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Some Solutions for Electromagnetic Problems
Involving Spheroidal, Spherical,
and Cylindrical Bodies
James R. Wait
(September 29, 1959)

Solutions are presented for the low-frequency electromagnetic response to an oscillating
magnetic dipole by conducting bodies of simple shape. The quasi-stationary approximation
is employed throughout, which is valid when the relevant dimensions of the problem are
all small compared to the free-space wavelength. This amounts to matching solutions of
the wave equation within the bodies to solutions of Laplace’s equation outside. The results
have application to geophysical prospecting.

1. Introduction

Electromagnetic methods of geophysical exploration utilize the fact that the conductivity
of massive ore bodies is much greater than the surrounding barren rock. The general scheme
is to set up a primary or exciting field by a current-carrying loop and then to detect the second-
ary field or response of the body by means of a receiving loop. The operating frequency
should be sufficiently low that the attenuation by the surrounding barren rock is negligible.
This usually requires frequencies in the audio range. The literature on the subject is extensive
and here only certain representative papers are referenced [1-4].!

Theoretical approaches to the subject are usually restricted to highly simplified situations.
For example the exciting field is often assumed to be uniform or the body is taken to be perfectly
conducting.  While such solutions do indeed provide much useful information, there is a need
to consider situations of a more general nature. For example, in the practical methods of
electromagnetic prospecting the transmitting and receiving coils or loops may be located at
distances from an ore body which are comparable to its maximum dimension and thus the
uniform-exciting-field assumption is not valid. Furthermore, the frequency which is of the
order of 500 cps is sufficiently low that the ore bodies seldom behave as if they were of perfect
conductivity. For the above reasons, it seems worthwhile to set up solutions for certain
idealized cases which do not suffer from such over-simplifying assumptions which are usually
present. The geometrical forms considered are the prolate spheroid, the sphere, and the
circular cylinder. Because of complexity the spheroid is taken to be perfectly conducting.
The sphere and cylinder are assigned a conductivity and magnetic permeability which are
finite. In each case the solution is presented for the case of an arbitrarily located magnetic
dipole. The results are in a form which is suitable for computation.

In each case treated, special attention is paid to the equatorial plane which contains the
source and observer. In the three instances, the source is at (' and the observer at P as
indicated in figure 1. For a (y-directed) magnetic dipole of strength K at ', the primary
field at 7 is

Ilﬁ:—é%g (amp/m,)
where Kdl is the magnetic moment. Note that Kd/= (amp-turns) < (coil area). In what
follows the secondary fields are expressed in terms of z (distance from coil axes to center of
body), ¥ and ¥’ (coordinates of source and observer), s (distance between (' and P), o con-
ductivity of body (mhos/m), and u/u (magnetic permeability ratio).

1 Figures in brackets indicate the literature references at the end of this paper.
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Ficure 1.—Cross section of spheroid, cylinder, or sphere in equalorial plane (2=0), showing transmilting and
receiver coils.

2. Low-Frequency Electromagnetic Response of a Highly-Conducting Spheroid

Prolate spheroidal coordinates are introduced (p, 7, ). They are defined by

2 ~2
<

aﬂ‘j—_jq-g??a (eq of spheroids),
2 . (1)
:cz(%%—{-;—azzl (eq of hyperboloids),

where p and z are the usual radial and axial coordinates in a cylindrical coordinate system.
It thus follows that
p=c[(1—6%) (n’—1)]2 and z=cné. (2)

where ¢ is the semifocal distance. These prolate spheroidal coordinates are taken to be con-
focal with the spheroidal body whose surface is defined by n=n, (see fig. 2).

Sl major axis = cn
conducting spheroid N=n, | 2 minor axes =a=c N| - 2 1
o
c
}
5=0ME
n =const.
6 = const.
5=-1

F1cure 2.—The spheroid and spheroidal coordinate system.
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In the region exterior to the body (i.e., 7 >n,) the fields are a solution of Laplace’s equation
if the frequency is sufficiently low (i.e., significant distances should be much less than the
wavelength). Furthermore, in this case the fields can be derived from a magnetic potential
Q. Thus,

=
H=—grad Q
where
vV:Q=0 for n_>1,.

