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Solu tions are presented for t he low-frequency electromagnetic response to a n oscillaLing 
magnetic dipole by conducting bodies of s imple shape. The quas i-stationary approx imation 
is employed t hroughout, which is valid when the relevant dimensions of t he problem are 
all small compared to t he free-space wavelength. Thi s amoun ts to matching solu t ions of 
t he wave eq uation wi thin t he bod ies to so lu tions of Laplace's eq uat ion outs ide. The results 
have a pplication to geo ph ysical prospectin g. 

1. Introduction 

ElecLromagneLic methods of geophys ical exploration utilize the fact that the co nductivity 
of massive ore bodies is mu ch greater than the surrounding barren rock. The general sch eme 
is to set up a primary or exciting fLCld by a curl'ent-calTyiug loop and then to detect the seconcl
ary fielcl or response of the body by means of a receiving loop. The operating frequency 
should be sufficiently low that the attenuation by the surrounding barren rock is negl igibl e_ 
This usually requires frequencies in the audio range. The literature on the subject is extensive 
and here only certain representative papers are referenced [1- 4]1 

TheorcLical approaches to the subject are usually restricted to highly simplified situations. 
For example the exciting field is often assumed to be uniform or the body is taken to be perfectly 
conducting. Wl1ile such solution do indeed provide much useful informatioll , there is a need 
to consider situations of a more general natme. For example, ill the practical methods of 
electromagnetic prospecting Lhe transmitting and receiving coils or loops may be located at 
distances from an ore body which are comparable to i ts maximum dimension and thus the 
uniform-exciting-field assumpLion is not valid . Furthermore, the frequency which is of the 
order of 500 cps is sufficiently low that the ore bodies seldom behave as if they were of pOl'fecL 
conductivity. For the above reaso ns, it seems worthwhile to set up solu tions for certain 
idealized cases which do no t suffer from such over-simplifying assumptions which are usually 
present. The geometrical forms considered are the prolate spheroid, the sphere, and the 
circular cylinder. Because of complexity the spheroid is taken to b e p erfectly conducting. 
The sph ere and cylinder arc assigned a co nductivity and magnetic permeabili ty which a re 
finite. In each case the solution is presented for the case of an arbitrarily located magnetic 
dipole. The results are in a form which is sui table for computation. 

In each case treated, special attention is paid to t he equatorial plane which contains the 
source and observer. In the tlU'ee instances, the source is at 0 and the observer at P as 
indicated in figure 1. For a (y-dil'ecLed) magnetic dipole of strength K at 0, the primary 
field at P is 

where !Cdl is the magnetic moment. Note that Kdl = (amp-tuI'lls) X (coil area) . In what 
follows the secondary fields are expressed in terms of x (distance from coil axes to center of 
body) , y and y' (coordinates of source and observer), 8 (distance between 0 and P), rr con
ductivity of body (mhos/m) , and }.I / }.Io (magnetic permeability ratio). 

1 Figures in brackets ind icate the literature references at the end of th is paper. 
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FIG URE l.- Cl'OSS section of spheroid, cylinder, or sphere in equatorial plane (z = O), showing tmnsmitting and 
l'eceiver coils, 

2. Low-Frequency Electromagnetic Response of a Highly-Conducting Spheroid 

Prolate spheroidal coordinates are introduced (p, T} , 8). They ar e defined by 

(eq of spheroids), 

(1) 

(eq of hyperboloids), 

where p and z are the us ual radial and axial coordinates in a cylindrical coordinate system. 
It thus follows that 

and (2) 

where c is the semifocal distance, These prolate spheroidal coordinates are taken to be con
focal with the spheroidal body whose surface is defi ned by T} = T} o (see fig, 2), 

15=+1 

[
major axis = c"o 

conducting spheroid "=,, 2 minor axes = a=c J o 

~ 
c 

~ -+-+--+-+-I-----=--_=_ P 15=0 

____ -y-_ 1---- " = can s t. 

15 = canst. 
15=-1 

FIGURE 2,- The spheroid and spheroidal coordinate system, 
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In the region exterior to the body (i. e., '1/ > '1/0) the fi elds arc a solu tion of Laplace's equation 
if the frequen cy is sufficiently low (i.e., signifi cant distances should be much less than the 
wavelength). Furthermore, in this case the field s can be derived from a magnetic poten tial 
It. Thus, 

...; 

H =-grad It 

where 

for 

Now, solutions of Laplace's equation in spheroidal coordinates are well known and are of t he 
form (for integral values of TIl, and n) 

(3) 

where A, B , A', and B' arc constants and, followin g Smythe [5], P ';: (}J. ) and Q%' (J.L ) are associated 
Legendre functions of argument J.L . They are defin ed by 

(4) 

or 

(5) 

in terms of the (ordinary) Legendre functions P n(J.L ) and Q,, (J.L ). It should be noted Hobson 
introduces a factor (- 1)'" on tbe right-b and side of t he latter two equations and his definitions 
are thus slightly different. 

