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Microwave :Michelson and Fabry-Perot interferometers are respectively cons idered as 
instances of: (1) A "reflection system", consisting of a radiating-receiving system a nd a 
refl ecting object (e.g., a finite mirror); and (2) a "transmission system" , consistin g of a 
radiating system and a receiving system with an object (e .g., a F abry-P erot etalon) in ter
posed . The basic theoretical objective is t he calculation of th e ampli t ude and p hase of t he 
(time-harmonic) r eceived s ignal in the systems considered . The electromagnetic fi eld in 
sp ace transmission paths is represented in terms of con tinuous angular spectra of vectorial 
plane waves, and t he elemen ts of the systems are descri bed by means of sui table tensor 
scattering matrices (havin g both d iscrete and continu ous ind ices) . Needed scatter in g 
matrices a re cons id ercd known ; relationships to experimcn tally determinable data are 
outlined. The gen eral case of e iLher the re fl ection or t ransm ission system is solu ble forma lly 
in terms of a se ries of in tegrals stemmin g from t he Liou vi lle-Ne umann series solut ion of 
certain integral eq uations. Formulas a re obtained for mode ls of t he Michelson and Fabry
Pero t instrumen ts wit h arbitrary rad iatin g and receivin g cha racteristics. The th eo ry and 
vari ous features f t he instruments cons idered, including Fresnel-region (or qu asi-optical) 
behavior, a re illustrated by means of examples obtain ed by choos ing rcla t ively simple and 
rather hypothe tical analyt ical expressions for t he rad iat in g and receiving characteris tics. 

1. Introduction 

Microwave versions of the Michelson and the 
F abry-Pero t in terferometers are being sLudied and 
developed at t he National Bureau of Standards with 
a view to high-accuracy measuremenLs of wave
lengLhs, lengths, and the speed of ligh t [1).2 Thc 
data provided by these instruments are, however, 
subj ect to corrections for effects which a re completely 
negligible in optical in terferometry bu t significant 
in Lhe microwave region. In this work- in contrast 
to the corresponding optical case-the principal 
such effect resul ts from the wavelength not being 
neglig ibly small relative to the dimensions of the 
apparatus, and consequently the efl'ects of diffraction 
upon the wavelength as observed by the instrument 
must be carefully considered in order to explo it 
fully the potential accuracy of the method. In 
this paper we consider these effects and present 
analytical tools suitable for making a correction to 
the apparert wavelength [2]. This should make 
possible the use of Fresnel region microwave inter
ferometry for work of the highest accuracy. 

For the purposes of our analys is the pertinent 
aspects of the class of microwave Michelson inter
ferometers are r epresented by a "general reflection 
system. " Similarly, the mi crowave Fabry-P ero t 
insLruments are represented by a "general trans
m.ission system. " (Th ese basic arrangements are 
described more fu lly below. ) Inasmuch as we wish 
to provide a theory inherently capable of dealing 
with high-accuracy experimen ts, a considerable 
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degree of generality is required to' avoid over-idealiza
tion . I t is interesting that the r cquired generality 
is such that the general reflection system could 
equally well represent a system consisting of radar 
a nd ta rget, for example; simil arly, the general 
Lransmission system could represent a point-to-point 
communication sysLem . In view of the generali ty 
of Lhe basic arrangements it seems likely that appli
ca tions of the theory will also be found in problems 
other than the ones that motivated this work. 

The specific theoretical obj ective is the calculation 
of the ampli tude and phase of the received signal in 
the systems considered. Theoretical expressions 
for the received signal will conLain, at least implici tly, 
all available information regarding diffraction errors, 
in tensities, etc. The analytical technique employed 
involves a transd ucer point-of-view, scattering
matrix formalism and consti tutes a generalization 
of a part of the theory of waveguides and waveguid e 
junctions. 

The arrangemen ts to be considered involve 
radiating, receiving, and radiating-receiving sys tems 
as elemen ts, which we shall occasion ally refer to as 
" terminals" or as "terminal apparatus. " Such an 
apparatus is shown schematically in figure 1. The 
left-hand block in the figure may contain sources of 
power , detectors, and any other required auxiliary 
equipment, all of which is assumed to be shielded . 
This equipm.ent is connected by means of waveguide 
to a waveguide-space transducer, represented by the 
triangular symbol in the figure. For simplicity in 
the formulation it will be assumed that the wave
guide is of a self-enclosed or shielded type. The 
arrangement and details of the apparatus are 
highly arbitrary, an essential but not very restrictive 
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FIGURE 1. Schematic mdiating-receiving system. 

condition being that the transducer proper possesses 
the property of linearity with respect to electro
magnetic fields. (Details of the statement of 
hypotheses are given in sec. 2, A.) 

In one of the basic arrangements considered--the 
general reflection system, illustrated in figure 2-
radiation from a radiating-receiving system is re
flected or sCfLttered by a general reflecting object at 
a variable distance el and is partly received (fLnd 
partly reflected or scattered) by the same system. 
The ~VIichelson interferometer can be considered in 
general terms as a reflection system in which the re
ceived signal is observed, as a function of el, by 
causing i t to interfere with a suitable reference 
signal and detecting the resultant ampli tude. 

In the laboratory version of the Michelson inter
ferometer being considered in connection with the 
present work, the rad iation forms a well-defined 
beam (within its Fresnel zone), the reflectin g object 
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FIGU R E 2. Reflection system . 

rr the scattering object is a finitc mirror, for example, the arrangcmen t represents 
a microwave ]Hichclson interferometer. 
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is a large but finite mirror placed well within the 
Fresnel zone of the beam, and multiple reflections 
between the mirror and the radiating-receiving sys
tem are relatively unimportant. It may be said 
that the instrument is operated in the Fresnel or 
quasi-optical region. This mode of operation im
plies the inequalities a»t-. and d«a2jt-., where 
a is a measure of the cross section of the beam and 
).. is the free-space wavelength corresponding to the 
frequency of operation. Under these conditions the 
radiation in the space between radiator and mirror 
approximates a homogeneous, plane standing-wave 
and the received signal is approximately propor
tional to exp (2ikel) , where k= 2rr jt-. . 

The second basic arrangement considered is illus
trated in figure 3. Here a structure or object that 
in general may reflect, transmit, and scatter is inter
posed between a radiating and a receiving system. 
If the interposed object is some form of Fabry-Perot 
"etalon" [3], the arrangement represen ts a general 
form of the Fabry-Perot interferometer. In this 
type of instrument the received signal exhibits am
plitude variations sharply dependent on the spacing 
of the plates of the etalon, and this is attributable to 
in terference among components of the radiation 
having experienced 0, 1, 2, ... reflections between 
the plates. 
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FIGURE 3. TmrtSmiss'ion system. 

