paper,

is calculated for graphs ¢ containing isthmuses and articulators.

f1 evaluated for the null graph ¢ is shown to vanish if ¢ contains an isthmus, while for any

integer ¢ there exist graphs containing articulators for which fi(¢)=g¢.
sets’” joining a pair of points and the lattice of graphs *
and the Moebius functions on these lattices are shown in certain cases to be

are defined
related to fi.

The concepts “‘k-dense subgraph,” “isthmus,”” and
“articulator” were defined in a previous paper [1]
where it was shown that the k-dense subgraphs of
a given connected graph @, together with the null
graph ¢, form a lattice. The Moebius function f, on
this lattice will be defined in the present paper, and
J1:(¢) and, in particular, fi(¢) will be evaluated for
various tvpos of graphs. It is found that f,(¢)=0
if ¢ contains an isthmus, and |f,(¢)| <1 unless @
contains an articulator. However, for every in-
teger ¢, there exists a graph containing an articulator
for which fil¢)=q. A second lattice is formed by
the sets of paths joining a given pair of points and
containing among them all the points of &, and when
(¢ contains an articulator in which there are just
two points, f,(¢) can be expressed in terms of the
Moebius function defined on the second lattice.
The graphs “associated with a graph G and a sub-
eraph G777 are defined and shown to form a lattice.
A relation is found between the Moebius function
on this lattice and the functions fi(¢) defined for
the individual lattice elements.

1. Definitions

A linear, undirected graph G is a set of elements,
called points, together with a set of ordered pairs
of these elements which define a symmetric non-
reflexive, binary relation. For any given graph @,
the number of points will be assumed finite and unless
otherwise specified this number will be denoted by
the symbol n. A subset of the set of points in
together with all the ordered pairs which contain
only points in the subset, is called a subgraph. The
union, intersection, or difference of two subgraphs is
the subgraph determined respectively by the union,
intersection or difference of the sets of points in the
two subgraphs. If G’ is a subgraph of @, we say
@ is contained in G and write G’ =G. Two points
appearing in the same ordered pair in G are said to

1 Figures in brackets indicate the literature references at the end of this paper.

The “lattice of path
‘associated with (¢ and a subgraph G’

be neighbors.  For any given ])(111 of points, r and ¢,
a sequence of distinet points {p, »:}, with
the property that p,=p, p,=q, (uul 23 (m(l Piy1 are
neighbors for 1 <7< r, is called a path joining p dll(l q,
in which pi is the inatial point and p, the terminal
point. A path containing » points will be called an
r-cyele if its initial and terminal points are neighbors
and no point of the path is a neighbor of more than
two other points of the path. If the sequence of
points of a path /7 contains a proper subsequence
which is also a path, the subsequence is called a
subpath contained in 2. Two points joined by a
path are said to be connected. A graph is connected
if it has only one point, or more than one point and
each pair of points connected. If every pair of points
are neighbors, ¢ is said to be completely connected.
A graph which not connected is disconnected. The

null graph ¢ is disconnected. Unless otherwise
specified, the symbol G will denote a connected

graph.

If G is a subgraph and G—G” is not connected, ¢
is said to disconnect G. 1f G’ disconnects G and
G—@’ contains, and is contained in, a set of connected
graphs, the union of any pair of which is not con-
nected, this set is called the partition of G-G". 1f G’
contains precisely m points, the partition of G-G’
consists of at least k-1 connected graphs, and G’
contains no proper subgraph which disconnects @,
then G is called an [m, k]-isthmus if it 1s completely
connected and an [m, Al—alli( wulator if it is not com-
pletely connected. An [m, 1]-articulator or [m, 1]-
isthmus will be called an articulator or isthmus
respectively when the number of points is not
relevant.

For any subgraph 67, G(G7) will denote the sub-
graph determined by the set of all points in G—G’
which have neighbors in ¢’. If ¢’ is a single point
p, we shall denote this set by G(p). A connected
subgraph G is said to be k-dense provided there are
at most £-1 points in G—G” which are not points of
G(G’). A k-dense subgraph which contains no k-
dense proper subgraph is D-minimal. A k-dense



proper subgraph of &, which is contained in no other
k-dense subgraph except G itself, is called 1),-
mazximal. The symbol T';, will denote the union of
all the Dy-minimal subgraphs of G.