Now, solutions of Laplace’s equation in spheroidal coordinates are well known and are of the
form (for integral values of m and n)

(AP} (3)+BQ ()] [P (n)+B' Q3 ()] e, (3)

where A, B, A’, and B’ are constants and, following Smythe [5], P7(x) and Q7 (u) are associated
Legendre functions of argument u. They are defined by

I)m (,U.) — (/-"2_ 1 )m/z qf”!ju (&2
n ([p’m
for u>1 (4)
m . 2__1\m/2 (!iQ 7"'7(”‘;)
@ ()= (u—1) du
or
e SOk )
bl . g 2\m/2Z ~ n "
Py ()= (1—4) du
. for—1<u<1 (5)
m o ., 2\m/2 ({m_ /R (,U,l
QW)= =)=

in terms of the (ordinary) Legendre functions P,(x) and @,(x). It should be noted Hobson
introduces a factor (—1)™ on the right-hand side of the latter two equations and his definitions
are thus slightly different. _

At the point € it is assumed that there is a magnetic point charge of strength, K (see fig-
3). The magnetic potential at /> can now be written

K . .
Q——:m'l'ﬂ, (6)
C(n', &', ¢|)
R
P(n, 5, ¢)
Mo

Fraure 3.—Conducting spheroid and source C and observer P.
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where R is the linear distance between C'at (y’, §’, ¢”) and P at (n, 6, ¢) and Qs the secondary
influence of the body. To express @ in prolate-spheroidal coordinates, we make use of the
inverse-distance formula

3D ICETRICRIL (”'_m)’] @t 1) PRG) Q) PR(m)PR(') cos mg—e), (T)
C n=0 m= (n‘+7n) ’ b ) ’

which is valid for 5 <7’.[6,0=1, 6,=0 (m=0)].
The potential Q is a solution of Laplace’s equation and since 1/R is also, it follows that
V20=0 for n >n,. Thus Q° must contain terms of the type

Qi () P75 (6) cos m(¢p—¢”)

only since P)(n) is infinite at n—> and 7 () is infinite at 6=+1. The potential exterior
to the spheroid 1s thus written, for n <7,

0=1" 5332 (M PE()+ Bus@EIPEG) cos m@—9), ®)
where
l m ( ) m ’ m
M=y =) (~ e+ D) | o | @) Pa@) ®

The unknown coeflicient is now found from the boundary condition, that on the surface
of the spheroid the normal component of the total magnetic field must vanish. Thus,

g—Q=O at n="no- ¢
n
This 1s satisfied if

B,,——M,, Ln (1), (10)

mn Q;,/ (710)

where the prime indicates the derivative with respect to the argument of the Legendre func-
tion. The solution is thus given by

n })Zl’ ,
53 3 M PO ) P2 cos ms—) | an
R = =0 m= Qn (770)
valid for n >n,. To simplify things a bit we will consider our source to be a y-directed magnetic
dipole 7" located in the equatorial plane of the spheroid (z=0) (see fig. 4).
The potential at R (z, y, 2) is thus given by

— ZZ dl = 2 P m’ 170) m

n=0 m=0 ¥n

XP2(0) [aa‘g cos m<¢—f¢'>+aiy, cos m<¢‘¢'>-an]}- (12)

The magnetic field at 2 is obtained from

=
H——grad ®.
In the case of the y-component, for example, we have

od 0*Q
5@;~dl e (13)
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FIGurE 4.—The conducting spheroid with locations of source C and observer P.

But

200 0Q bn 0Q D_d) (14)
OJ on D?/ ¢ Dl/ '

and therefore

0%*Q ><
o¢’ Q¢ oY

o' 0% > 0*Q )( >+ 0%Q ( > (15)
oyoy’ ~on’on oY DI/ d¢'on\oy/\oy’) " on’ O 01/ oy’

Since

y=cy(1—0) (r"*—1) sin ¢
and

r=cy/({1—5) (n’—1) cos ¢,

it readily’ follows that for 6=0 (or 2=0),

,aﬂ:s___ind"‘_v/;ﬁ and 9¢_cos¢ 1 (16)
oy ¢ U oy ¢ -1
and similarly for the primed quantities. Thus,
,—di a,g

for a y-directed dipole in the plane z=0,

K | o
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) ZP' (770) [PZL(O)]ZCOS m(d)—d) Q”L(ﬂ,)Q;,LL 7’); (17)

where
(r—m

K s .
7 ; Z=0 em(_l) (2n+1) (n“—”l)! m/(,qo

S__

where
en=2—0,=1 for m—10
= for m#0
and
0=06=0.
Now

52 QQ) o m(e—4)=VE(nn’,0— )

=Q' (n)Q" (n") cos m(¢—¢ )(Sm ¢V’ — ><Slll ¢’V (n')— )2 )