If the scat tering object is a suitable form of Fabry-Perot eta lon , the arrangement 
represents a microwa ve version of the Fabry-Perot LnLcrferometcl'. 

In the laboratory version of the Fabry-Perot be
ing considered in connection with tbe present work, 
the instrument is a Fresnel-region instrument in the 
sense explained above, and multiple reflections, ex
cept between the plates of the etalon , are again 
relatively unimportant. 

In the theoretical approach used in the present 
paper, the (vectorial) electromagnetic field in a space 
transmission path is represented as the superposition 
of an angular distribution or spectrum of (vectorial) 
plane waves. Such a spectrum is in general deter
mined not only by the free-space radiation charac
teristics of a radiator, but also by the effects of all 
scatterin g elements involved (the radiator itself 
would be such an element, for example, in the case 
of a Michelson instrum en t with appreciable multiple 
reflections). AltllOugh the use of the plane-wave 
representation of the fields is suggested by the close 
approximfLtion to a single plane wave that might 
exist in a Fresnel-region instrurn en t, it is hardly 



neeessar. Lo r emark tha t in a practical case even Lhe 
ul1lllodifi ed free-spilce radin,Lion spectrum is likely to 
be extremely cOlllpli cn,ted in deta il. Thi s is becausc 
of su ch thi.ngs ,tS edge d rects, geometri c1l1 irnperfec
Lions, and lim i tations in Lhe design and eonstrucLion 
of lenses and homs. 

The co ncept of Lhe plan e-waH resolution of t he 
field permits one to form 1L useful qualitntive pi cture 
of th e origi n of n,n cffecti ve wavelength. Consider , 
for exn.mple, n, Michelson instrum ent. Each rle
mental'." wave in tbe spectrum whose nOl'll1almakes 
a n angle 0 wi th the line along which translation of 
t he mirror is me11smed liaS an effective Wfl velength 
A sec 8; th e r es ul tant efl'ective \nwelengLh can be 
Lhought of flS a kind of average of th e elementfll'Y 
contributions over th e existing spectrum. Thus one 
migb t n, nLicipate, for example, that t he r esultant 
effective wavelength should rather genemlly tend to 
be greater than t he free ·spaee wavelength. 

A main section of this pn,pe1' , section 2, is clevoted 
to establishing a scatLering matrix formali sm for 
the description of radiating-receiving sysLems of the 
general type considered . In thi s connection it is 
helpful- at least to Olle acquainted witll th e theory 
of waveg uid e :i unctions- to ],egard t he space siclr 
of the waveg uide-space transdu cer as a waveguide 
of infinite cross section. A scattering matrix having 
both discrete and continuous indices, which cO I'l'e
spond respectively Lo the mode in Lhe ordinal':V 
waveguide and the con tinuum of modes in Lhe wa\"('
guide of infinite cross section, is req uired . The 
expression of reciprocity, which seems to be of in
te res !', in itself in the class of problem considered, 
is csLablished. 

For t ItO purpose of t he present ,,·ork, Lhe sca LLcring 
matr ices of the radia ting- receiving systems involvecl 
arc considered kn0\\"11 ; the de te rmination of Lhe nec
essary data for a practical applica tion is considerecl 
to be an independent problem, expe l'imen Lal or pos
sibly t heo retical. (Fortunately in the prfl,('tical cases 
under considera tion, scaLtering by th e racli a Ling
receiving sys tems involved is of minor imporlance, 
and it Lhu s appears t hat Lhe necessary daLa can br 
obLained from suitable measuremenLs directly or 
indirectly detcrmining the far-fielel radiation cltarac
Leristics. Such meaS Ul'ements would yield Lhe neces
sary information about the underlying diffraction 
problem, however complicated it migh t be. ) 

In section 3 the scat tering matrix formalism is 
exLended and applied to the calculation of the re
ceived sig nal in the basic arrangements described 
above. The general problem involving multiple 
l'eO ection s is soluble formally (in Lbe sense that the 
problem is red ucible to quadratures) in the form of 
a series of integrals, which stem from the Liouville-

J eumann series solution of a system of integral 
eq ua tions. Formulas are derived for models of the 
microwave Michelson and Fabry-Perot interferom
ete rs in ~which t he radiating and receiving spectra 
arc arbiLrary. Finally, these formulas are illustrated 
by means of examples obtained by choosing specific 
and r elatively simple analyticf:l.l expression s fol' the 
spect rfl involved. 
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2. Scattering Matrix Description of Radiat
ing-Receiving Systems 

A. Basic hypotheses . To the genenLl descripti oll 
of t he radiating-receiving systems given in section 1 
we add the following details. 

"Ye choose a terminal surface So in the waveguid~ 
and a supplem entary surface S~ (such that So+S~ 
form s a closed surface) coinciding with tbe shielding 
around source, receiver , etc. (See fig. 1. ) W'e 
further choose a rectangular coordinate system 
Oxyz such that coordinate surface z= O, which we 
denote by S" will serve as a term inal surface on th e 
space sid e of the waveguid e-space transdu cer. 
As a convenient artifice we employ an infinite 
hemisphere S ", lying in z ~ ° and centered at O. 
The interior- i .e., the dom ain of t he electromagnetic 
fi eld- of the transdu cer is the region V bounded 
externally by S I+S", and intern ally by So+S~. In 
fi gure 1 the stru cture of tbe tnmsdu cer considered 
lies in V; oth er structures 01' objec Ls may also be in 
V bu t no attemp t is made to illustrate this possibility . 

Th e whole of the space and structure within V is 
co unted simply as a (decid edly) nonhomogeneolls 
medium which may also be diss ipative and ani so
tropic. LineariLy is assumed and is essent ial ; 
reciprocity, in the sense t hat tensors describing tJl(', 
medium wiLhin V are requ ired to be symmetric, is 
assum ecl ancl is useful bu L not essential. 

In the SptLCe trn,nsmission paths (i. e., in z>O) the 
medium is Lo be homogeneous, isoLrop ic, and non
dissipaLive, as well as lineal'. For t he tim e being iL 
is assumed Lhat t hese proper ties hold for arbi trarily 
large z; th e in terposit ion of elements (s uch as lL 
refl ecting objec t) will be consid ered In,tel'. (The 
Lheor,)' is not actually r estricLed Lo tl'tll1 mission 
media havin g Lbe id eal charil,cLel'istics li sted, sin ce, 
as will be seen, an tt rbi tn1l'Y lin eal' transmissiOIl 
med ium is to be treated as a sui table in terposed 
ele111en t .) 