Let S, denote the set of all the k-dense subgraphs
of @ which contain at least k& points, together with
the null graph. It has been shown in a previous
paper [1, theorem 2.2] that the set S, form a lattice
under the relation of set inclusion, in which the Lu.b.
of two subgraphs is their union; and the g.1.b. of two
subgraphs is their intersection, if it is in S, and
otherwise is either ¢ or a graph in the partition of
the intersection, if the latter is not connected. The
lattice formed by the graphs in S; will be called the
lattice of k-dense subgraphs. For any finite lattice
composed of elements partially ordered by the rela-
tion = there is a greatest element / such that /=
for every element z [2, ch. II]. The Moebius func-
tion on the lattice is a relation which associates with
every lattice element z a unique integral number
M(xz), defined by

M=

M(r)=—2 M(y)

>

For any lattice element z, M(x) given by this
definition is equal to the number given for the same
element by the usual definition of the Moebius funec-
tion (2, ch. T] on the dual lattice obtained by replac-
mg = by <. On the lattice of subgraphs in S; for
which G'is the greatest element and = is understood
to mean 2, the Moebius function will be denoted
by f. and the number which it associates with a
given subgraph G” by f. (G’). A second function,
defined on the entire set of non-null subgraphs of ¢
is the size o.  For any subgraph G/ #¢, ¢(G") is the
number of points in G”.

2. Completely Connected Graphs and
Graphs Containing Isthmuses

The Moebius function on the lattice of A-dense
subgraphs will be shown to depend on the size of @
and on the way in which the points are connected.
First, we shall prove some preliminary combinatorial
theorems.

Levmva 2.1, If Gy is a subgraph containing a proper
I-dense subgraph Gy and S s the set of all subgraphs
of G, which are 1-dense and contain Gy, then?

S (—)e¢=0

G'eS

It has been proved [3, lemma 2.1] that a subgraph
which contains a 1-dense subgraph is I1-dense.
Therefore a subgraph in S is formed by taking @,
alone or the union of @, and the subgraph determined
by any set of points from G—G,. If o(G)) —o(Gy) =m,

2 The notation Z4.p will denote the sum over all subgraphs A bhelonging to
the set B of subgraphs, while Zcc4.z will denote the sum over all subgraphs
A which belong to B and which contain the subgraph C, and X ¢> 4.5 the sum
over all A in B which are contained in C.
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the number of subgraphs in G\—G, which have &
points is (1;;) and so

wo,)z( )

A sequence of subgraphs {Hy, . . ., H,}, for any
positive integer ¢, will be called an H-sequence if,
and only if, it has the following pr Opmtles (1) H, is
connected; (2) for every >1, H,cG(H, )

Z_G(Hl) H,. 1f H=@&, for a given con-

22—

G'eS

)u(G’

—(=) P (1—1)"=0.

nected subgraph ', the II—\(’QUPH(‘(‘ 1s said to be
based on G'.

Lemma 2.2, If (H,, . . ., H,} s an H-sequence,
then:

1. For any r>1, > i_\H; 7s connected.

2. If q>1 and > H,; 1s 1-dense, then either
there exists a non-null subgraph H,., such that
{f,, ..., H, H,.} is an H-sequence, or > %}
is 1-dense.

To prove part 1, suppose p; is a point in H, for
k<r. Then p, has a neighbor p, , in H, , and
given a point p; in H; for :<k—1, p, has a neighbor
Pi_ 1ln Hl 1. Thus tholc exists a patll p—{p;, o
p1} joining p, in H, to a point p, in /1, and \\111( h
contains no other point i F/,. Similarly, if p’ 1
any point in > ;- F; distinet from p;, p’is in some
H, for a<7 and there exists a path P’ joming p’ to
a point p," in H; and containing no other point in
H1 Since [, 1s (onne(ted there is a path 7, in H,
joining p; and p,". If these three paths are all dis-
joint, 1.e., no two have any point in common except
for the distinet points pi and p,’, they form, td]\(‘ll
together, a path {px, - - ., D1, o, , '}
joining p, and p’. If these paths are not dl%Jomt
except for distinct »p; and p,” there exists a point p,
in PNH, which 1s also a point of /. If b is the
greatest integer for which this is the case, then the
segments {pg, . . ., p,} and {p’, ., Do}, of I
and p’ respectively, when taken together, form a
path {p,, . . ., p’} joining p, and p’.

To prove part 2, suppose that there is no non-null
H . such that {H,, ,H,, H .} is an H-sequence.
Then every point in G(H,) has a neighbor in one of
the H; for 1<i<q. Furthermore every point in 7,
has a neighbor in /7, ;. From part 1, we know that
>4%Z1H 18 connected and since it contains a neighbor
of every point in /7, and of every point which has a
neighbor in 37/, it must also be 1-dense.

