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The six clastic co nstan ts (a nd six elast ic compli a nces) of corundum were determin ed in 
t h e ki locycle per second frequ ency ra nge by a n acc uratc reso na nce mcth od. The res ul ts 
we re chec ked in t he mega cycle p er seco nd ra nge wi t h a less accurate, pulse velocity met hod . 
Th e elast ic m oduli for polyc l"ysta llin e a lum ina calculated from t he single crys tal compli a nces 
determ ined by t he reso nance method a rc in good agreement wi t h experimental valu es ob­
tai ned on high density p olycrystallin e alumina. Th e va ri ation of Young' s modulu s a nd of 
t h e s hear modu lu wi t h ori entaUo n was calcul ated from the complia nces a nd t he res ults 
ar e show n gra phi cally. The res ults of t he present work do not ag ree w ell wi t h pre vious 
work on single crystal sa pphire. The sp ecifi cation of orien tation an d t he theory used to 
calcul a te t he elast ic co ns tant a re given in de tail to s uppor t the co ntention t hat t he r esults 
of t he prese nt work a re correct. 

1. Introduction 

The pmpose of th e pre ent paper is to presen t a 
set of values for t he clastic constants of single crystal 
corundum 1 at room t empera ture and to argue that 
these vaJues ar e correc t despite the fac t tha t they 
c!isagree with values reported in three other inves ti­
ga t ions. Fifty-six independent measurements on 
29 different specimens yielded eonsisten t res ults for 
the six elastic constanLs which this material should 
have.2 

Tbe complete set of six elas tic compliances a nd 
s ix clas tic constants were first reported by Sundara 
R ao [1] 3 for syn thetic sapphire. A similar deter­
min a tion was m ade by Bbimasenachar [2] using 
natural sapphire; very good agreemell (; with Sundara 
R ao was found excep t for C3:3 . More recently, M ayer 
and HiedemanD [3] h ave redetermin ed t he elastic 
constan ts and compliances for synLhetic sappbire 
with results which are r ather different from th e 
previous investigators' value. M ayer and Hiede­
mann suggest possible causes of ineorrec t resonance 
frequency measurements in thc experimental method 
used by the Indian workers. 

The present work began with measurements of 
Young's modulus which were intended as the basis 
of a s tudy of the changes in elastic moduli and 
internal friction as a function of t empera ture. These 
Young' modulus values permi t calculation of four 
compliance con stan ts which were found to be incon­
sistent with either of th e previously reported sets of 
compliance con stants. Ali of the previous work was 

1 Corilll dum is pure a lu minum oxide, A b03, in Lhe s table, a phase. The term 
&'1.pphire is used s ynoJlYJn ously in th is paper. 

2 A generalized theory, due to Laval and Raman , req uires 10 constants and is 
disclissed laicr. 

, F igures in brack ets indicate the li terature references at the en d of th is paper. 
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don e at frequencies in the megacycle per second range, 
bu t th e present determinB,t ion of Young's modulus 
values was made in the low k ilocycle per second 
ran ge. A possible frequ ency depend ence thus re­
quired considerH,tion. The present au thors und er­
took a broadened program with the obj ec tives of 
determining a compleLe s(' t of clasti c consta nts in the 
kilocycle pel' second range and checking the results 
in the megacycle per second range. Th e res ul ts of 
the broadened inves tiga tion <),re r eported in this 
paper. 

In all th e work disc Ll ssed so FitI' the classical theory 
of elasticity was used . This classical theory has 
been considered conect for mo re than 50 years and 
is s till accepted by most seien tists. Briefly, i t 
assumes a lin eal' rela t ionsh ip (Hooke'S law) between 
6 independent compon ents of s tress and 6 independ­
en t components of sLrain. Th e th eory leads to 21 
independent elas tic constan ts for th e most general 
nonisotropic medium such as a crystal with no 
symmetry, and to 6 independent constan ts for a 
crystal with the symmetry of sapphire. This theory 
was challenged in 1951 by Laval who asserted that 
there are 9 independ en t compon ents of stress and 9 
independent componen ts of strain which would lead 
to 45 independ ent elast ic constants for a crystal 
wi th no symmetry. This idea was developed by 
Laval and Le Corre, and independently by Raman 
and h is colln,borators. A good list of r eferences is 
given by Joel and Woost er [4]. For the case of 
cr)ystals with the symmetry of sapphire, Raman [5] 
asserts Lha t there are 10 independ ent constants 
instead of 6 as in the classical th eory. If this gen­
eralized theory were correc t , discrepan cies in reported 
valu es of elas tic constants migh t result from analysis 
of da ta in terms of a 6 constant theory when a 10-
constant th eory should have been used. However , 
res ults of the present work show that the classical, 