At the point C it is assumed that there is a magnetic point charge of strength, J( (see fig· 
3). The magnetic potential at P can now be written 

(6) 

FIGURE: 3.-Conducling spheroid and source C and observer P . 
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where R is the linear distance between Cat (1']' , 0', 1/) and P at (1'] , 0, cf» and ns is the secondary 
influence of the body . To express n in prolate-spheroidal coordinates, we make use of the 
inverse-distan ce formula 

~=.!. £ -t, (2-om)(- l) m [ (n- m)!J 2 (2n+ 1 ) P~' (0)Qr;: ( 1']' )P';: ( 1'])P~' (o' ) cos m(cf> - cf>' ), (7 ) 
R C n=Om = O (n+ m)! 

which is valid for 1'] < 1']'. [00 = 1, om= O (m~ O)]. 
The po ten tial n is a solution of Laplace's equation and since 1/R is also, it follows that 

\72nS= 0 for 1'] > 1']0' Thus ns must contain terms of the type 

Q~' (1'])P';:(o) cos m(cf>- cf>' ) 

only since P~( 1'] ) is infinite at 1'] -'>00 and Q~ (o ) is infinite at 0= ± 1. The poten tial exterior 
to the spheroid is thus written, for 1'] < 1']' , 

(8) 

where 

(9) 

Th e unknown coefficien t is now found from the boundary condition , that on the surface 
of the spheroid t he normal component of the total magnetic field must vanish . Thus, 

at (9) 

This is satisfied if 

(10) 

where the prime indicates the deri vati ve with respect to the argument of t he Legendre fun c
tion . The solution is thus given by 

n j{ [1 ~ ~ M P ,;:'( 1']o) Qm( )pm() (-I. -I.') J ".=-4 f"- L...J L...J 1 mn Qm'( ) n 1'] n 0 cos m '1' - '1' , 
7r I, n=O m = O n 1']0 

valid for 1»1']0' To simplify things a bi t we will consider our source to be a y-directed m agnetic 
dipole T located in the equatorial plane of the spb eroid (z= O) (sec fig . 4). 

The potential at H (x, y , z) is thus given by 
o 

4>= - dl "" n u y 

=+Kdl {_~~+£ -t, P~:(1'] o) Qr;: (1)) 
47r oy R n=O m=O Qn (1']0) 

X P r;: (o) [O~~n cos m(cf>- :cf>' ) +o~, cos m(cf> - cf>').MmnJ} . 

The magnetic fi eld at R is obtained from 
-4 

H =-grad 4>. 

In the case of the y-component, for example, we have 

04> o2n 
H y= - oy = dl oy'oy· 
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FIGuRE 4.-The conducting spheroid with locations oj source C and observer P. 

on = oQ . Ory + oQ . o<p, 
oy ory oy o¢ oy 

x= c."l( l - f,z) (ry2_ l) cos <p, 

it readily·follows-'that for 0= 0 (or z= O), 

Ory sin <p ,,/ ry2- 1 
o y=-c---ry-

and 

and-similarly for the primed quantities. Thus, 

for a y-directed dipole in the plane z= O, 
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where 

,_ K '" n m [(1'- m!)]2 P:~'(7]O) m 2 , In , /I, 
Q --4- 2: 2: Em(- I) (2n+l) ( + ) ' Qm'() [Pn(O)] cosm(¢-¢ )Qn(7] )Qn(7] ), (17) 

'Ire n=O m=o 11 m. n 7]0 

where 

and 

Now 

for 
for 

0= 0' = 0. 

m = O 
mrf O 

Oy~y' Q(7])Q(7]') cos m(¢- ¢') = V ';;( 7] ,7] ',¢-¢') 

= Q'(7] )Q'(7]') cos m(¢-¢') (sinj: ,17]2- 1)(sin ¢" /~I) 
e 7] e 7]' 

7] 7] m cos m,¢ - ¢ ---= --,~=7== + Q( )Q( ') 2 f ') (COS ¢ 1 )(COS ¢' 1 ) 
e ,17]2- 1 e ,1(7]' )2- 1 

Finally, 

where 

for x' =x. 