Lemma 2.3, If G" is a connected subgraph and G’
is @ 1-dense subgraph containing G'’, then there is a
unique H-sequence based on G'" such that G’ is equal to
the union of all the subgraphs in the H-sequence.

Define H,=G"" and for i>1 let H,;=G'"NG(H_,)
—235=1G(H ;) —H,. Suppose that for some r, there
are points of G not in 2>5i< ;. At least one of
these points, p say, must have a neighbor in some
H; for some j<r since otherwise G’ would not be
connected. If j<r, p must be in H,; for <r. This
is contrary to hypothesis, and so p is in H,,,. Thus
since G’ has only a finite number of points, there
must be a positive integer ¢ such that ¢/ <> 7/,



and it follows that G'= > % H;, since the I, contain
only points of ¢’. Furthermore the sequence
{H,, H ,}, by its construction, is an /{-sequence.
Suppose that there 1s a second Il—s(\qll(n(o
{Hi,. . ., H,} based on G’ such that G’=> " H/,
= for i< g and H;#Hj. 1t then follows that
H’, must be un(\qual to G'NGH,;_,)—>i23G
(IL)—HI =H,;, We have H)cH; and therefore
there are })O]Iltb in H,—H; which are in graphs I
for k>>7. Since these pomt% have neighbors in 11],1,
this result is contrary to the definition of an //-se-
quence and thus H,=Hj. Since Hi=H=G", it
follows by induction that the two /-sequences are
identical.
An H-sequence based on a connected subgraph
7" with the property that the union of all its graphs
1s 1-dense will be called a D-minimal H-sequence if it
contains no proper subsequence which 1s also an
H-sequence based on G7" with this property. By 2
3, for a given connected subgraph ¢"” in @, to every
1-dense %ubgmph G’ containing "’ there ¢ onvspon(ls
a unique {-sequence based on G”” such that G i
the union of the graphs in the H-sequence. J]ns
H-sequence contains a subsequence which is a [)-
minimal //-sequence based on G’ and which is also
unique. We can see this by observing that given
two H-sequences {f1,/} and {I/’} which are sub-
sequences of an FH-sequence {I;}, if for some 7,
H;=Hj/=H; for all j<r and H,,,#H,};, then
vlthu H,H or I} is #I1,,; and one of these must
be equal to H; for j>r+1, which is impossible by
definition of an H-sequence, Thus {/;} and {/1;"}
must be identical if they are both D-minimal. Ac-
cordingly the F/-sequences based on ¢’ and corre-
sponding to I-dense subgraphs containing ¢’/ may
be divided into families such that all the /1-sequences
in each family contain a particular D-minimal 77-
sequence based on G’, and then the /{-sequence
corresponding to a particular 1-dense qul)um])h con-
taining ¢ will belong to one, and only one, family.
Let S be the set of all 1-dense subgraphs for which
the corresponding H-sequences belong to a particular
family ; let {I1, , H,} be the D-minimal /-se-
quence contained in every F/-sequence of the family;
and let G,=2?_,H,;. Then every H-sequence in the
family may be denoted by {/), . Hy Hpyl
where I, is the graph determined by any set of
points, empty or nonempty, in G(H,)— ?ff(?(l[)
H,=(G,. There can be no H, for k >(/-{-1 in any
H-sequence of the family, since otherwise /7, would
have a neighbor in some H; for 1<g¢, which is im-
possible. By part 2 of 2.2, we know that Gl 18 non-
null if ¢>1. If ¢=1, G, i is non-null if G@""=1H, is a
proper subgraph. Assumo, therefore that G"/#@,
so that Gy##¢. The set S is the set of all 1-dense
subgraphs in G'U6G, which contain G,. By 2.1,
2 ares(—)?9=0. and this must be true of every
family of H-sequences based on G’7. Thus if S, is
the set of all 1-dense subgraphs which contain G’7,
S eresa(—)7¢"=0. This establishes the theorem:
Tuarorem 2.4. If G"" is a proper connected sub-
graph in G and S, 1s the set of all 1-dense subgraphs
which contain G'', then Z,,,%(_)owwwg_

The preliminary theorems and lemmas are now
established which will make possible the determina-
tion of the value of f, corresponding to any particular
lattice point. Since the Moebius function is uniquely
defined, any function must be equal to f; if it satisfies
the equations which define f, recursively on the
lattice of k-dense subgraphs. Consider in particular
the function g, whose domain is the set of subgraphs
in S, defined by

7170((:’

(// ) (
f()l' d) #= G’ ﬂql ﬂkgk.
g:(G") =0

if 7 is in S;—¢ but not 1-dense, and

(@)= (=) (=) .