I)-constant theory represents the elastic behavior of 
sapphire in the kilocycle frequency range quite well. 
Al! equations in this paper are based on the classical 
theory. Because the present results do disagree 
with previous work, this paper presen ts the theory 
and experimental procedure in some detail. 

2. Specification of Crystal Orientation 

The values of the clastic const,mts (or compliances) 
of a nonisotropic material depend upon the choi ce 
of coordinate system. The use of a rectangular 
coordinate system is conventional. For each cryst~tl­
line m aterial, the orientation of this rectangular 
coordinate system is usually chosen to take maximum 
advantage of i ts point group symmetry, and the use 
of this system is impli ed when elastic constants are 
discussed. In this section the coordinate system 
appropriate for sapphire (called the X1X2:l3 system ) is 
described in terms of the point group symmetry and 
the back reHection Laue pattern . Elastic property 
measurements on a crystal must be related to this 
coordinate system in order to interpret the r esul ts 
of the measuremen ts in terms of elastic constt1nts. 
The line in a specimen along which Young's modulus, 
the shear modulus, or the velocit.\~ of sound was 
meas ured, will be referred to as the specimen axis 
(SA). It is convenient to distinguish between the 
opposite ends of this line an d the reference end will 
be taken as positive (+ SA). 

Th e point group of sapphire is :)m [6]. Figure 1 
is a ster eographic projection showing the symmetry 
elements, the rectangular system X1X2X3 to which the 
elastic constan ts a re referred, and the hexagonal 
coordinate system xyuz which is used for Miller­
Bravais indices. This notation fo1' both systems is 
used by Nye l7] and will be used throughout this 
paper to refer to t hese coordinate systems. 

Figure 2 shows a stereograpilic proj ection of 
prominent poles in a back reHection Laue pattern of 
sapphire. Figure 2a shows the letter symbols of 

m 

.. ------~~----~- y 

FIG VRE l. Stereogram of point group li m. 

The heavy lines iJld icaie mirror planes, the open tr iangle indicates the a axis, 
and the diad symbols indicate 2-[old axes. X,X,X3 is the rigbt-banded coordinate 
system used [or elastic constant specification. x y u z is the Miller-Bravais 
coordinate system. 

morphological crystallography [8] which can be 
assigned b~' measuring the angles between poles. 
This process is wi thout ambigui ty and is described in 
section 6. Figure 2b shows the Miller-Bravais 
indices for the conventional choice of coordinate 
system. Figure 2a is based on angular vn,lues ob­
tained from Winchell [8]. The recent X-ray pattern 
by Swanson ewd Fuyat [9] gives c/a= 1.365 for the 
morphological uni t cell . The distinction between 
the morphological and the struct ural cells is disc llssed 
by Kronberg [10] . 

The X1 X2X3 system is not uniq uely defined by figure 
1 alone. Any 1 of 6 directions might be chosen for 
+ x1 ; i.e., + x1 might be chosen in either direction 
along any of tile three 2 ~ rold axes. However, 
opposite ends of a 2-fold axis can be distinguished 
even though point group 3m has a center of sym­
metry. The opposite en ds are designated + a and 
- a in figure 2a. The distinction between + a and 
-a is illustrated in figme 3. The three + a direc-
tions can be identified by examining the neighboring 
poin ts on the stereographic projection . The choice 
of which is to be called + a and which - a is, of 

1 010 

- a +0 
1210 

1210 

m 1010 

a b 

FIG U RE 2. 81ereogmms of poles of p?'ominent planes in sapphi1·e. 
Figurc 2a shows the letter symbols w hich can be assigned by measurin g the angles between poles. Figure 2b gives tlle M iller-Bravais ind ices which require a 

chOice or coordinate system. 