It is ass ll med t lmL th e electro magnetic fielel qWll1-
Lities vary harmon ically ",itil t ime t aL frequen cy 
w/ (27r} , Ye employ Lhe usual co mplex electric and 
magnetie fi eld veetors, E, H, whiclt are flll1 eLions of 
Lhe posiLion vector r of Ox yz, Rncl o ll1it th e tim e 
dependent factor exp (-iwl ). 

It should be observed that ill takin g S", to be 
hem ispheri cal i t is taeitly ass um ecl that the problem 
is not two-dim ensional (by a "Lwo-dim ensional" 
problem is meant one in which all quantities arc 
independ en t of one rectangular coordinate perpen
dicular to the z-direction). To avoid unduly com
pli cating the discussion, two-dimensional problems 
are not considered in the main part of this paper. 
However, two of the examples at the end of the 
paper are two-dimensional. For convenience in 
discussing these and other two-dimensional cases, 
some of t he more important or less obvious of the 
needed formulas are summarized in an appendix 
(sec. 4, B ). 

B. Representation oj field on So. It, as is assumed, 
only one mode (a propagated mode) is of importance 
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in the waveguide in the neighborhood of So, then 
from waveguide theory it is known that tbe trans
verse components E t , H t of E , H on So may be 
written 

E (r) t= (ao+ bo) e (r), } 
(r on So) 

H (r) t= (ao- bo) h (r), 
(1) 

where e, h are real basis-fields for the mode involved. 
The basis-fi elds are subject to the impedance normal
ization 

h (r) = 11on X e (r) (2) 

and the power no rmalization 

f e (r)X h (r)· ndS= 47r2 11 0, 
So 

(3) 

where n is the unit normal on So drawn into F and 
110 is the wave-admittance for the mode involved. 
These equations implicitly define the quantities 
ao, bo; it can be verified that ao, bo so defined arc 
respectively linear measures of the electric field. of the 
incident and emergent travel ing-wave components 
of the waveguidE' field at So. The net time-average 
powrr input Po at So is given by 

where Re denotes that the real part is to be taken 
and tlw superposed bar denotes the complex con
jugate. 

C. R epresentation oj the field in the region z:::: O. 
As mentioned in the introduction, the electromag
ne tic field in the region z:::: 0 is to be represented as a 
superposition of plane-wave solutions of Maxwell's 
equations. This type of representation is well 
known, at least in the case of solutions of the scalar 
wave equation [4]; the generalization to the vector 
electromagnetic field offers no particular formal 
difficulty. 

The electromagnetic fi eld in the region under 
consideration satisfies Maxwell's equations in the 
form 

\7 X E = iw,uH , \7 X H =-iweE, (5) 

where ,u, e are constant real scalars representing 
respectively the permeability and the permittivity 
of the medium. (Rationalized MKS units are 
employed. ) We derive our basis fields from the 
general plane wave 

E = T exp (ik .r), 1 

H = (W,u) - lk X T exp (ik .r), ) 
(6) 

which is a solution of (5) for any propagation vector 
k such that Jc 2=w2 j.1e and any vector T satisfying 
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the transversality relation k ·T = O. (In spite of 
this occurrence of "transversali ty," in what, follows 
the term "transverse" will always mean transverse 
wi th respect to the z-d irection.) 

The propagation vector will be regarded as a 
function of its transverse componen ts kx, le y; the 
z-component is t hen 

(7a) 

where "1 = (Jc2-lc;-le~)~. It will be convenient to 
denote the transverse part of the propagation 
vector by K, so that K = kxex+ leyey and 

(7b) 

Since le x, le y must be allowed to vary independently 
in the range (- co, co), real and imaginary values 
of "I will occur. "I will be taken positive for f{2 < k2, 
positive:' imaginary for f{2 > Jc2. Superscripts" +" 
and "-" will be used when it is desired to indicate 
the choice of sign associated with le z• 

In virtue of t he relation k- T = O, (6) yields just 
two linearly independent fi eIds, hence just two basis 
fields , for any g iven k. The appropriate polariza
tions for t he ba,sls fields are those with the electric 
vectors parallel or perpendicular to tlle plane of 
k and eZ) which is the plane of incidence for a ray 
incident on any plane z= const. This choice of 
polarization s corresponds to the practice in elec
tromagnetic theory in deriving the Fresnel eq ua
tions, for example; i t also corresponds to the resolu
tion into "transverse magnetic" and "transversr. 
electric" modes of waveg uide theory. 

In setting up the desired basis field s it is convenient 
t.o employ the transverse unit veclors 

(8) 

which arc respectively parallel and perpendicular 
to the plane of k and ez• (The notation is illustrated 
in fig. 4.) As a temporary abbreviation we put 
u±= exp (ik±. r ). For the "Eli" (or TM) compo
nents we take T = K1 =f f{'Y- lez and obtain from (6) 

(9) 

where 111 = we/'Y. For the "EJ.." (or TE) components 
we take T = K2 and obtain from (6 ) 

E± ± "I 
2 = K2U ~ (10) 

Ht=[±11 2ez X K2+ f{(Wj.l) -l ez]u± ) 

where 112='Y/(Wj.l). Among other similarities it may 
be observed that 111, 112 are " wave-admittances" that 
correspond exactly to the wave-admittances en
countered in the theory of waveguides with discrete 
modes. The expressions in (9) and (10) are essen-
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FIGURE ±. Illuslmling k, K, KI, and K2. 

tially the desired basis fields (z-components, in
cluded here, will be dropped later) . The normaliza
tion and orthogonality properties of these fi elds a.re 
of course implicit in the expressions themselves. 

'Ve now in troduce spectl'al density functions 
bm= bm(K ) and a",= am(K ) for outgoing and in coming 
waves, respectively, and form Llw genC'ral super
position 

H ere and subseq uently in expressions of this type 
summation over the two values of tile polarization 
index m and integration over the domain of the two 
var iables kx, k y will be understood. The E, H given 
by (11 ) will satisfy Maxwell's eq uations provided 
merely that the necessary differentiations can be 
taken under the integral sign. However , for our 
purposes, the z-components of the fi elds arc redun
dant. By discarding t he z-components we obtain 
the much more convenient and expli cit expressions 
for the transverse field components 

where R denotes the transverse part of r. These 
equations exhibit E t , H t as two-dimensional Fourier 
transforms of the quantities multiplied by exp 
(iKR) in the respective integrands; from t he inverse 
tl'3.nsformations one may obtain 
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Here and subsequently integrations with the differ
ential symbol dR are to b e taken over all values of 
x and y for some fixed z ~ O. These equations enable 
one in principle to evaluate am, bm from a given 
distribution of E t , H t on any transverse plane. 