¢7#~ G eSiNSk

Since every subgraph which contains a 1-dense sub-
graph is 1-dense and thus A-dense, the set S of all
subgraphs in S, which contain a given I1-dense sub-
graph 6’77 in S, is the set of all subgraphs which
contain G’’. Thus

= 2 (@)= ()" Z‘(,)d,g,_HW]
G'eS

@'<@e8—Q"

which follows by 2.1 if we set G,=G and (=
If G"’eS,— Sy, the set of all subgraphs which prope lly
contain ’” and for which ¢, does not vanish is iden-
tical with the set of S of all 1-dense subgraphs con-
taining G/, /’’ 1s not 1-dense, G’ # (@, and

Since @
since G’ is k-dense, it is connected. Therefore, by

)nte(@!) —

ge(@").

vl/

2.4,
@)= (== (@),
G’ =G'eSk—Q" Q'eS

Thus it is established that ¢,(G’) satisfies the re-
currence relations which define f, for all G"#¢ in
S;, and so g, (") =f.(G") for G’ #¢. It then follows
from its definition that ¢, (¢)=7f.(¢). Accordingly,
we have proved

THEOREM 2.5. On any lattice of k-dense subgraphs,
gk:fk-

Since for any non-null ¢ in S,, fi(G") depends
only on o(G”) and on whether or not G’eS;, attention
will be given to f.(¢), and in particular fi(¢), for
which the value depends on whether G is completely
connected, or contains an articulator or isthmus
and on other properties of @.

If G s

b

TaHEOREM 2.6. completely connected,

Sl

If G is (ompl(tol\ connected, every point is a
neighbor of all other points and i is tlmotoro 1-dense,
as, in fact, is every non-null subgraph. Thus, for

every k>1, G contains (2) 1-dense subgraphs hav-
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g k points each, so that by 2.5

f@=rr 5 (3) Cr=

a result which follows from the binomial expansion
of 1—1)

Lemma 2.7, If S is a set of subgraphs of G, IF; for
=il ., n the set of all famalies of subgraphs
in S such that each family contains precisely i sub-
graphs, for any particular family C, B(C) is the union
of all the subgraphs in O, and S’ is the set of all sub-
graphs of G which belong to a given set R and which
contain one of the subgraphs in S, then

JrEI=—>2 >

i=1 CeF; B(C)=@"eR

> (—

_)-r(G”)+i
G'eS’

(4)

Consider a particular subgraph G’eS” and suppose
that ¢’ contains precisely ¢ subgraphs from § which
form a family /#,. The subgraph G’ will occur
once in the triple sum in (A) for every subfamily
q
k> sub
families of precisely & graphs each, the total contri-
bution to the t]lple sum in (A) of the summands
corresponding to G is

of the family #,, and since /', contains

_é (q) (—)rHo(@) — (_)a(@n,
=1 \k
Since this result holds for every subgraph G’ in
S”, the right and left members of (A) are equal.

Taevorem 2.8. If G contains at least k disjoint
subgraphs, each of which disconnects G and at least
one of which vs an isthmus, f(¢)=0.

If G, . , G are k disjoint subgraphs each of
which disconnects @, then every 1-dense subgraph
contains at least k& points, one from each G,

=1, . - , k). Otherwise for some 7, (1 <j<k),
G—@; would be 1-dense and thus connected. Thus
bl‘Sl N S and fe(d)=yr(d)= ¢1(¢) by 2.5. Suppose

one of the G, G, say, is (omplotolv conne(tod S0
that every subgraph of @, is a connected proper
subgraph of G. 1If § is the set of non-null sub-
graphs of G, and S’ the set of 1-dense subgraphs
containing a graph from the set S, we have S’=S§|,
and thus

U(G'

91(¢)=(— )"“Z

If C'is any subfamily of S and B(C) the union of the
eraphs in €, B(C) 1s connected because @) is com-
pletely connected, and thus by 2.4,

¥>0(G”)
B(C)=@"eS:

Y

Since this 1s true of every family ', we find from 2.7
that g;(¢)=0.
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Let us now suppose that S denotes the set of
minimal subgraphs which belong to S, N S,
i.e., the subgraphs with this property which have
no proper subgraphs belonging to S, N S;, while
R is the set of 1-dense subgraphs. Since every
1-dense subgraph having at least & points contains
a minimal subgraph with this property, 2.5 implies
if S” is the set of all subgraphs in I which contain
one of the subgraphs in S, then

Ji()=(— )"“Z

0(0/

If C'1s any family of subgraphs in S and B(C) is the
union of the graphs in , then B(() is connected,
since the union of two 1-dense subgraphs is 1- donse
[2, lemma 2.1] and therefore connected. If @ is
not equal to the union of all the subgraphs in S,
B(C) is a proper connected subgraph. Then by 2.4,

— )o@ —0.