214 



COUT e, a co nven tion. This choi ce is importan t 
becl1use the sign of the ela tic complian ce S\4 de­
p end upon it.4 No co nvention for this choice for a 
nonp iezoclectric cry tal i given by rye [7] or by 
the Standards on Piezoelectric Cry tats [1l]. The 
con ve ntion used here hft been cho en to agree with 
t hat implied by figure 151 hom Phillips [12], by 
figure 2 from Kronberg [10], and by figure 5 and 
table 1 from Win chell [8]. The a ngle specifying 
the orientation of the sp ecim en ax is axe hown in 
fi gure 4. Theta, the colatitude, or zenith angle, is 
the angle betwee n + X3 and SA. Phi is the angle 

q 

ill the X 1X2 plane I"rom +x1 to the proj ected specim en 
axis (P A) . The angle f) is exactly the sam e as the 
angle p u ed by Win chell [8]. However , his angle </> 

is meas ured from - a instead of from + a and is 
measured clockwise (looking in the -X3 dU·ection ). 
"Winchell ' definiLion of </> is not used here because 
we wish Lo adhere to the usual spherical polar angles 
in a right-handed system. 

~ 'l'bis can be seen by examining n coord inato system YlY2Y3 with YI= -XI. If 
Ya=X3, then ono must bSVCY2=-X2 to maintain right-handedness. Examination 
of t he transform at ion of '" shows t hat it is eq ua llllllJagni tude but oPPosite in 
sign wben expressed in the Y1Y2Ya system. 
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FIGU HE 3. Distinction between + a and - a. 
The stercogn11l1 in figure 3a is cC ll t('reci on +0 and sho\\"s that the ~'CQucnc(' of poles 711 t r q c R 8 iJl the ncarer mirror phlJ1(,s has cOllnter'c loc kw jEc SC.ll EC. } 'igure 

3b, centered on -a, shows that the corresponding seq uence has clockwise se nse. 
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F I Gt: RE 4. The angles used in specIfying the dil'ection of the specimen axis, SA, and its projection, PSA , in the "'''2 plane. 
4a shows a perspectivc of the importmlt orientation angles. 4b shows a stcl'eographic represcn tat ion of the orientation angles. 
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In discussing the range of 0 and cp it is convenient 
to introduce the concept of the asymmetric tria ngle, 
·which is the lar ges t spherical triangle on a ster eogram 
not containing any symmetry r elated directions. 
Any direction ou tside this tria ngle h as a symmetry 
Telated direction within it. 

The range 0° '::;0'::;90° and -30° '::; cp '::;3 0° is suffi­
cient to specify the orientation. Tha t is, on a 
s tereographic proj ection th e r ange 0°'::; 0'::; 90° and 
-::W°'::; cp'::; 30° defines an asy mmetric spherical tri­
a ngle. However , this range of cp is no t sufficien t 
to distinguish between equiv alent points with mirror­
image en vironment. For example, the environmen t 
of (1120) is th e mirror imagc of the environment of 
(2i'i0). To distin guish such dircctions a range of 
0 ° .::; 0'::; 90° a nd - 30° '::; cp '::; 90° is useful , and K ebler 
a nd "Rudness [13] have r ecommended the use of t his 
Tange in specifying the orienta tion . The range of 
-30° .::; ¢.::; + 30° is adequate for specifying any 
physical proper ty, such as elas tic proper ties, which 
d epend only on the direction of measuremen t and 
no t upon the left-ha nded or righ t-h anded distribu­
t ion of neighboring points . 

In carrying ou t the actu al measuremen t of ¢ either 
of t wo equivalen t m ethods m ay be used. In the 
first m ethod ¢ is measured from PSA to Xj a nd the 
fact that ¢ = 300+ o is equivalen t to ¢= 300-o is 
used to r educe any valu es larger than 30° to the 
Tange - 30° .::; ¢ .::; 30°. In t he second m ethod ¢ is 
m eas ured from PSA to the n earest a-type direction 
withou t regard to whether it is + a or -a. The 
r ule shown in figure 5 is t llCn~used to determine the 
s ign of cp . 

c c 
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' .10:;' ~ .£. '!:lO° ~~ s O 
;,;- 0 0'" Iii - ~ 30° _ 30°", ~ 
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F IGURE 5. Stereogra1ns illustrating the sign convention for ",. 
Note t hat the position of SA must be considered. 'r he sign of if> cannot be 

determ ined !rom the position of PSA alone. 