+QUn) Q') m cos M{‘”“d")(m:%ﬁ)(mid’ )
N )= 1)

o, ; (o [COS P )(smd)
Q) Q' (n")m sin m(g ¢>>( e i\ e .
y , 0 o (Sing )(c0s¢ 1 ) 1
FQ e msin =) (V2 ) (N ) 09
where Q= Q.
Finally,
H,—H:+ H;
where _
Hp:ﬁl_ o 1 Adl 3(3/—_1/')2_71_]
YT 4r ooy’ R 4w IHE R?
Kdl ,
=—5-3 for a'=ux. (19)
Noting that
R=ly'—y|=s=y—y
and
e (n—m)"F P’ () ,
Hi=—1—> —1)m2n+1 m(0)]2V
v 4 II:{)mTfUEM( ) ( n+ )[(n+ m)' ,,’:“ (1]0) [Pn (0)] Vn (20)

where V' is as given above
For the special case (i.e.,z=2z"=0, |y’ —yl=s, and r=z")

as shown in figure 5, we have
‘1:0\/713—1,

a’=c*(g§—1),
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(x,y,0) or (n,0,¢)
Field Point P

s (y'-y=s)

Source C
(X’ y'!o) or (T]',O, (1)‘)

n - . . . . L y . - .
Fraure 5.-—Special configuration of (dipole) source C and observer P when they are located in equatorial plane of
spheroid.

where @ i1s the semiminor axis, ¢ is the semifocal distance,

pl=c(n’—1), p=eyr’—1,
and
() ?=c*(n")*—1], p'=cy(n')*—1.
Also it should be noted that

s=[p*+(p")*—2pp" cos (¢—¢')]?,

[

Al
tan ¢’:%— and tan 4’:!1/-'

If b 1s the semimajor axis,

b:(,'nn.

3. Low-Frequency Electromagnetic Response of a Finitely-Conducting Sphere
With Arbitrary Permeability

Spherical coordinates (r, 6, ¢) are introduced as indicated in figure 6. The surface of a
spherical body (of conductivity ¢ and permeability p) is defined by r=a. Exterior to the
sphere the fields can be derived from a magnetic potential . Thus,

where H=—¢rad Q
for 7>a.
V2Q=0

Inside the sphere the fields are a solution of the wave equation and are best derived in terms
of scalar stream functions (following Schelkunoff) [6]. In the present problem we need only

21



o

P (r,0,9)

X

C(r',e' ’ ¢l)

. . nl .
Ficure 6.—The spherical body and source C and observer P with the spherical_coordinate system.

consider the TE modes which are associated with the induced magnetic dipoles.

1 o’ 5
]]r“":?-_;(; 57 ) 1%
1 1 o0/. o) 1 o
T ipwr? I:sin g oo \S1"? b_0>+sin? 6 OT#:I v
- for
_ 1oy
0_?'p.w orof
- 1 o
H“’*'iuwr sin 6 Or o J
where ¢ is the stream function and
=] 1uw(c—+ twe) |? = (touw) &
whereas
1 0? oQ h
H,—?“@ o %——Ej
1 1 0 . o) 1 0?
T pwr? [Sill g o9\ L a)>+sin2 ] &ﬁ—’] Yo
1o, o0
O lugwr 0ro8 1o
g 1 % 0
® ugwr Sin 0 0rdg 7 sin #0¢ ’

Thus,

ra, (21)
22
- for r>a, (23)

where ¢, 1s the stream function pertinent to the exterior region and is related to the magnetic

potential by

- 'I:/-l,q(l.’ a]i
22

-

(24)



The stream functions satisfy

Y=  forr <a .
” aif*_sm 0 be( S >+qm 838 |yo—=0 for r>a. (25)
Thus they are of the form
I (yr)
Arz 1)m (COS 6) f()l' 7,,<a (26)
K, (yr)
and
:: (n+1) P (cos 6) for r>a. (27)

- A . . .
In the above 7, and K, are the spherical modified Bessel functions defined by

and
K’L<Z):e h ,,f%'\{) m‘(lfn—tn, ;l‘)(")' )m’ €23
following Schelkunofl [6].
Now for r >a,
Q=Qr 4@, (30)

where the primary source is denoted Q7 and the influence of the sphere by Q°.  Assuming a
magnetic charge (strength K) located at point €' with coordinates (', 6’, ¢’), the potential Q7
at point P with coordinates (r, 6, ¢) is given by