The case where there is no field incident on 8 1 from 
the "right" [i.e. , where am(K) = 0] is of particular 
interest in what follows, and we shall list several 
relations holding in this case. From (12) and (13 ) 

E(rL = JB (K )eik'rdK , 

B(K) = (271'-) - 2e- i-Y Z JE(r) te -iK.RdR 

(14) 

(15) 

where B= B(K ) is the transverse vector b1Kl+ b2K2. 
The time-average power, P T) radiaLed into the half
space z> O will also be of interest. This power is 
the same as the time-average power flux in the 
+z-direction across th e smface 8 1, Hen ce, from 
(12) [with am(K ) = 0], 

1 J' - . J' P '=-2Re EX H-ezdR= 27r2 . .L;1'/m(K )lb", (K)12clK , 
K 2<k2 

(16) 
where, as indi cated by the notation below the 
integral sign , evanescent waves are excluded from 
t he illtegration. This equatio n is of a type known 
as Parse val's formulas; it may be derived forlll ally 
wi tit the a id of the rule that 

. where a denotes the so-called impulse or a-func
tion [5] . 

D. Definition of scatterino mCLtrix. H a vi llg set up 
representations for the field s on the two terminal 
surfaces of the waveguide-space transdu cer under 
consideration, we are now in a position to co nsider 
the tran ducer as a whole. It may be assumed that 
a set of out-going wave-amplitudes [bo and b",(K )] 
will be determined by a set of incident wave-am
plitudes lao and am(K )]. In fact , since the elecLro
magnetic system under consideration is by hypo th
esis a linear system, the rela tion between the set 
of out-going wave-amplitudes and the set of incident 
amplitudes must be a lineal' relation. W' e write this 

bo= Sooao+ f .L;SOI (m, K )CLm(K)dK (18a) 

bm (K) = 8 1O (m,K)ao+ J .L;Su(m ,K;n, L)CLn(L)dL , 

(18b) 

thereby defining the scattering matrix for the trans
ducer considered. Figure 1 may be helpful in fixing 
the significance of the quantities involved in (18). 
It is convenient and it seems appropriate to use the 



term "matrix" here even though one must think of 
TOWS and columns labeled both by discrete indices 
and by indices having continuous ranges. Evi
dently the functions 80[, 8[0, and 8 11 respectively 
embody the receiving properties, the radiating 
properties, and the (space-side) scattering properties 
of the transducer involved ; 8 00 is an ordinary wave
guide reflection coefficient defined at the terminal 
surface So and expressing the "antenna mismatch." 

Equation (18) can be represented in terms of Soo 
and lineal' functional operators SOt, SJO, and S[l such 
that 

bo= Sooao + Sola, 

b= SlOaO + Slla, 

(19a) 

(1gb) 

where b and a are understood as function vectors 
conesponding to the functions b",(K ) and an.(K ). 
This compact notation is used later primarily as a 
convenience in some of the more formal ftnci general 
parts of the discussion. 

E. R eciprocity. Radiating and reCelVll1g charac
teristics are related bv t he reciprocity condition, 
which here takes the fOI'll 

(20) 

Since this particular form of t he condition appears 
to be new, a derivation is given below (appendix). 
The occurrence of the factors 710 and 71",(K ) in (20) 
can be regarded as a consequence of the particular 
normalizations adopted in setting up the basis fields. 
(The same type of relationship holds for the elements 
of the sCftttering- matri,\': of an ordinary waveguide 
junction with dIscrete modes [6). ) The occurrence 
of the argument - K in one side of (20) means that 
the equation relates radiating and receiving charac
teristics in the line of ft given propagation vector k 
(if a radiated wave has propagation vector k, 
the received wave in the same line has the propaga
tion vector - k ). 

The plane-wftve into plane-wave scattering func
tion 8 11 is also subject to reciprocity; the relation is 

71",(K)81l (m,- K ; n,L) = 71 ,,(L)8 11 (n,- L ; m,K ) . (21 ) 

Comments simil ar to those following (20) apply here 
also. This relation is not used in the present paper 
but it may well be of interest in other diffraction 
problems. 

F. Determination oj scattering matrix. Although 
the basic viewpoint of this paper is that 8 00, SOl, etc ., 
are to be considered known, it seems well to take some 
note of the problem of determining these quantities 
from empirical data in the arrangements of particular 
interest. 

Concerning 8 00 and 8" there is not mu ch to be 
said. Soo is not onlv relatively easily measurable 
but also experimentaJly controllable (by means of 
tuning elements), whereas in general the same is not 
at all true of SII. However, the desired operating 
condition that 8 11 be effectively negligible is ap-
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proximately attainable and to some exten t subj ect 
to experimental verification (by observation of the 
effects of mu] tiple reflections). 

Concerning 8 01 and SlO we first no te: (1 ) Either 
one of these functions may be determined readily 
from the other with the aid of the reciprocity rela
tion; (2) in the presen t context t hese functions need 
be evaluated only for K2< k2 , the effects of evan
escent waves being avoided by keeping d> > t- (this 
is not inconsistent with Fresnel-region operation, 
cf sec. 1). 

A direct approach to the determination of SOl 
is implied by the definition (18) : 8 01 represents the 
received signal bo as a function of the direction and 
the polarization of incident plane waves of suitably 
normalized amplitudes. 

According to (18) , 8 1O (m,K) represents t he 
transverse components of the vector spectrum of 
outgoing waves under the conditions am(K )= O and 
ao= 1. If we define t he transverse vectorial spectrum 

t ben, from (15 ), 

(23) 

t hat is , 8 10 may be represented as the Fourier trans
form of the transverse components of the electric 
field obtaining on the reference plane in the absence 
of incident waves, normalized to unit ao. This is , 
of course, essen tially a vector form of the well-known 
relation between "aperture" distribu tion and spec
trum. 

The vectorial spectrum 8 1O (K ) is also closely 
related to the far electric field by a well-lcnown 
type of relation. UncleI' certain restrictions E (r ) t 
has for large T the asymptotic form [7) 

E(r)t. asyrnp=-27rik cos e B (Rkjl')e ikTjl'; (24) 

the angle e in troduced here is the polar angle of r 
relati ve to the z-axis. By rewriting this equation 
and dividing by ao we obtain a formula for SlO(K) 
in terms of the ctsymptotic form of E ,: 

SlO(K) = i(27rao) - 1')' - 1]' e- ikTE (krjk) t.asy mp , (25) I 

for K2 <k2 . 