3. Relation of Young's Modulus and Shear 
Modulus to Elastic Compliances and to 
Orienta tion 

The str esses (J i, and the s trains, ~ i, will be written 
in N ye's ma trix notation [7]. Hooke's law can be 
written in terms of the elast ic constants, Cii> as 

(Ji= ~C ij~ j 
j 

(1 ) 

or in terms of the elas tic compliances, 8 th as 

~ i = ~8ij(Jj (2) 
j 

where the m atrix of the 8 i j is the inverse of the 
matrix of the Ci j ' For any material, Cij= Cj j (and 
8jj = 8j;) which r educes the number of indep endent 
constants (or compliances) to 21. For sapphire, 
the symmetry of point group 3m further r educes 
the number of ind ependen t elastic constants (or 
compliances) to six and the res ulting ma trices ar e 
shown in table 1. 

T ABL E 1. Elasticity matrices 

General elastic constant matrix 

ell CI2 C" C" C" c" 
e' 2 C" en c" C" C" 

c" C" e33 c" C35 e" 
C14 C" C" C" C4S C., 
e lii C" C35 C" Csa C" 
e" C" C" C" C56 C" 

E lastic constant matri x for sapphire referred to the 
coordinate system XIX2X3 

ell C12 C" C" 0 0 
C12 C11 C" -C14 0 0 
C" CI3 C33 0 0 0 
C" -C14 0 C .. 0 0 
0 0 0 0 c., C" 
0 0 0 0 Cu J-2 (CII - C12) 

E last ic compliance matrix for sapph ire referred to 
the coordinate system XIX2X3 

811 812 8" 8" 0 0 
812 811 8" -Su 0 0 
813 8" 833 0 0 0 
8" -814 0 8 .. 0 0 
0 0 0 0 8., 2s14 
0 0 0 0 2814 2(811-812) 

In rela ting the elastic compliances to Young's 
modulus, it is necessary to distinguish between 
the " free" Young's modulus, E/, and the " pure" 
Young's modulus, E p , when an alyzing flexural or 
torsional tests. The free Young's modulus is th e 
value obtained when the specimen is completely 
free to deform elastically under th e applied tensile 
stress. The pure Young's modulus is the value 
obtained when t he specimen is tested in flexure and 
is prevented from twisting. In an isotropic medium 
the fr ee and pure moduli ar e identical. Calculation 
of Young's modulus from flexural vibrations of long, 
thin rods of nonisotropic m aterial corresponds t o 
m easuremen t of E /. A similar distin ction mus t 
be m ade with th e shear modulus, G. For rods of 
nonisotropic ma terial of the dimensions used in this 
work, the modulus determined from t orsion al vibra­
t ions is very accurately the pure shear modulus, Gp . 

The proof that E / and Gp are the rneasured quan ti ties 
involves the substitution in equations given by 
H earmon [14] and by Brown [15] . W e shall omit 
the proof here and give the results connecting the 
quan tities determined experimen tally, E/ and Gp , 

with the elas tic complian ces. Consider a r ectangular 
coordinate syst em x;x;x~ with the x~ axis along 
SA. For s tress application along the x~ axis 
[14, 15]: 

216 



I, 
I' 

where 

~4 +8~5 1 
--2- = G/ 

Gf= Gp( l - E'), 

, 8~~+8~~ 
E =8~3 (8~4+ '~5 ) ' 

(3) 

(4) 

(5) 

(6) 

Equal,io ns (4), (5) , and (6) can b e combin ed to g ive 

(7) 

which is a more u seful rela tion between Gp a nd Of 
t h an eq (5) . 

The primed quantities in eq s (3), (4) , a nd (7) 
must be r elated to th e orientation and to t be clas ti c 
complia nces m eas Llred in the XjX2X3 system . It can 
be shown [14] t hat the values of 8~3 ' 8~4+ 8~5' a nd 
8~~+ 8~~ d ep end only upo n th e direction of x~ and not 
upon t he direction of x; and x~. Accordingly x; a nd 
x~ were chosen to simplify the tran sformation eq ua­
tions as much as poss ible subj ect to t he condition 
that x; x~x~ form a rig ht-h anded r ectang ular set . Th is 
was accomplish ed by choosing x~ to lie in t hc X1X2 

plane, th en choosing x; orthogo nal to x; and x~ . Th e 
r elatio n of x;x;x~ to X j X2X3 is shown in figure 6. 