K
211——,,,4
Y=0R
A’ n (n—m)! ™

g1 Pn (cos 6) P (cos 67) X cos m (¢—¢’ :
T dr = 22 5 (tm)! () (cos 6)7} (cos 0") Xcos m(p—¢’) (31)

for » <7/, using a well-known addition theorem for the inverse distance in spherical harmonies
[5].  This suggests writing

T 7 . Zn 1
Q= i > (). (1L+1> —— X P (cos 0) Py (cos 07) cos m(p—o’), (32)

47r n=0 m=0 m n- (IL+7N)' (l )n+1 ot 1

where S, is an undetermined coefficient. The appropriate form for ¥, is thus

KQ,LL &} n (n,A—]n,)' <7#>rl+l 2?1-} 1 I)ZL (C()b 0)[)"1 (COS 0/) . o
ll/O : 2 Z €m (n+m)‘ { (, )7,+1 o * n (,1/+1) XCOS m(qs ¢) ).

n=0 m=0
(33)
For the interior the solution must be of the form
v Kzunw n (n—7 W, (yr) P (cos ¢)P7(cos ¢ ) ( ) 34)
T - "(n+m)'I,(va) (n+1)

A
where the K, (y7) solution has been rejected since it becomes infinite at 7=0 and where B, is
an undetermined coefficient.
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The boundary conditions require that the normal flux (uf7,) inside the sphere is contin-
uous with the exterior normal flux (uH,) at r=a. Also the tangential fields Hy and Hy
must be continuous at r=a. These conditions are satisfied if

2 -
Lo ]——#0 or ] (35)
and
'//],::2[/0]}:41 (36)
This leads to
_ Ap(a)— (1) (u/uo) o
=A@ T e @)
where
dI,(a)
T da d - ‘
e = T@ =a - [log, 1,(2)] (38)
with a=vya. Also,
. (1/1o) ) .
= nialo) + A () (39)

The above expressions can now be used to obtain an expression for the magnetic potential
due to a dipole for » >a in terms of the potential © due to a point charge. For example in
the case of a y directed dipole at (+’, ¢/, 2’) we have

0

The corresponding magnetic fields are thus given by

=
H=—grad &, (41)
and the y-component, for example, is
0Q
=all O (42)

Again we shall consider the equatorial plane (see fig. 7) which is z=2"=0 or
6=0"=mx/2. Here z=r cos ¢ z'=7r" cos ¢’

y=r sin ¢ y'=r" sin ¢/,

and thus,
o . o) o)
oy =i ¢, +cos ¢ﬁ¢ (43)
and
o} ., 0 O
ay,——sm ¢ a—r,-—i-cos ¢ Y (44)

The field is thus obtained conveniently from

2 2 2 2
H,=dl [sin ¢’ sin qsﬁ—l—sin ¢’ cos ¢;b—?’?¢ +cos ¢ sin ¢p,a—3,b;+cos ¢’ cos ¢WJQ.
(45)
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It should be noted that

o =i for 0 =2
(46)
=iF for 0=mr/2.
Writing
H,=H?{+H;:,
it 1s seen that
H’:_J— e L where R=+(@—2")4+ (y—y’)*? for g=ag = (47)
U 4r ooy’ R ‘ ’
and thus, _ _
o, Kdl o (y—y’ ——dl[——— %(.?/—z/’)2 K
YT 4 o'\ R BT R 4
=——fr(53] where  s=[y—y’|. (48)
The secondary field i1s derived from
. (n—m)!  a**t'n  P7 (cos )P (cos§') ,
Qo= HEO mZU m 77L+77L) ( 53{¥i;}z¥1 & n+1 — cos m(p—¢’). (49)
Finally (for »=a)
S—E ® ( IN)' ,]ﬁ — _(1,2"+1
[[1/ e ; 2:0 m n+m)’ IL%] *Sn[[ 11(0)] U nm (rljmr[ (50)
where
Unm:]%[(” +1)?sin ¢’ sin ¢ cos m(¢p—a¢’)
+m(n+1) sin ¢’ cos ¢ sin m (p—¢’)
—m(n-+1) cos ¢’ sin ¢ sin m (¢—¢”)
+m? cos ¢’ cos ¢ cos m(p—ae’)], (51)
where