Finally we note that tbe familiar "power radiation 
pattern" or "polar diagram" of antenna theory, 
defined as radiated power per uni t solid angle as a 
function of direction, is given by 

where b = B+ bzez and bz= - B ·K j-y (b is the com
plete vectorial angular spectrum, including the 
z-component). Clearly this equation is not suf
ficient by i tseH to determine 8 1O (K ); polarization 
and phase inform ation is required in addition. 



3. Applications 

.\ . Hpjlection systems. On e obtains a form of Lhe 
firsL b fl ic fl lTHnge men L described in secLion 1 by 
p la,cin g an infinite pl a n e r efl ecting surface "in front 
0[" a r adi aLing-receiving system of til e Lype con
sid ered in secLion 2 . . Thi s represents a problem 
of in te l'lll ed i,1Le eomplex iLy, from which the basic 
eqlll),t ions for t he iVlich elson arrangemenL may be 
obtain ed by sp eciali zation. If the ref-l ecLin g s urface 
is flt z= d ,wd bas r efi ection coeff-icient p(m, K ), then, 
t mnsfonning the reflection coeff-icient to Lbe plane 
z= O, we have 

am(K ) = p (m ,K) e2iy(K)db ",(K) (27) 

(Lhe dependence of 'Y on i ts flrgumenLs is nowincli
cated explicitly). Upon Sll bs titllting (27) into (I S) 
one obtains 

bo= Sooao + J ~Sol(m,K) p(m ,K)e2h(K)db m (K )dI( , 

(2Sa) 

b",(K) = S lO(m ,K)ao 

+ J ~Sll(m,K ;n, L) p (n, L)e2iY( L) d b n(L) dL. (2Sb) 

Th e last line r epresents Lwo simultan eous, inhomo
geneous, lin ear integral equ ations for t he determina
tion of b", (K ) (ao b eing prescribed ). Th e Liouville
K eum a nn series solutio n of th ese equations nhty b e 
obtained by a process of s uccessive HPPl'oxiIII ation s. 
For t he first approximation one takes 

--- -- _. ~- - - -

Th e seco nd term on the right will be calleel Lb e " r e
fl ection integral" ancl denoted by <r> (d). E it her SOl 
or 8'0 may be eliminaLed by m eans of tbe l'eciproci ty 
condItIOn (2 0) ; for t he purposes of the prese n t dis
cllssion i t seems preferable to eliminate SOl. We 
t hen have 

<r> (d ) = 1)o' J ~ 1)m(K)S lO(m, K ) SIO (m,- K )e2iy(K)dclK. 

(:32) 

This is the main equaLion for Lile Mic helson . It 
will be illustratecl below by m eans of examples ob
La ined by choosing sp ecific mathematical expres
sions for SlO(m,K ) . 

Problems involving r efl ecLin g 0 1' scattering objects 
other titan an eff ecLively infmiLe refl ec Lin g s urface 
a re important not only in microlmve interferometry 
but also in other fields. Con sequent ly t he following 
formulation of the general rase where Lite plane 
reflect in g surface considered above is r eplaced by an 
arbi tml'Y reflectin g ob ject i of inLe resL. LeL Lhe 
general J'e flecLin g object be r ltaracLerized by means 
of a scaLtering funcLion H(m ,K ; n, L) defined with 
z= O as terminal surface . Ins te[ld of (27 ) we n ow 
h ave the linea l' tran sforma Lion 

am(K )= J ~ R (m, K ;n,L) bn (L) elL (33) 

as boundary condition. In opera tor notfLtion (33) 
is written 

A A A 

a= /[u 

(29) and Lhe equat ions correspondi.n g to (2S) arc 

t b e second approximation is obtain ed by substitll ting 
th e firs t into the right-ll and sid e of (2Sb), 

M) (K )= SlO(m ,K )ao 

+aO J ~S'I(m, I( ;n,L) p (11 , L)e2iY (L) dSJO(n, L) clL; 
(30) 

and so on : b<::2 (K ) accounts for th e first n r efl ection s 
at the reflecting surface. Once brn (K ) is obtain ed , 
approximately or otherwise, it is to b e substituted 
into (28a), thus determining tbe r eceived wave
amplitude bo in the waveguide a t So. 

U seful approximate equations describing Lhe b e
h avior of the }'i\.iehelson instrument may now b e 
obtained . The appropriate conditions are (1) t lmt 
t h e effects of multiple r efl ections b e n eglig ible and 
(2) that t he ref-lecting surface at z= d b e a mirror, 
for which we m ay put p= - 1. Th e first condition 
means th at (29) is already a good approxim a tion 
for bm(K ); this substi tuted into (2Sa) yields 

.'!..2.=SOo-J~ S Ol (m,K )e2iy(K)dS IO (m, K)elK . (3 1) 
ao 
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(:34a) 

(34b) 

The Liouville-Neumann se ries soluLion of (34b) 
may be written 

(35) 
w here 

L = ± (sJ·OV (36) 
p=! 

is the operator correspond illg to whaL is cfLlled the 
" resolvent k ernel " in t he th eo ry of integral equations. 
F inally, for bo we obtain 

bo= Sooaa+ SOl RSIOaa+ SOl fl LSlOaa• (37) 

In this form the last term (specifically the operator 
L) accounts for multiple r eflection s . 

An instance of (3 7) is the case of a large but 
finite mirror in the Michelson interferometer, which 
has been considered using an approximate expre -
s ion for fl and n eglecting multiple reflection s [S]. 



I 

I 
B. Transmission systems; Fabry-Perot inte1jerom

eter. We now consider a general transmission sys
tem consisting of a radiating system and a receiving 
system with an arbitrary (electromagnetically linear) 
intervening structure or medium. For the active 
terminal the pertinent descriptive equation is 
(19b) , which for convenience is repeated here: 

(19b) 

This equation is understood to be set up with 
reference to a coordinate system Oxyz and space
side reference plane z=O, as detailed in section 2. 
Using primes to distinguish quantities associated 
with the passive terminal, we may write 

(39a) 

(39b) 

as the equations corresponding to (19) . For these 
equations the space-side reference plane is z= d in 
the above-mentioned coordinate system and the 
general arrangement is shown in figure 3. Next, 
let the structure and/or medium between the 
terminals be described by a set of linear operators 
Tij, defined with respect to z= o and z= d as reference 
planes, such that 

(40) 

(The Fabry-Perot interferometer considered below 
will furnish an example of these equations. It will 
be a very special example, however, since specular 
reflection and transmission will be assumed, so that 
the operators Tij will be diagonal and (40) is then 
reducible to a family of ordinary equations.) 