B(C)=G <R

Since this holds for every family C,

D

TS

.7 mmplies

—(07

)V(G”)

so that f; vanishes. Thus we have proved
Turorem 2.9. If G is not equal to the union of all
the minimal subgraphs with the property that they are
1-dense and contain at least k points, then fi.(¢)=0.
From 2.9 is is seen that f,(¢)=0 unless G is equal
to the union of the Z2,-minimal subgraphs. If
G=T, and that ;-minimal subgraphs are mutually
disjoint, it has been proved elsewhere [3, theorem 2.6]
that G is completely connected, so that, by 2.6,

,f1(¢):(“>"‘

Thus we have proved

Tuarorem 2.10. If the D-minimal subgraphs are
mutually disjoint, | fi(¢)| <1.

It has been proved [3, theorem 2.4] that if n >1, G
contains at least two D;-maximal subgraphs. Sup-
pose n>1 and there is a [;-minimal subgraph G’
which is contained in every 7);-maximal sugraph, and
G’ is Di-minimal, G #G’. Then there 1s a point
p in G—G7, and @7+ (G—p) is Dy-maximal.
This impossible, since this D;-maximal subgraph
does not contain ¢’. Thus I'=@G’, and T'; is a
proper subgraph, so that by 2.9, fi(¢)=0. This
result is Hall’s theorem [4] for the Special case of the
lattice of 1-dense subgraphs. It may be stated in
the form:

TaeOREM 2.11. On the lattice of 1-dense sub-
graphs of G, if n>1 and ¢ s not the g.1.b. of any set
of Di- mazimal subgraphs, then f,(¢)=0.

It has been previously proved [3] that either @ is
completely connected, m which case |fi(¢)|=1 by
2.6, or G contains a (11sconne(t1n0 subgraph which
in turn must contain an articulator or an isthmus.
If @ contains an isthmus, f,(¢) =0 by 2.7, and thus
we have proved

TaEOREM 2.12.
articulator.

[fi(¢)| <1 unless G contains an



3. Graphs Containing Articulators

A simple example of a graph containing an ar-
ticulator is an r-cycle for »>3. Since each point is
connected to only two other points, the two neighbors
of any given point in the r-cycle constitute a dis-
connecting subgraph ¢’, which is not connected,
each point of which is connected to both graphs
i the partition of G-G’, and which is therefore a
[2, 1]-articulator.

Tueorem 3.1. If G contains an n-cycle,
fi(p)=—1 Jor k#n—1, and f, ,(¢)=n—1.

If G contains an n- cvcle every point is one of a
sequence {py, . . ., Pa) such that each point is a
nmghbm only of those which immediately precede
and immediately follow in the sequence, except for
p1 and p, which are neighbors.  We have from 2.5,
Ju(@)=()""(-)"=—1. For any 7, G-p, is 1- dense
since P={p,, .y Puy D1, - - - Pi1} 18 a path
connecting p;; and p,; 4, p,; being taken to mean p,,
if i=1, which are neighbors of p,, “and any two other
points in G— piare Jomod by a subpath contained in
L. Similarly forany 7, G—p,—p,_, is connected since
there exists a path {p;., . . ., pi»} containing all
the other points. On the other hand, if p, and p,
are not neighbors and a<b, there exists Pe and pg,
such that a<c<b and either d>b or d<a. It is
easily shown by induction that any path joining
. and p, must contain p, or p,, and thus G—p,—p, is
not connected. Thus for n>3, S;—¢ consists of
plus n subgraphs G—p, (i=1, ., n), and n sub-

then

graphs G—p;—p,_;, so that by 2.5 fi(¢)=
(=)"t! [n(—=)"*+n(—)"*+(—)*=—1. Also for
n=>2 we haye f,—1(¢)=(—)""[n(— )74 (—)"|=n-1.