Noting that 

R = iy' -yi =s=y-y' 

and 

where V::, is as given above. 

For the special case (i. e.,z=z' = 0, iy' - y !=s, and x=x') 

as shown in figure 5, we have 
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y 
(x,y,o) or (",o,q» 

Field Point P 

s (y'-y=s) 
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(x,y',o) or (,,' ,0 ,</>') 

FrG U UE 5.- Special configw'at-ion of (di pole) ~ sow'ce C and observer P when they are located in equatol'ial plan e of 
spheroid. 

where a is the semiminor axis, c is t be semifocal distancc, 

and 

Also it should be noted that 

If b is the semimajor axis, 

tan cp' = Y' and 
x 

p= c.Jr/- l , 

3. Low-Frequency Electromagnetic Response of a Finitely-Conducting Sphere 
With Arbitrary Permeability 

Spherical coordinates (r, 0, cp ) are introduced as indicated in figure 6. The surface of a 
spherical body (of conductivity (J' and permeability J..L ) is defined by r=a. Exterior to the 
sphere the fields can be derived from a magnetic potential Q. Thus, 

where H = -grad Q} 
for r> a. 

V2Q= O 

Inside the sphere the fields are a solution of the wave equation and are best derived in terms 
of scalar stream functions (following Schelkunoff) [6]. In the present problem we need only 
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FI GURE 6.- The spherical body and source C and observer P with the spherica(coordinate system. 

consider the TE modes which are associated with the induced magnetic dipoles. Thus, 

1 (02 0\ IIT = -· - ~-T ) f 
~/.lW ur- / 

for r<a, (21) 

II 1 0 2f 

q, i /.lwr sin 0 or o¢ 

where f is th e stream function and 

-y = (i/.lw(J+ iwf )]t ~ (i(J/.lw)!, 
whereas 

1 [ 1 0 ( . 0 ) 1 0 2 
] 

= i /.lowJ'2 sin e 00 smie 00 + sin2 0 0¢2 ifio' 
for r>a, (23) 

H _ 1 02 fo _ _ oQ 
q, - i /.lowr sin e oro¢ - J' sin eo¢' 

wh ere ifio is the stream function pertin ent to the exterior region and is related to the magnetic 
potential by 

Q _ _ _ 1_ Ofo, 
- - i /.low or (24) 
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The stream functions satisfy 

l' - +--- S IJ1 0 - +----[ 
2 02 1 0 ( . 0) 1 02 ] 1/;= 'Y21'21/; for l' < a 

01'2 sin 0 00 00 sin 2 0 0</>2 1/;0= 0 for l' > a. 
(25) 

Thus they arc of the form 

~n('Y1') P ;" (cos 0) for 1'< a 
K n('Y]') 

(26) 

and 

1'- n 
1'+ (n+l) p~n(eos 0) for 1'> a. (27) 

In the above J nand fc, are the sph erical modified Bessel functions defin ed by 

, _~ [ < 1] (- l )'n(n+ m)! _ ' n + 1 - z n (n+ m) ! ] 
1n(z)-2 e ~ m!(n- m)!(2z)'" +( 1) e ~o m!(n- m)!(2z)'" (28) 

and 

, n (n+ m) ! 
K (z)=e- z "" , , 

n 7~0 m !(n- m) !(2z)1n (29) 

following Schelku noR' [6]. 
Now for 1'> a, 

(30) 

where the primary so urce is denoLed QP and the influence of Lhe sp hcre by QS. Assuming a 
magnetic charge (strength K ) located at point C with coordin ates (1", 0' , <I>'), t he po tential Q P 

at point P with coordin ates (1', 0, </» is given by 

OP= K 
-" 411' R 

T7 00 n (n- 1n)1 1''' 
.n . "'" "" . 1'.)'" ( O) P '" ( 0') X ( ' ) = -4 L..J L..J f ", ( + )1 ( ,') n+ l n cos "cos cos m </> - </> 

11' n=O 7Il = 0 n 1n. 1 
(3 1) 

for l' < 1" , using a \I'ell-known addiLion theorem fo1' the inverse distance in spherical harmonics 
[5]. This suggests writin g 

T? 00 n ( ) 1 ( n ) a2n+1 s L1.... n - 1n . 'Jm 1ft I I 

Q =-~~ fmc + ) 1 -+1 Sn(")n+l ,,,+l X l ,, (cos O)P" (COsO )cosm(</>- </», 411' n = O m = O n m. 11 .. 1 1 
(32) 

where S n is an undetermined coefficien t. The appropriate forl11 for f o is Lhus 

_ K iJ.1-ow -.0 ~ (n- m) ! 
fo---- L..J L..J fm ( )1 411' n=O 1>1=0 n+ m . 