A method of solving the problem described in 
(19) , (39) , and (40) may be indicated as follows. 
The result of eliminating 6 and 6' from (19b), (39b) , 
and (40) may be put in the form 

As this form suggests, these equations may be solved 
for a and a' by a process of successive approxima
tions similar to that used above. The received 
wave amplitude b~ is directly determinable from 
(39a) as soon as a' is lmown. (bo is also directly 
determinable. ) 

To pass to the consideration of a highly simplified 
model of the Fabry-Perot interferometer, we first 
assume that 811 and 8;1 are effectively so small 
that reflections at the terminals of the system may 
be neglected; that is, we assume that the second 
term on the right in (41 ) may be neglected. We 
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then have the explicit expression 

(42) 

and consequently for the received wave-amplitude 
we have 

(43) 

N ext, we assume that the structure described by 
the Ti j is a Fabry-Perot "etalon", consisting of a 
pair of elements corresponding to the two plates of 
an optical Fabry-Perot interferometer. Such ele
ments might be, for example, perforated metal sheets 
or stacked quartz plates [8]. We assume that each 
element is symmetric with respect to the z-direction 
and characterizable by means of a (specular) reflec
tion coefficient p(m,K) and a (specular) transmission 
coefficient T(m,K) defined at the symmetry plane 
of the element as reference plane. It is not as
sumed that the elemen ts are lossless ; p and Tare 
subject merely to realizability conditions for passive 
elements . We let the two elements be located so 
that their reference planes coincide with z= o and 
with z= d, respectively. It may be noted that so 
locating the elements implies no real loss of gener
ality, since the planes z= o and z= d are arbitrarily 
located with respect to the physical arrangements 
with which they are respectively associated. From 
the symmetry of the etalon as a whole with respect 
to z= d/2 and the fact that the Tij must be diagonal 
we have 

TJ 1 = T22= o.".nO (K - L) til (m,K) 

T2l = T'J2= omno(K- L)t21 (m ,K), 

where o(K - L) means o(kx- lx ) o(ky-ly ) and 

T 2ei "Y(1 
l_p 2e2i"Ya' 

(44a) 

(44b) 

(45a) 

(45b) 

as may be found by ordinary methods. In these 
expressions 'Y, p, and T in general depend upon K. 
When evaluated for K = O and simplified somewhat 
as they may be for lossless elements, the expressions 
reduce to ones frequently used in discussions of the 
optical Fabry-Perot interferometer. 

Using (44b) and writing out (43) we obtain 

b~=aof ~ S~I(m,K)t21(m,K)SIO(m,K)dK; 

finally, inserting (45b) and defining '¥(d) = b~/ao , 

(d - f" S~I(m,K)T2(m,K)eioy (K) dSIO(m,K)dK. 
'¥ ) - £...oJ I_p2(m,K)e2i"Y(K)d 

(46) 



This is the "transmission integral" for a Fabry
Perot interferometer. An example of the analytical 
evaluation of (46) will be given below, assuming 
con tant p and T and choosing very simple express ion s 
for SOl and SIO' (It may be observed tbat in regard
ing (46) as a function of d, it is implici L thaL the 
Lerminal apparatuses remain fixed relati ve to the 
reference planes with which they are respect ively 
associated. ) 

The examples that follow have been chosen to 
illustrate various features of the theory and of the 
instruments considered . Inasmuch as the examples 
are rather hypothetical in nature and mainly illus
trative, no thorough or rigorous disc llss ions are 
attempted. 

C. Examples, J.11ichelson case. 
C. l. Dipole. The following example seems we11-

suited to illustrate the theory, ina,smuch as it 
involves both TE and TM fi eld-components in a 
fairly co mplicated way, t he in tegrals i.nvolved can 
be evaluated , and t !\P form of the answe r can be 
anticipated. In th is example t lte racl iated field is 
assumed to be identical to t hat of an elementary 
electric dipole of moment p located nt 0 . . 

To find the anguln.r spectrum of Lhe elecLric field 
we may proceed as fo llows. The nppropriate H ertz 
potential is [9J 

11 = (4n ) - lpeikTjr; 

tbe representation of the spherical wave exp(ikr) /I' 
in terms of plane waves is [10], for z>O, 

eikTjr= - (27ri) - I J ,), - leik.rdK; 

where k = k+ is ullderstood. Since E = VX V X II 
we hav(' 

where C= (87T'2ei) - I. Hence the complete vectorial 
spectrum is b = Ck X (k X p)-y-I. This result holds for 
alllK ; immediate confirmation for K 2< k2 may be 
obtained from (25) using the asymptotic form 

for E [9J. 
Accord ing to the definition of SIO(m, K ), we have 

in this example 

SIO(m, K) = (C/ao) "m . [kX (k X p)h- 1 (48) 

for m= 1, 2. These spectral components are to be 
substituted into the reflection integral (32) for the 
Michelson instrument. The coefficient of exp (2i')'d) 
in the integrand of (32), after some vector-algebraic 
labor, is found in the present instancp to be expres
sible in t.he form 

532245- 60- 2 9 

where p' is the negative mirror image of p, with 
components (-Px,-py, pz). Thus for (32) we have 

Comparing this expression wit,h (47) it is seen that 

<l>(cl)=- Cw: p. E' ~O, 0, 2cl), (50) 
7Jo ao 

where E' is the electric fi cld of a dipole of moment 
p' located at 0 , and E' is evaluated at the image of ° in the reflecting surface of the lllstrument. This 
result is indeed of a form that might be anticipated. 

If for simplicity we take p to be transverse, (50 ) 
bl'comes more explicitly [9], 

where 0 1 is independent of d. It is clear that tbe 
rcsult in this example is not physically meaningful 
as kcl -'>O, 1'01' the magnitude of <l> cnn not properly 
cxceed unity. This defect is attributable to the 
neglect of scattering or l'c-radiation by the dipole; a 
plausible extension of the theory of this exnmple 
taking scattering into account gives results qualita
tively well-behaved for all values of kcl. 

C.2 Two-dimensional Gaussian.- To provide a 
reasona.bly simple analytical illustration of the be
havior of a Michelson instrument operated in the 
Fresnel region, we consider a two-dimensional case 
with \',he pure T .M "Gaussian" spectrum 

(51) 

The su bscl'ipts 1, 2 here refer to ex, ey , respectively, 
and A is an arbitrary amplitude. The correspond
ing distribution of E t on t he reference plane z= O 
is also Gaussian, 

as follows from (142) (see appendix, B ). The param
eter a is , in a well-known manner, a measure of the 
sharpness of the angular spectrum and a measure 
of the width of the distribution of E t • 

In this example it will be interesting to determine 
the absolute magnitude of <l> explicitly. W e need 
the relation between laol and IAI and we obtain this 
from a consideration of energy balance under free
space radiation conditions. If the fraction h of the 
net input power at So is radiated, we have 

(52) 



wher e the left- and the right-hand sides of this equa
tion COIne from (42) and (162) , r espectively. 