All graphs considered hitherto have been such
that | fi(¢)| <1. Consideration of graphs containing
articulators, however, will show that there exist
graphs for which f(¢) assumes arbitrarily large
positive or negative values. First we must prove

Lemva 3.2 If G contains an articulator G such
that each point in G— G’ is a neighbor of every point
of G’ then

Ji®)=(—)"1[1+ (—

G@>G"eSi—o

)n((}”)J.

It H is any subgraph containing a point p’ in G’
and a point p in G—G’, then p and p” are neighbors;
every point in G’ is a neighbor of p; and every

int in G—G" i ighbor of p’. Tk he sul
point in is a neighbor of p’. ws the sub-
graph p+p’ is 1-dense as is /{ which contains it.

If ¢(G")=m, there are (?) subgmphs contained in

G’ having k& points each and ( subgmph% con-

tained in G— G’ having 7 points (‘(l(h which can be
: . m\ [n—m
combined to give <Ic >< , > 1-dense subgraphs,

each with £ points in @’ and » points in —G’". 1t
S1is the set of all graphs in S; which have points in
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both G’

Hm _youn_ I:Z())z) ]l:" '" 1—‘m ):I

Since there are no I-dense subgraphs contained in

and G—G’, we have

G— @, which would otherwise be connected, every
graph in S;—S87 is contained in G’. Thus, by 2.5,

F@O=m S (et 35 ()]
G'>G"eS1—¢

HeS;
:(_)n#'l [1+ (_)u((,’r/)].
@=>07Si—¢
TuroreM 3.3. If ¢ is any positive integer, there
/ [ ger,

exist graphs G and G for which f,(¢)
respectively.

Suppose there exists a graph G, for which f,(¢)=r.
Consider the graph ¢, which has the following
properties: (G, consists of an articulator G iso-
morphic with G, plus s points, p,, ., ps at least
two of which are not neighbors, and each of which
is a neighbor of every point of ¢;. By 3.2, we have
for @, the result that

—qand f,(¢) =—q

fi(g)=(—)Gtst1 [1 + 6y Z_¢ <—)”“”’)]~

Since any subgraph which is 1-dense in (7}, contains
neighbors of py, . . ., p, and is therefore 1-dense
m (,, it follows that

U((v )+1 (7)17(/(1”,)

Gr'>G"eS1—9¢

fi(e)=(—

is the function fi(¢) defined on the lattice of 1-
dense subgraphs of @;,. Furthermore, if two graphs
are isomorphic, to every l-dense subgraph of one
there (mu-sp(m(ls a unique 1-dense subgraph of the
other, and thus fi(¢) for G} is equal to fi(¢) for G,
which we shall denote by f{(¢). Thus

fi(¢) = (=) (=) 'f1(9).

If ¢(G.) is even, fi(¢)=(—)[r—1]. In particular
we can suppose G contains an n-cycle, n even and
>2 so that 7=—1 and let s be odd, so that o(@,)
isodd and f,(¢)=2. If s were even, then fi(¢)=—2.
However, we have also proved that if there exists
@, such that ¢(@,) is odd and fi(¢)=r, then there
exists a graph G, for which fi(¢)=(—)" [1+1|

containing ¢((,) +s points. If s is even, o(G,) is
odd and for @, fi(¢)=r+1. If s 1s odd fi(e)

for G, 1s —[r+1]. By induction, it follows that
for any integer ¢ such that q:—l or |¢|>2, there
exists a graph G for which fi(¢)= If ¢ is com-
pletely connected and n=2, fl(q&)—l by 2.6, and
thus the theorem is proved for all positive integers g¢.



TaroreM 3.4.  If p and p” are two distinct points of
G, and S is the set of all families of paths joining p and
p’ such that each family contains n points among them,
then the famailies of S, together with the null famaily, ¢s,
form a lattice under the relation of set inclusion.

If a family F of paths contains all points of G, any
family containing F'is also in S, and thus the L.u.b.
of two families in S is their union. If the intersec-
tion of two families in S is not in §, it cannot con-
tain any family of S. Thus the g.I.b. of two families
is either their intersection or ¢s. For any pair of
distinet points p and p’, the lattice formed by the
families of paths which join p and p’, such that the
paths of each family contain all points of @, will be
called a lattice of path sets associated with G and join-
ing p and p’. For any given lattice formed by a set
of S of path sets joining a given pair of points, 7(F)
will denote the number of distinet paths in each lat-
tice element F'# ¢g, two paths being called “distinet”
if they differ in at least one point, and mg will denote
the greatest positive integer with the property that
for some F, ms=7(F). The symbol hs will denote
the Moebius function on the lattice formed by path
sets from S.