{ ( 1' ) n+l a2n+l } p~' (cos O)P':: (cos 0') , 
1" - (1" )n+lrn S n (n + l) Xcos m(</>-</> ). 

(33) 

For the in terior the solution must be of t he form 

KiJ.1-~W 00 n (n- m)!J,. (1'1') P ;: (cos </» p~n(cos </>') (a)n+l 
1/;= - --~~fm J Bm , ' 

411' n =Om =O (n+ m)! n('Ya) (n+ l ) r 
(34) 

A 

where the 1{n('Yr) solution has been rejected since it becomes infinite at 1' = 0 and where Bn is 
an und etermin ed coefficien t. 
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The boundary conditions require that the normal flux (p.Hr) inside the sphere is contin
uous with the exterior normal flux (p.oHr) at r= a. Also the tangential fields He and H ", 
must be continuous at r= a. These conditions are satisfied if 

I'- o1/;J= I'-O o1/;0J (35) 
or or 

r= a r=a 

and 

fl = 1/;ol' (36) 
T= a r= a 

This leads to 
A n (a) - (n + 1) (1'-/1'-0) 

S n A n(a) + n(I'-/l'-o) 
(37) 

where 

(38) 

with a= "(a. Also, 

(39) 

The above expressions can now be used to obtain an expression for the magnetic potential 
due to a dipole for r> a in terms of the potential n due to a point charge. For example in 
the case of a y directed dipole at (1", e/>' , z') we have 

o 
<po= -dl - n· 

oy' 

The corresponding magnetic fields are thus given by 

--+ 
H = -grad <Po 

and the v-component, for example, is 

Again we shall consider the equatorial plane (see fig. 7) which is Z= z' = 0 or 

and thus, 

and 

(j = 8'= 7r!2. Here x=1' cos cf> 

y = 1' sin cf> 

o . 0+ 0 - = Sll1 e/> - cos e/>
oy or pOe/> 

X' =1" cos cf>' 

y' = 1" sin cf>' , 

() . ,0+ , 0 
{)y, = SIl1e/> or' cos e/> p'Ocp,' 

The field is thus obtained conveniently from 

(40) 

(41) 

(42) 

(43) 

(44) 

H dl [ . , . {)2 +., 02 + ,. 02 +' 02 J 
v= sme/> Sll1e/>o1"or Sll1e/> cos e/>por'oe/> cos e/> Sll1e/> p'0e/>'o1' cose/> cose/> p'POcpOcp' n. 

(45) 
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It should be noted that 

Writing 

it is seen that 

and thus, 

-=-Jll 02 1 
H~=K47r oyoy' R 

p' = 1" for 1:)' = 7r/2 

p= 1' for 

where R=~(X_X') 2+ (y _ y') 2 

Kdl 
= - 47rs3 

where s=ly- y' l· 

The secondary fi eld is derived from 

(46) 

for z=z ' = 0, (47) 

(48) 

s K 00 n (n- m)! aZ"+'n P';: (cos I:))P';: (cos 1:)' ) , 
QO=4- ~ ~ ~m ( + )' ( ,,),,+1,,+1 S" n+ 1 cos m(1)- 1>). (49) 7r n=O ", = 0 n m. 1 l' 

Finally (for 1';;; CL) 

wher e 

wh ere 

1 
U nm=..::, [(n+ 1)2 sin 1>' sin 1> cos m(1) - 1>') 

1'1' 

+ m(n+ 1) sin 1>' cos 1> sin m (1)-1>' ) 

- m(n+ 1) cos 1>' sin 1> sin m(1) - 1>') 

+ m2 cos 1>' cos 1> cos m (1)- 1>')]' 

Y' tan 1>' =_. 
x 

(50) 

(5 1) 