Equation 25 on page 70 a nd equation 10 o n p age 61 
of Cady r16] g ive the gen erfLl t ransformation for 8~3 
a nd 8: 4 +8~5 r esp ect i vely. A n error in sig n was found 
in 12 of th e last L8 terms of t he equation for 8:4 + 8~5 ' 
\Vhen this error is co rrec tcd, th e r es ulting express ions 
fire : 

, _ 1 _ '4 4 
833- EtUJ ,cp ) - 8 11 S1l1 e + 833 cos e 

(8) 

and 

- 4814 s in3e cose sin3¢, (9) 

whi ch agr ce with eqs 48 and 4:9, p age 76 of Cady [16] 
fo r trigo nal symme Lry. 

Th e transformatio ns for S~ 'I fwd S~5 wer e obtain ed 
by usin g th e generaJ tn1.nsfo l'mat ion l fLw for four th 
ra,nk tensors, th en r educing t hi s to th e trigo nal 
symmetry of sftpphire fwd making use of Lh e p articu­
l ar choice of x;::r; d escribed a, bove. Th e r esul t ing 
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expressions ar e 

(10) 
fLnd 

+S14 sin e in 3e s in3¢. (11) 

A set of elastic compliftnCeS can b e determined from 
these equfLtion s in tb e followin g m a nner: It is n eces­
sary to determine th e values of Ef and Gp on at least 
foUl' rods of k nown orientation. Equ f,tion (8) is 
wri tten for each rod fL nd th e r es ultin g sys tem of 
simultan eo us lin em' equations is solved for SJ1 , S33, 

2 S 13+S44 , fLn d S /4. These values arc s ubst it u ted in to 
eqs (8), (10), a nd (ll ) and th e r esults a r c u sed in 
eq (7) to calculate Of for efLeh rod. These valu es of 
Of, e, and ¢ a r c ubs titutecl in to eq (9) for each rod. 
The r esulting s?stem of s imul taneo us lineal' equa­
tions is solved for 811 - 81 2, 844, 811 + S33- 2 8]3 - S.14, and 
8 14 · 

4. Relation of Elastic Moduli to Resonance 
Frequencies 

The values o[ Ef a nd Op needed Jor the calculation 
o [ t he elastic co mpliances wer e obtain ed b y r eson an ce 
f'r eq uency m mts uremen ts on thin, circular rods . 
Young's modulu s WfLS calculated rrom the lo ngi­
tud i1m l resonan ce Jl'cq llency and indep endently from 
the flexura l r esonan ce fr equ ency. Th e sh ear moclulus 
w as calculated rrom th e torsional r eSOllfLn ce fre­
qu ency. :For both o r th e Youn g's modulus calcul fL­
t ions, the equation l'eh1ting t he r eson a nce Jl'equ ency 
to th e approprif,te mod ulus is approxim ate, but the 
a.pproximations a.re ver y good . 

For longitudinal v i bration , Young's modulus of 
a n isotropic medium can be calculated from l~ay­
leigh 's equation [17] which can b e written 

(12) 

wher e p is th e d ensity in grams p er cubic centim eter , 
l is the length in cen tim eters, f is the longitudin al 
r esonance frequen cy in cyeles p er second, (J' is 
Poisson's r atio, r is th e radius in centimeters, and E 
is Young's mod ulus in d ynes p er squ are cen timeter; 
1 dy n e/cm2 = 10- 9 k ilobars = 1.020 X I0- 6 kg/cm2= 
1.450 X IO - 5 lb/in.2. Th e term in p arenth esis is th e 
Rayleig h correc tion t erm Jor the finite thickness of 
th e rod a nd n eglects high er powers of r /l. Bancroft 
[18] has made a n fLccumte calculation of th e velo city 
0[' longit udin a l waves as a fun ction of riA, where A is 
th e wavelengtb which is equal to 2l for r esonance in 
the fundamental mode. Th e s m allest valu e for 
which B an cro rt gives a. n u ll1 el'ical l'esul t corresponds 
to r /l = 0.05. Assumin g Poisson 's ratio is 0.25, th e 
Rayleigh cOlTection for this vfLlu e is 1.00077 and 
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FIGU RE 6. The Totaled cooTdinate system X,X2X3 and the diTection cosine scheme. 
Figure 6a is a perspective dra,wing of the relation between x~x;x; and XIXZX3. 

direction cosines. 