tan q&:?—;y

tan ¢/ =7

The quantity S, plays rather an essential role in the final result. When the conductivity
is great or at high frequency, the argument ya of the Bessel functions may be large. 1In fact
if |[ya|>>1, S, approaches unity for all n. The behavior of S,, as a function of ya and u/uo, is
a convenient way to illustrate the frequency dependence of the secondary fields. Numerical
values of the real and imaginary parts of S, are given in some detail for n=1 in previous
papers [2, 8] and less adequately [9] for n=2, 3, and 4. Fortunately, if the source € or the
observer P (for any respective orientations) are a distance from the center of the sphere which
is large compared to the radius, it is seen that only the term corresponding to S;is important.
The response of the sphere is thus proportional to the quantity

_vali(va) —2KI,(ya)
vali(ya)+KI,(ya)

where K=pu/u.

The real and imaginary parts of S, are plotted in figure 8 as a function of the “relative radius” X
defined by
ya=+1X or X=(ouw) *a.
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For small values of X corresponding to the lower frequencies, S, is negative and, in fact,
it approaches the value —2(K—1)/(K-+2). This could have been derived directly from
magnetostatics. At the higher frequencies S; approaches unity which corresponds to no
penetration of magnetic flux into the body.

4. Low-Frequency Response of a Conducting Cylinder With Arbitrary
Permeability

We now wish to calculate the electromagnetic response of an infinitely long conducting
cylinder with any permeability. (Seefig.9.) Exterior to the cylinder p>a, the fields are a
solution of Laplace’s equation and are derivable from a potential. Inside the cylinder the
fields are a solution of the wave equation and are derivable from a magnetic Hertz vector 11* and
an electric Hertz vector T1 with only z-components. Thus (for » <a)

= = 72 =
H=(—v*+grad (hv)H*—I—m curl 11, (52)
m
where
" =
1T = (0,0,11) (53)
and
. .
IT=(0,0,IL,). (54)
Solutions of the wave equation
(V=795 =0 (55)
are of the form
L (ap) —im¢,—ihz 56
K en) )

where a= (y*+h?)? and 7,, and K,, are ceylindrical Bessel functions of the modified kind defined
by G. N. Watson [7].

Fraure 7.—Special configuration of (dipole) source C and observer P when they are located in equatorial plane of
sphere.
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Im. S,

RELATIVE RADIUS X
Fraure 8.—The variation of the response of a conducting sphere as a fu
permeability ratios K (= u/u).

The real and imaginary parts of S; are shown.

nction of X (= (ouw)ia) for various

P(P1 ¢’ Z)

o', z')

/

Z

0

Fraure 9.—The cylindrical body and source C and observer P with the cylindrical coordinate system.

External to the cylinder ( >a) .
H=—grad Q
where
Q=07+ Qe

For a magnetic charge at (' (p’, ¢/, z’) and the observer a

K
P —
Y=o
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P(x,y,0)
P
s
o\ ¢’ C (x, y', o)
R .

Frcure 10.—Special configuration of (dipole) source C and observer P when they are located in equatorial plane
of cylinder.

where R is the usual linear distance between € and P
we find

Using a formula given by Watson [7]
I R
i Ko (hp)e=" == dh, (60)
R = J)-.
where
R=/(p)*+(2—2’)? (61)
with
=[p*+(p")*—2pp" cos (6—9¢')]2. (62)
Using the addition theorem
K()(hi)> :Z‘O Eme(hp,)Im(hp) Cos m(¢ ¢ ) (63)
for p<p’ and with
o=1, e=2(m=1,2,3...), (64)
it now readily follows that
K = +o _ ,
=g 3 | Rale) (Taha)e e oo (65)
This latter equation can be written symbolically in the manner
@ =T1,(hp) i85
where T is the operator
R + o ~+ o , B
eI I ST

 Jem =2, ¢~ ine=e), (67)
This suggests writing

0= I‘flm(h)Km(hP)
or

(68)
Q=T[Ln(hp)+ An(h) Kpn(hp)]

(69)
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for the external fields and
H*:P“nL(h)Im(aP)y (70)

Hz:Pbm(h)I7n(ap) (71)

for the internal fields. The corresponding magnetic field components are

H,— —THIp (ko) + An(h) K (ko)
Hy—T ?7’” (ko) -+ An) En(ho)] & 72 a (72)

and
2 3
1~ {—ihaammﬂ;ﬂ(ap) XM b Im<ap>} L
pwp

=y { I 1) o (ap) 2 b0 T ) } (73)