The quantity Sn plays rather an essential role in the final result. When the conductivity 
is great or at high frequency, the argument 'Ya of the Bessel fun ctions may be large. In fact 
if l'Yal> > 1, Sn approaches unity for all n. The behavior of Sn, as a function of 'Ya and !J./!J.o, is 
a convenient way to illustrate the frequency dependence of the secondary fields. Numerical 
values of the real and imaginary parts of Sn are given in some detail for n = 1 in previous 
papers [2, 8] and less adequately [9] for n = 2, 3, and 4. Fortunately, if the source C or the 
observer P (for any respective orientations) are a distan ce from the center of the sphere which 
is large compared to the radius, it is seen that only the term corresponding to S[ is important. 
The response of the sphere is thus proportional to the quantity 

S 'Yal;('Ya) - 2Kl,ha) 
1 'Ya1;('Ya) + Kl l ('Ya) 

wb ere 

The real and imaginary part.s of S, are plotted in figure 8 as a function of the "r elative radius" X 
defined by 

or 
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For small valu es of X corresponding to the lower frequencies, 8) is negative and, in fact, 
it approaches the value - 2(J{- 1) / (J{+ 2). This could have been derived directly from 
magnetostatics. At the higher frequencies 8) approaches unity which corresponds to no 
penetration of magnetic flux into the body. 

4 . Low-Frequency Response of a Conducting Cylinder With Arbitrary 
Permeability 

,iVe now wish to calculate the electrOinagnetic response of an infinitely long conducting 
cylinder with any permeability. (See fig . 9.) Exterior to the cylinder p>a, the fields are a 
solution of Laplace's equation and are derivable from a potential. Inside the cylinder the 

--> 
fields are a solution of the wave equation and are derivable from a magnetic H ertz vector 11* and 
an electric Hertz vector IT with only z-components. Thus (for r < a) 

--> --> 2 --> 
I-I= (-'i+grad div)l1*+-,2- curl 11, 

'/, fJ.W 
(52) 

where 
--> 
11*= (0,0,11;') (53) 

and 
--> 
11= (0,0,11,), (54) 

Solutions of the wave cquation 

(55) 

are of the form 

(56) 

where a = Ci+h2)! and 1m and J{m are cylindrical Bessel functions of tbe modified kind defin ed 
by G. N. Watson [7]. 

P(r,;,cp) 

C (r' 7T 

'2' cp' ) 

FIGURE 7.-SpeciaZ configuration of (dipole) source C and observer P when they are located in equatorial plane of 
sphe1·e. 

26 



0.7 

0.6 

0.5 

en 0.4 
cii 
.; -0.5 
a:: E 

0.3 
-1 .0 

0.1 

-1 .5 
0.1 

-1.0 
I 10 10 50 100 100 500 10 

RFI ATIVE RADIUS X 
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FIGURE g.- The cylindrical body and SOUTce C and observer P with the cylindrical coordinate system. 

External to t hc cylindcr (1'>a) ---; 

lI=-gracl Q (57) 
where 

(58) 

For a I11H,gnetic ch arge at C' (pI, q/, z') l1. ncl the observe r at P (p, ¢ , z), 

(59) 
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C (x . yl. 0) 

x 

FIGURE 1O.- Special configumtion of (dipole ) source C and observer P when they are located in equatorial plane 
of cylinder. 

where R is the usual linear distan ce between C and P. Using a formula given by V\"atson [7} 
we find 

where 

with 

Using the addition theorem 
00 

K o(hP )= "22 ~1nKm(hp')I", (hp) cos m(</>-</>') 
m=O 

for p < p' and with 
~o= l , ~1n= 2 (m= l , 2, 3 .. . ), 

it now readily follows that 

This latter equ ation can b e written symbolically in the mann er 

wh ere r is the operator 

This suggests writing 

or 

K +00 J +oo 
4 1T2 m~ oo _00 K ",(hp' ){ .... }e- ih (Z-Z'l dh e-im(</>-</>'l . 