Turorem 3.5. If S is a set of families of paths,
including the null family, which form a lattice of path
sets associated with G, then for each FeS,

s (F)=(—)mst
for F#¢g, and if ms>1,
hs(@o)=(—)"st 35 (=),

ps#FeS

The proof is very similar to that of 2.5 and will be
left to the reader.

It a contains a [2, k]-articulator consisting of points
p and p every 1-dense subgr aph must contain either
p or p”since otherwise @—p—p’” would be 1-dense and
therefore connected. Accordingly if R is the set of
I-dense subgraphs in Gand S’ the set of all subgraphs
in 2 which contain p, p’, or p+p’, we have R=§",
and then 2.5 and 2.7 imply that

O =() D (Cr =] = (e

07

+ Z (_)U(G”)_ Z (_)0’(0”)]
p'=G"eR p+p =G"eR 2

The first two terms in the brackets vanish by 2.4
since p and p’ are each connected proper sub-
eraphs. Every 1-dense subgraph containing both p
and p” must contain a path from the set S of all
paths joining these two points, and so again em-
ploying 2.7, we find that

F@=E)r > 5 S

)U(G”)+i
)
=NNCel B (CE G cR

where F; is the set of all ¢-ples of distinet
paths from S, and (', B(C), are defined as in the
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hypothesis of 2.7. For each family €, B(C) is con-

nected since the union of two connected subgraphs

having a point in common is connected. Accord-

ingly, by 24, —)7@"=( unless B(C)=G@G,
B(CYS6"¢R

i.e., unless C'is an element of the lattice of path sets

joining p and p’, in which case > (—)7@"+ =
B(C)=@"¢R

(—)mt7 @ If 8”7 is the set of lattice elements, then
file)=— >3 (=)™, provided ¢g is not the
/"= FeS"”

only element in S’/ and fi(¢)=0 otherwise. This

result implies

Tueorem 3.6. [f G contains a (2, k]-articulator
and S is the set of elements forming the lattice of path
sets associated with G and joining the points of the
articulator, then fi(¢)=(—)"shs(¢s) if S contains a
nonempty set of paths, and f,(¢)=0 otherwise.

Theorem 3.6 can be used to show that if ¢ con-
tains a [2k]-articulator consisting of points p and p’
and fi(¢)#0, then f,(¢) can be written as a product
of factors, one factor for each connected graph in
the partition of G—G’. Any path connecting p and
p’ cannot contain points from more than one graph
m the partition of G—G’, and so any set of paths
forming one of the set S of elements of the lattice of
path sets joining p and p” must contain a subset con-
tained in G;4p-+p’ and containing all the points of
G;, for each connected graph G; (i=1, ..., 6 w>
k1) in the partition of G—-G’. Thus if S; (i=1,

.., w) denotes the elements of the lattice of path
sets associated with G:+p-+p’ and joining p and p’,
we have by 3.5,

=

hs(s) = (— W“H( (— >f<"‘")> (—)msti 1T
5,7 G"eS: i

i=1

{ (_)ms""'l}?si(d).slv) e

Since ms=2 ms,, we have established
7

Turorem 3.7.  1f G contains a [2, kl-articulator G,
G, for i=1, . . ., k-+1 are the connected graphs in
the partition of G-G’, and for each G, S;is the set of
elements which form the lattice of path sets associated
with G;U G’ and joining the points of the articulator,
then fi(¢)#0 tmplies

Si(@)=(—)"s** H hg,(bs,)-

4. Associated Graphs

Given a graph G and a subgraph G” which is not
properly contained in a completely connected sub-
graph, the set of graphs associated with G and G is
defined to be set of all graphs G’ which have the
following properties: (1) A one-one correspondence
exists between the points of G and those of G’” such



that neighbors in ¢ are mapped into neighbors in
775 (2) G contains a maximal completely connected
subgl aph, which will be called K[G"’], with the prop-
erty that K[G"'] contains the points in ¢’” which cor-
respond to G’ in @; (3) any pair of neighbors in G’/
such that both are not in K[G"'], is muppo(l into a
pair of neichbors in ¢. If G, and G, are any two
graphs in the set associated with ¢ and G, we shall
say G, > G, whenever the points in G corresponding
to K[G,] are a subset of the points corresponding to
K[G,], and G, >G, whenever G, > G, but G5 G,.

Turorem 4.1.  Given G and a subgraph G, the set
of graphs associated with G and G, if nonempty, form
a lattice under the relation > .