H —1‘{‘—01 (I,,,(h) m(ap)} J

The unknown coefficients a,, b,, and A,,, which are functions of £, are determined from
the boundary conditions. These are the normal flux, (i.e., u//,) and the tangential fields
o ) P t=] )
1.e., I, and I1,) are continuous at 7=a. The explicit result for A,,(A) is found to be
) [ z

l
T, (ha)— (/) [ et 1
ha
111/l<h):_— T ,i]i”,(fa,g) "l(/l(l/) (74)

K, (ha) v(/u/ﬂ)l: aaH‘ i :U Eo(ha,”
" ) " 4}l )(I 1 7/" (a (I)

where
¥ Illn a) e
[m ((X) 701]"’(0‘\ (’ ‘))
and
~ K ( a) -
I<m (a) OZK,,, (CY (l ())

The preceding results can now be employed to calculate the magnetic field of a magnetic
dipole. In the case of a y-directed dipole at €' the potential at £ is —dlo2/dy’. The y-com-
ponent of the field at /2 is obtained from

Hy—+dl 22

a a 75 (,’ ‘)
Restricting our attention again to the plane z=z"=0 and for z=2" (see fig. 10), we have

1l

]I”——2—83; (78)
where s=y—y’ >0. Noting that
—a—sin ¢ 3—!— cos ¢ g (79)
o op ' 7 pod o
it readily follows that
Hy =24 Bl 55 (4 [ 180 sin 9= " Kopllo) cos o ]

X I:hK;,, (hp) sin qS'—‘rprLiL K, (hp") cos d>':| e~ e dhe=im=¢  (80)

where A,,(h) is given explicitly above.
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5. A Related Cylindrical Problem

The above general solution for an infinitely long cylinder with dipolar excitation is rather
complicated. The presence of the infinite integrals and the existence of Bessel functions of
generally complex argument complicate the numerical aspects of the problem. Tt appears,
however, that simplifications can be made under certain limiting conditions. For example, if
the radius @ is small and at low frequencies, fa is much less than unity over the important range
of the integration. Thus,

mKI,(ya)— (va)I,,(va)T 1,,(ha)

mE L, (o) T (0 I (10)_| Kou(ha)’ S

A, (h)~—

where K=u/u,. In the case of very high conductivity |ya|>">1 this simplifies further to

1, (ha)

A =—% Gay

(82)

The square bracket term in equation (81) thus characterizes the frequency dependence of the
response and is a function only of K and ~a.
The secondary magnetic field /H* for the case of finite ya can then be written in terms of

=
value of 71 for infinite ya in the following way (for a given mode number m)

AT ~T, (m=1,2,3, . ..), (83)

(HY] ya—

where

o | mKL, 1 X)—t XTI, Wi X) (84)
mKI,, i X)++i X1, (i X)

> > |
and where X= (cuw)2a

The total field is, of course, a sum over all modes, but because of the factor 7,,(ha)/K,, (ha),
the relative response decreases rapidly with increasing value of m. This follows from the
approximation

1,, (ha) (ha)*™" -
K, (ha) = (ml) (m— 1)1 277 (89)
which is valid for (ha)*<1.

To shed further light on the above approximate form, it is constructive to examine a
related problem. If the source is an infinite line source of electric current 7, located at (py, ¢o)
and parallel to the z-axis, it is known that the secondary fields due to the resence of the eylinder
are [10]

2711

Hy=—= 21 T, — pe sin m (¢p—gy) (86)
and
](I zm
H —— Z‘l T, - P cos m (p—gy). (87)
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The structure of this exact two-dimensional solution is very similar to the approximated form
of the three-dimensional solution mentioned above. Apparently if @ is reasonably small, the
induced currents flow mainly in the axial direction even for a localized excitation and thus the
frequency dependence of the induced eddy currents are adequately described by the form of the
solution of the corresponding two-dimensional problem.

The numerical values of the real and imaginary parts of the function 7', are illustrated in
ficure 11, where they are plotted as a function of X, the “relative radius” of the cylinder, for
various values of the permeability ratio K. It is noted that the factor 7, corresponding to
the dominant mode, is very similar to the factor S; for the sphere shown in figure 8.
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Frcure 11.—The variation of the response of a conducting cylinder as a function of X (= (ouw)t a) for various
permeability ratios K(= u/u).

The real and imaginary parts of 7, T2, and 73 are shown.
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