Bancroft's results give 1.00078. Eviden tly the 
Rayleigh correction is very good for small values of 
rll. The largest value of rll used in the present work 
was 0.0125 so that eq (12) is thought to be very 
accurate. For the range of rll used in this work, the 
entire correction factor can be taken to be 1.0000. 
This equation was derived on the assumption of 

Figure 6b shows th e relation stereogJ'aphicall y. Figure 6e gives the yaluC's of the 

elastic isotropy, but the actual specimens were an­
isotropic. Equation (12) gives Ef for crystalline 
rods of the dimensions used. The value of Poisson's 
ratio varies somewhat for single crystals but for 
polycrystalline alumina is about 0.25, and since 
this only enters in the correction term, it seems that 
eq (12) can be used with this value of Poisson's 
ratio . 
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For flexUl'al vibra t ions of an isotropic medium 
t he best exi tin g theory seems to be that based on 
an n,pproximaLe differen t ial equation derived b.v 
Timoshenko [19] and Ludied by Goens [20] and b.v 
Pickett [21] . Pick eLt 's r esults ar c aivcn in the form 
of a correc tion fn,ctor , T, which mclLiplies the result 
for an infinitely Lh in rod. His re ults can be ex­
l)l'essed as 

1'1(2 
E = 0.3 1547 ~ T , r· (13) 

wh ere E is in dyn es per squ are ce nt imeter , and the 
symbols h ave the ame meanin g as in eq (12) excepL 
j which her e is the fl exural resonance Jrequ en c~· . 
In his origin al paper , PickeLt [21] gives equations 1'01' 

calculatin g T 1'01' Poisson's ratio valu es or zero , 
1/6, and 1/3. A subsequent ASTM S tand~trd [22] 
gives an in terpohtion formula withou t givin g the 
derivation or stating the ranO'e of validi ty. It 
seems best to u e Pi cket t's original formula and 
in terpolate usin g a qu adratic a pproxima,tion. Th e 
question is no t significant ror rods of the size used in 

, t his in vestigation, the thinnes t rods hav ing 1' = 0.050 
in. (r ll= 0.0083) and T = 1.0015, the thickes t rods 
having 1' = 0.07 5 in. (r jl = 0.0125) and T = 1.0033. 

The equ ation rela tin g the shear modulu Lo Lh e 
Teson ance frequen cy of nn isotropic cylinder can be 
derived b.v considerin g the propngat ion of torsional 

lJ waves nnd requiring that the w~welen gth have it 
vtLIu e such tha t s li1,l1ding waNes arc fOl'lll ed. The 
TCs ul t is 

(14) 

wb ere G is tIl e sh anr m odulu s in dynes peJ' squ are 
ce ntim eter ,.f is t he torsional J'e onance frequency, 
p is t he dcnsity in gram s per squ nre cc nLilll etel' , nlld 
l is th e length. TIl e signifi cance of t his eqLHt Lion for 
crys talline evlinders has bee n consid ered by Brown 
[15] and by l{earmon [1 4]. The d e t~tils an) compli­
ca ted , bu t t he res ult is, as previou sl~7 stated, tha t fo], 
t hin rods eq (14) gives Gp and eq (13) gives E,. 

5. Relation of Elastic Constants to the Veloc­
ity of Ultrasonic Waves 

The t heory required for t he determination of t he 
elas tic constants of sapphire from resonance fre­
quency measurement was given in sections 3 and 4. 
The present section presents th e th eory required for 
elas tic consta nt determinations from wave velocity 
measurements. The velocity of sound as a fun ctio'n 
of specimen size has been studied by Tu, Brennan , 
a nd Saller [23]. They found that in cylindl'icalrods 
t he velocit~T of 10ngitudinnl waves depend ed upon 
r iA where l' is th e radius of the rod and A is th e wave­
length of t he sound wave. For valu es of ri A larger 
than 2.5 , the longitudinnl waves tmveled a t the speed 
of plane waves in an infinite medium . 