The appropriate two-dimensional form of (32) is 

<P (d) = - 17015 ~17m (kx)SIO( m, kx) SlOe m,- kx)e2i~(kx)ddkx, 

(53) 

wher e we still have 17 1 = W~'Y-I and 17z= 1'(W,u )- I. In 
the present case this becomes 

L et ting ¢ denote th e phase of A /ao and using (52) to 
eliminate IA /aol from the last equation, one obtains 

51'- 1 exp (- a2k';,+ 2i1'd)dkx 
<P(d)= -e2i <l>( 1-I S oo I2) h k • 

5-k 1'- 1 exp (- a2k;)dkx 

(54) 

If lca» l , this expression yields <P(0 )~-e2i</> 
(1-ISoo I2) h- a quanti ty that may approximate unity 
in m agnitude. 

Since we are inter ested in Fresnel-region behavior, 
an asympto tic expansion of the numer ator of (54) 
in terms of inverse powers of a is appropriat e. This 
asymp totic expansion may be found wi th the aid of 
Watson's lemma, as given by J effreys and J effreys 
[11] . One finds 

<P ( l ) = 0 Zikd [1+1 - 2ikd 
c Ie 4 (lca) 2 

+ 9- 18ikd- 12 (led)2+ ... ] 
32 (lea ) 4 ' (55) 

wher e 01 does no t depend upon d. For this expres
sion to yield a good approximation it is necessary 
that lea> > 1 and that lea2> > d (these inequali ties 
are equivalen t to those given in section 1 in th e 
descript ion of Fresnel-region operation). To the 
second order in lea, 

arg <P (d) ~2lcd[1- (2lea) -2]. 

Thus the " diffraction correction" to the phase can 
be expressed in terms of a small increase in effective 
wavelength , which in t his approximation and in 
this example is independen t of d. 

It is of some interest t o evaluate this resul t for 
values of le and a that might be considered typical 
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of optical cases, even though th e formula does not 
apply, or at least does no t apply directly, to any 
optical instrument. If one takes A= 5000 A and a= 5 
cm , the fractional increase in effective wavelength 
given by the formula is approximately 6 X 10- 13 . 

0 .3 TEIO aperture-distribution . A somewhat more 
realistic- and mu ch more intractable-example of 
Fresn el region behavior is afforded by the assump
tion of a TE lO-mode distribution in a squ are aper
ture in a conducting screen. This example is sug
gested by an experimen tal arrangement in which 
a square horn-lens radiator is fed by a taper from 
rectangular waveguide support ing the TE lO mode [8]. 
If the aper ture is bounded by Ix l = a!2 and Iy l = a/2 
in the plane z= O, we may tak e 

in t he aper t ure and Et= O elsewhere 111 the plan e. 
From (22) and (23) it follows that 

where 

SlO (l ,K) = leyf(K )!iK I, 

SIO(2,K ) = lexf( K )!IK I, 

(H ere and subsequen tly unimportant constan t factors 
are denoted 0, 0', etc., without explicit definition 
in each case.) H ence (32) becomes 

This in tegral has been evaluated numerically. The 
numerical analysis and th e programming required 
for this difficult task were performed by P aul F. 
Wacker and William W . Longley, Jr . Some of the 
results are shown in table 1, wherein the quan tity 
labeled I::ld is calculated in accOl'dance with the 
defini tion 

I::ld = (2lc )-I[al'gif>(d) - argif> (O)]- d. 

T ABLE 1 

__ ~ __ "_I_d_I __ Ll_ ,_t _ 

em em 1n Microns 
0.6278 60 2 - 56.96 
.6278 60 10 - 193.80 
.6278 :lO 2 - 155.93 
. 6278 30 10 -503.28 
.1 60 2 -2.32 
. 1 60 10 - 7.56 



Th e fact that t his quantilyis negative corresponds 
to tlte general faeL that the efl'eC't ive wavelength 
tends to be greater than the free-space wavelength , 
o t ltat the obser ved phase increases with d more 

slowly than 2led. 
D . Fabry-Perot with line source. In this example 

Lhe radin,ted fi eld of the radiating system is taken to 
be idenLien'! to that of a simple line current coin ciding 
with the y-axis, i\,nd it is ass umed that the receiving 
system is the same as the r adiating system. These 
ass ump t ions yield a two-dimensional, pure TE prob
lem in which the free-space radiation pattern has no 
Fresnel region. Al though only the most readily 
ob.Lainable.results .are g'iven h ~re , the example ~h'ea~l)" 
aftords an ll1terestmg illustr atIOn of the behaVIOr of a 
Fabry-Pero t instrument in the presence of a continu
OLlS angular spectrum. 

The ass Llmed field being pure TE, we cer tainly 
have SIO(l ,lex) = O; and since E is asymptotically pro
pOl·tional to 1,-1/ 2ei kTey, it follows from (252) t hat 
we m a)" write S IO( 2,lex)= 'Y- 1, at leas t for lei < 1c2. 
We shall emplo)" this expression Jor Lhe whole range 
of le x, choosing to jus t ify t his analytic continu a tion 
by t he results to be obtllin ecl in a momen t. Using 
the reciprocity relation (202) we obtain fot' Lhe r e
ceiving s)Tstcm S~ L (2,lex) = 'Y (W,u) - I1)olS;0(2, - lex) = 
(w,u1'Jo) - I . Hence t lte transmission in tegr fll (46 ) be-
comes 

(58) 

The in tegml diverge for d= O; this behiwior is 
attributable to the implicit ass umption of an en
forced curren t in the rad iat ing clement (as in the 
dipole example above ). Jf we assume T a ncl p con
St/liltS independent of lex, d> O, Hnd Ipl< ' , then (58) 
mil,)' belVritten 

'If (d)= (V £. p2nJ' ''' ,,( - lei{2 n+lh<ldlex' 
11 = 0 - co 

B)" introducing a new variable of integra tion 0' , such 
that le sin 0' = - ,,( , one may tmnsform lhe in tegr al 
to one of t he stand ard representations of lite H /Ulkel 
fUll ction [12] of the firs t kind and order ze ro. Thus 

totic expansion. Instead of (59 ) we then have 

where 

F (p, led) = -£, (2n+ 1) -~(peik<l )2"+ I. (60b) 
1> = 0 

Tn (60b) a phase angle in p obviously is eq uivalent 
to an additive constant in d ; having noted t his, we 
aSS llme the p2 is real and positive. 