The proof will be left to the reader. We shall
denote by h(G@’; G, G’) the Moebius function evalu-
ated for any G’ in the lattice of graphs associated
with G and &', while fi(¢; G’/) will denote the
Moebius function evaluated for ¢ on the lattice of
subgraphs 1-dense in G’’. The function A, whose
domain is the set of graphs associated with ¢ and
G’ is defined by h(G"’; G, G')=(—) &L D+n where
G’ is any graph of the set.

TaeoreM 4.2.  On the lattice formed by the set of
graphs associated with G and G, hy=h.

If @, is the greatest element of the lattice K[G,]
=@, and ¢(K|G,))=n, so that h(G,; G, G")=1. It
G"<@, and w=s(K[G,])—a(K[G"']) there are (})
graphs H which satisty the condition that G""<H
<@, and o(K[H])—o(H[G"])=Fk. Therefore

— 3 W(H;@, @) =(—)r®ntrh
H>G"
X f%(g) (— = () ENER=py (G771 G, G).

Since hy satishvs the recurrence rvelations which
uniquely determine h, the theorem follows.

Let R[G"’] be the set of subgraphs 1-dense in (A
and Q[G"'] the set of all subgraphs in R[G"’] which
contain at least one point from K[G"'].

Levva 4.3, If G is any graph in the set associated
with G and G’ such that K[G"']#G"’, then

_f1(¢; Glf):(__)qr((l”)-l-l —)o )

i HeR[G"T=Q[G"]
by 2.5,

Ji(#; @) =(=) @ [ P

HeQ[G"]

__\o(H)

> o]
HeR[G" ]-Q[G"]

By 2.7, the first sum in the bracket can be expressed
as a sum over families of subsets of K[G"’]. If Cis
such a family and B(C) the union of the graphs in
the family, B(C') is a connected proper subgraph
because K[G"'] is completely connected?and #G",
and thus
(—)ra=0
B(C)= HeR[G”)

by 2.4. Since this is true for every family C of
subgraphs of K[G"’], we have

et ().
HeQ[G"]
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Turorem 4.4. If G is a graph belonging to the
set associated with G and G’ then

1) If " —K[G"] is 1-dense in G,
2 hH; G, G')fi(¢; H)=0.
H>G"

2) If G —K[G"'] is not 1-dense in G,
2 WH; 6,6 f (¢, H)=(—
H>a"

)a((}">.

By 4.2 and 4.3, we have for "' #K|[G"’|
— 23 h(H;G,G")f1(6, H)=
H>G" H>G"  H'eR[AT-Q[H]

( )d(l\[”])‘f‘a(ll’)f( )n+1‘ (B)

If 717 is any subgraph of G’ which is one of the
set S associated with G and G, H’ corresponds to a
unique subgraph ] <@. In turn Fj corresponds
to a unique subgraph H’’ in any other graph of
S, and these two correspondences determine a
correspondence between [’ and H''. 1f H>G",
every subgraph of //—K[H] corresponds to a sub-
«rmph m G —K[G"]. 1f G —K[G']is not 1-dense,
it contains no l-dense subgraph, and so there
can be no corr Oprll(lill"' 1-dense subgraph in
H—K[H] and R[H]|—Q[H] is empty for H>G".
Therefore, it G #K[G"'], —h(G""; G, G") fi(¢; G")
can be added to both members of (B) and then the
double sum vanishes, proving part 2 for this case.

It @""=KI[G"], fi(¢; G'”)*(—) and part 2 is obvious.
Suppose G- [G”] is 1-dense, and H'eR[G'']—
RIG". It w=e(G@"—H — [G”]) and k=1, . . .,

w, there are (¢) graphs H >G’" with the plOp(‘lL\
that KH)|=K|@])+k and H—K[H] contains a
subgraph which corresponds to H’. The contribu-
tion to the double sum i (B) of all the graphs which
correspond to a particular H'eR[G"']—Q[G"] is

wow
> "// . ¢ 3 & i ’
2—\_ ( >( )7 KL thta ) — (e (KIG) +1+a )

(B) contains a similar contribution for
H'eR[G"'|—Q[G""] except G"'—K|[G"’]. Thus
—H;;”h(H;G,G')f1(¢;H):h(G";G,G')fn.(¢;6’”)

_(_)G(K[G"l)+1+0(G"*K[G”l)+ (_

Since o(G’"')=0a(G)=n, part 1 follows.

every
) n+1
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