Similar res ults should hold for waves propagnted 
in a rectangular block. The longest wavelength 
used in tbe present work was about O.ll-cm and tb e 
s illallest block was 1.25-em thi ck. These values give 

a thickness to wavelength ratio of 11.4. It see m 
t hat t he theory for plane waves in an infinite medium 
can t herefore be used. 

This theory is summ arized by Kolsky [24] and by 
M arkh am [25]. The l'es ~ults are contained in a cubic 
equa tion in the variable x= pv2 where p is the density 
and v is th e veloci ty. This equa tion can conven­
ien tly be wri tte n in detel'minan t for111 

A - x El G 
H B - J: F = 0. (15) 
G F C- x 

wh ere 

c = c5512 + c"m2+ C33n2 + 2c'5Im + 2C3,?nn+ 2c35nl, (l8) 

F = c5612 + C24?n2+ c3.n2+ (C25+ c.6)lm + (cn+ c .. )mn 
+ (c36+ c.,)nl, (1\1) 

and 

I-l = CI6l' + c26m2+ c.5n2+ (CI 2+ c66)lm + (C25+ C.6) mn 
+ (cl. + c56)nl. (21) 

In the e equ a tions the Cij are the clas tic constants 
and I , m, n arc the direc tio n cosin es of the normal 
to t he wave fron t. The distinct ion between velocity 
surface and wave surface for elas tic waves has been 
disc ussed by Musgrave [26] and Marldl am [25]. It 
is sufficien t to state tha t th e m easured velociti es in 
the direction defin ed by lmn are those given by eq 
(15) . It is impor tan t t o no tice that both the elastic 
COllstan ts a nd the diTection cosines arc rcfelTed to 
the sam e coordina te system . For sapphire, if the 
coordinate system is chosen to be Lhe X/X2X3 system 
previously described , t he matrix of elastic constants 
given in table 1 may be substi tu ted to simplify eqs 
(16) through (21). This simplifica tion bas been don e 
b~- Bhimasellachar [27] for calcite which has the same 
point group and consequ ently the same clas tic con­
sta nt m atrix as sapphlre. The resulting equa tions 
can be expressed direc tly in terms of the orien ta tion 
by substituting l= sinllcos</> ,m= sin lIsin</> , and n = cosll . 
These substit utions give 

and 

l . , ,+ l ( ) " '2 + j = CII sm-O cos-</> "2 CII - CI2 S111- 0 Sill cf> 

C.4 cos2 0+ 2c14 sinO cosO sin cf>, 

B= ~(c l l - cd s in 20 cos2cf> + CII sin 20 sin 'cf> 

+ c .. cos'O- 2c14 sinO cosO sin cf>, 

(22) 

(23) 

(24) 

(2 7) 
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To solve for the velocity of sound in a given direc­
tion, the direction cosines must be substituted into 
the expressions for A ... H which must then b e 
substituted into (15) and the resul ting cubic equa­
tion solved. For some directions this calculation is 
easy. For example, waves propagated along th e "3 
axis w ill have l= O, m=O, n= l. 

Equation (15) r educes to 

= 0 (28) 

wh ich g ives three roots 

(29) 

These roots correspond to th e propagation of a longi­
tudinal wave with velocity , /C33/P and two transverse 
waves with velocity ~C44fp . For other directions eq 
(15) does not r educe to su ch a simple form and the 
waves are quasi-longitud inal and qu asi-tran sver se 
rather than truly longitudin al an d transverse. 

A simplified method of tr eating directions for 
which eq (15) is difficul t to solve h as b een used b y 
each of the previous workers on the elastic constants 
of sapphire . The method h as b een most fully de­
scribed by Mayer a nd Hiedem ann [3]. They assert 
that for any d irection the velocity of th e quasi­
longitudin al a nd quasi-transver se waves arc given 
r espectiveJy by 

(30) 
and 

2 ' PV S = C4 4 (31) 

wher e C~3 a nd C~4 arc t he valu e of C33 and C44 wh en 
th e coordinate system is transformed into one with 
the x~ axis in the direction of propaga tion. Expres­
s ions for C~3 and C~4 arc given by Mayer and Hied e­
m ann [3]. The present writers do not qu estion the 
t r an sform ation equations for C~3 and C~ 4 but do 
assert that eqs (30) and (31 ) are not true in gen eral. 
That is, pvl or pv~ will in gen eral b e a more compli­
cated fun ction of the elastic constants an d direc­
tion of propagation which may r educe to eqs (30) 
a nd (3 1) for certa in directions of propagation. 