For p2< 1, the series (60b ) converges for all valu e 
of d and IF( p,lcd)I has maxima for led = m7r, where m 
is an integer (for p2= 1, the series still converges for 
lcd~m7r but diverges infinitely a t t he points wh ere 
lecl= m 7r ). These maxima are certainly the principal 
maxima and correspond to the passage of axial rays; 
it is not known whether there are s ubsidiary maxima . 

Since [T/2 :S1 -lpI2 (the equality holding for a 
lossless etalon), T and hence 'If must approach ze,'o 
as p2-i>1 except possibly at the v,llues Joc d for 
which the series divcrges. Art es timate oj' F (p,m7r) 
as p2-i> 1 indicates tha t 'If mllst approach zero a t 
these points also. This decrease of transmis ion 
at the maxima as p2-i> 1 differs from the res ult 
give n by tbe optical formula (45b) and ma)' be 
surprisi ng. It can be explained in terms of increasing 
select ivity for axial rays, such t hat a cleCl'easing 
portion of th e in cident spectlTlm, /\,nd hence dc
creasing power, is transmitted. 

Finally it may be observed that F (p,led ) i a 
periodic fUllclion of d, so that the factor cL- ~ in (60a) 
gives the general trend of 'If wit h d. Tn the optical 
case , \[I itself would be periodic, 

4. Appendix 

A. Reciprocity relations. Let E' , H' , and E" , H" 
denote any two electromagnetic fi eld (of the same 
frequency) that can exis t in t he i nterior of th e 
waveguide-space transdu cer considered. J n vir tu e 
of tb e hypotheses imposed in sect ion 2, lhe Lorentz 
relation 

V' ·(E' X H " - E" X H ' ) = O 

\[I (d) = 0' 72~p2nHdl ) [(2n + ] )led]. 
will hold in V[6]. Therefore, usi ng the divergence 

(59) theorem, one h,\'s 
n= O 

At t his point we note t hat for p= O, 'If (d ) becomes 
proportio nal to Hdl ) (led ), as migb t be expected for 
free-space transmission between systems of the c1es
crip tion consiclered. 

For Ipl appro[tching unity, fe[ttures peculiar Lo t he 
Fabry-Perot may be expected to appear- and the 
series becomes very slowly convergent. A thorough 
discussion of (59 ) migh t be premature and wi ll not 
be attempted here (one might wish to consider a 
more reillistic model of the F abry-Perot, for example). 
V.,Te shall assume led> >] and approximate t he Han
kel fUllclion by means of the first term of its asymp-
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f (E' X H " - E" X H' ) · n cLS= O, 
so+ s~+s ,+ Soo 

where n is tbe inward uni t normal on the boundary 
of 11 and the parts S o, S~, etc. , making up the bound
l1,ryof V are as defmed in section 2. Now, t he contri
bu tion of the integral over S~ vanishes, since the 
in tegrand vanishes there. By using the asymp
totic form of the fields for large r, it can be shown 
that the S oo -integral vanishes for fields generated 
bv any distribu tion of sources confin ed to a sphere 
of fini te radius centered at O. This restriction 



apparently would rule out excitation of the system 
by plane waves incident on SI, which we wish to 
consider, but since we can imagine a plane wave 
approximated arbitrarily closely by a s0l!l'ce of 
finite dimensions at a sufficiently large dIstance, 
there is no real limitation. Hence we may employ 
thc relation 

r (E' X H" - E" X H') ·ndS= O (61) J 8 0+ SI 

without explicit restrictions. If in this expression 
one replaces E', H' and E", H" by their representa
tions on So and S[ , equations (1) and (12), one finds 
after some analysis 

7] o(a~b~/-a~' b~)-f 2;7]m(K)[a~(K)b;':(-K) 

-a:':(K)b~(-K)ldK= O. (62) 

In obtaining this result the use of the integral 
representation (17) of the a-function is helpful. 

ViTe now assume that E', H' and E", H" are the 
fields corresponding to excitation by the following 
particular sets of incident waves 

a~= I, 

a:"(K) = 0; 

From the scattering equations (18) we obtain 

Upon substituting all these quantities into (62) and 
observing that 7]m(L) = 7]m( -L), one obtains the 
reciprocity relation (20) of tbe text. 

In a very similar manner one can derive (21) of 
the text. 

B. Two-dimensional formulation. For the discus
sion of two-dimensional cases many, if not most, of 
the formulas of the text require modification, and 
almost all the modifications may readily be obtained 
by r eduction from formulas given in the text or by 
parallel development. Certain key formulas and 
minor subtleties are discussed here. 

It is assumed that all quantities are independent 
of the transverse coordinates y and ky , so that these 
coordinates will be absent from all formulas. 

Under the above assumption the unit vectors ,,[, 
"2 designating the "parallel" and "perpendicular" 
electric-field directions degenerate to "1 = ex sgn k x, 
" 2= e y sgn kx • The inconvenience of the sign re
versal is avoided by adopting ex, ey as the basis 
vectors for the two polarizations. Sums over the 
polarization index m become sums over x- and y
components. This change induces a few further 
sign changes, the key one being in the reciprocity 
relation (given below). 
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The two-dimensional forms of (14) and (15) may 
be written 

where r = xex+ze., 'l= k2_ki, and integrations 
with respect to k x and x are understood to be taken 
over the range (- ro, ro). (The numbering of these 
two equations indicates the scheme to be followed 
in this appendix.) 

Power expressions such as (16) and (4) must be 
reinterpreted as pOWf'r per lmit length in the y-direc
t.ion. Equation (16) becomes 

P r =7r f 2:71mlbm(kxWdkx' 

k~<P 

It is convenient to match the loss of a factor of 27r 
between (16) and (162) by renormaLizillg the basis 
fields at So so that (4) becomes 

With this renormalization the numerical factors in 
the reciprocity relation remain unchanged. 

The reciprocity relation becomes 

This is probably best established by a derivation 
parallel to that used for (20). The disappearance 
of a minus sign between the members of (202) as 
compared with (20) is due to the adoption of e x 
and ey as basis vectors for the two polarizations. 

In the two-dimensional case t.he asymptotic form 
of E(r) I for large l' is 

1 

E( ) _(27r)2 k , ,- .', ikrB(k' ') r t, asymp - ik cos (J 1 -e SUl (J , 

where (J' = tan- 1(x/z). From this follows 

for k';,<P, where k = kxex+ 'Yez' 

The power radiation pattern becomes 

where b, the complete vectorial spectrum in the two
dimensional case, is b = bxe x+ bze z and bz= -kxbx'Y- l. 

The two-dimensional forms of equations such as 
(18), (32), and (46) may be written without difficulty. 
[The equation corresponding to (32) is written as (53) 
in the text.] 
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