Q= r[I", (hp) + Am(h)Km(hp)J 
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(61) 

(62) 

(63) 

(64) 

(65) 

(66) 

(67) 

(68) 

(69) 



for the external fields and 

for the internal fi elds. The corresponding magnetic field components are 

Hp=-rh[I~(hp)+A", (h)K~,(hp )] } 

~m 
H q,= r.p [I", (hp) + A ", (h)K", (hp )] T~ a 

Hz=r~h[Irn (hp) + A m(h)K ",(hp)] 
and 

(70) 

(71 ) 

(72) 

(73) 

The unknown coefftcienLs am, b"" and A m, which are fun ctions of h, arc determined from 
the boundary condiLions. These are the normal flu x, (i .e., /J.IIp) fLnd the t angenLial fields, 
(i. e. , IIq, and H z) ar e con Linuous a t T= a. Th e explicit result for A m(h) is found to be 

(74) 

wh ere 
-I" () I ;" (a) 

"" a =-1 () a 'fit a 
(75) 

and 

(76) 

The precedin g results can now be employed to calculate the magnetic field of a magneLic 
dipole. In tb e case of ,1, y-direcLed dipole ft t C the potentiftl fL t Pis - dlo Qjoy'. Th e y-com
ponen t of the field aL P is ob tained from 

0 2Q 
Hy=+dl~· (77 ) uyuy 

R estricting our attention again to t he plane z= z' = 0 and for x= x' (see fi g. 10), we have 

(78) 

where s= y - y' > O. Noting t hat 
o . 0 + 0 

oy = sm cp op cos cp pO¢' (79) 

it readily follows t hat 

l1..dl + 00 J + oo [ , . im ] 
H~= 4.7T":;-m~ oo - 00 A mCh) hKm (l~p) S ill cP- P K m(hp) cos cp 

X [hK~ (hp) sin cp' + i;: K mChp') cos cp' ] e- ih(Z- Z' ldhe- im (q, - q,'l , (80) 

where A mCh) is given expli citly above. 
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5. A Related Cylindrical Problem 

The above general solution for an infinitely long cylinder with dipolar excitation is rather 
complicated. The presence of the infinite integrals and the existence of Bessel functions of 
generally complex argument complicate the numerical aspects of the problem. It appears, 
however, that simplifications can be made under certain limiting conditions. For example, if 
the radius a is small and at low freq uencies, ha is much less than unity over the important range 
of the integration. Thus, 

(81) 

where K = /1-/ /1-o. In the case of very high conductivity iT'a l> >1 this simplifies further to 

A",(h) ~ (82) 

The square bracket term in eq uation (81) thus characterizes the frequency dependence of the 
response and is a function only of K and 'Ya. 

The secondary magnetic field Fls for the ease of finite 'Ya can then be written in terms of 
-7 

value of Fls for infinite 'Ya in the following way (for a given mode numbrr m) 

(m = 1,2,3, .. . ), (83) 

where 

T = _ [ mKI", (/t X) _·/{ XI,~ (/t X) ] 
", mKI", (--/i X) + ,Ii XI,;, (~i X) 

(84) 

and wh ere X = (IT/1-w) ~a. 

The total field is, of course, a sum over all modes, but because of the factor I m(ha)/K m(ha) , 
the relative response decreases rapidly \vith in cl'casi!lg vflJUP. of m. This folloviTS from the 
approximation 

1m (ha) (ha)2m 
K m (ha) ,...., (m!) (m - 1) ! 22n - 1' 

(85) 

which is valid for (ha)2« l. 

To shed further light on the above approximate form , it is constructive to examine a 
related problem . If the so urce is an infinite line source of electric curren t 10 located at (Po, CPo ) 
and parallel to t he z-axis, it is known tha t the secondary fi eld s due to the presence of the cylin de']" 
are [10] 

1 '" a2m 
I-I~= -2° ~ Tm m ",+1 sin m (cp - CPo) 

7r m~ 1 Po P 
(86) 

and 

(87) 
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The structure of thi s exact two-dimensional solu tion is very similar to tbe approximated form 
of t ltO three-dimel1sional solution ment ioned above. Apparently if a is reasonably small , the 
induced currents flow mainly in the axial direction even for a localized excitation and thus Lite 
frequency depenrlence of the induced eddy currents are adeq uatcly described by the form of the 
solution of tlte corresponding two-dimensional problem . 

TltO 11 umerical values of the real and imaginary parts of the function Tm are illustrated in 
figure 11 , where they are plotted as a funetion of X, t ltO " relative radius" of the cylinder , for 
vfl,rious values of the permeability ratio K. It is noted that the factor T I , corresponding to 
the dominant mode, is very similar to the factor 8 1 for the sphere shown in fi gure 8. 
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FIGURE ll.-The variation oJ the res ponse oJ a conducting cylinder as a Junction oJ XC = Ca.uw)t a) for variolls 
permeability ratios K ( = .u/.uo). 

rrhc real and imaginary parts of "/\, 7'2, and T a arc sho\\"n . 
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