An example of a direction for which the simplified 
meth od gives a different answer th an t he general eq 
(15) is the Xl dircction (parallel to a 2-fold axis) in 
sapphire . Using eqs (30) a nd (3 1) Mayer and 
Hiedernann obtftin for pv2 th e three valu es 

and 

(32) 

(33) 

(34) 

Actually substituting into eq (15) gives 

(35) 

Th e r es ul ts agree for the longitudinal wave but do 
not agree for th e t r ansverse wave unless CH is zero. 
In practice i t might happen that 4C~4/ (C66- C44)2 is 
sm all comp ared with one. If this were so, eqs (30) 
and (3 1) would g ive a good approxim ation for this 
p ar ticular direction bu t might no t for a differ en t 
direction . It seem s that th e res ul ts calculated from 
(30) and (3 1) would have to b e check ed against the 
results obtain ed from tbe fund a m ental eq (15) , for 
each direction of propagation . This fact, of course , 
would m ean that no tim e would b e saved by the use 
of th e simplified m eth od. In t he present work, only 
the exact eq (15) was used. 

It is p erh aps worth not ing why t he simplified 
m ethod sh o uld not be exp ected to b e correct. If 
th e X1X2X3 coordinate system is transformed in to th e 
x;x~x~ system , every term in eq (15) can be trans­
form ed to give a correct resul t. Equat ion (28) , 
however , is a sp ecial case of (15) resul t ing from a \> 

sp ecial choicc of coordinate system and direct ion of 
propagation. If t Il e no nzero terms are transform ed 
by a rotation of th e coordinate system, eqs (30) and 
(3 1) will r esult , but these equations cannot b e ex­
pected to hold in genera l for directions of propagation 
other than the d ircction assum ed in deriving eq (28) . 

Th e elTor in t he simplifi ed m eth od can perh aps be 
more easil y seen from a ph ysicaJ arg um ent. Th e 
transformed constants C; 3, C~4' and c~" , would b e appro­
pri ate for calculation of the velocities of waves 
traveling in th e x~ direction and with p article motion 
alo ng the x~ , x~, and x; axes, r esp ectively. However, 
as Cady [16] has shown , th ese ar e not necessarily the 
directions of motio n of the p articles, and the devia­
t ion in som e cases can be quite la rge. 

A method of solving eq (15) for the elastic con­
stants which u t ilizes Lensor t r ansformations h as been 
developed by Neighbours [28]. I n his method all 
terms are taken into accoun t , and in place of eqs 
(30) and (31) fL set of equations is obtained each of 
which con tains an infin i te series which presumably 
converges rapidly. Equations (30) and (3 1) are 
equivalent to the zeroth approxim ation in this per­
turbation method of Neighbo urs. He shows how ' 
r apidly the approximations converge in some cases 
bu t docs no t di scuss t he trigonal system. 

In his paper on calcite, Bhimasenachar [27] uses 
equ ations eq uivalent to (30) and (31) but explici tly 
states that sm all couplin g terms have been neglected. 
In his s ubseq uent paper on sapphire, Bhimasenachar 
[2] uses th e simplified method without mentioning 1 

th at it is approxim ate. Both Sundara R ao [1] and 
Mayer and Hiedemann [3] also use the simplified 
method but present it as if i t were exact. 
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6. Specimens and Experimental Procedure 

Th e single crys tal apph ire pecim ens were of two 
types: rod and blocks. Tbe dimensions, mass, 
surface condiLion , and orienLaLion of Lhe 29 rod 
specimens are described ill table 2. Two rectangu­
lar block specimen were ground to our order by the 
Linde Compan ~T . The first block , SB1 , was s upposed 
to be 1 x }~ x }~ in . with Lh e long axis parallel to the X3 

axis and one face perpendicular to Lbe Xl axis. The 
second block , SB2, was specified as 1 x % x % in. wi th 
Lhe long axis in the X2X3 pJ ane making an angle of 135° 
with X3 and with one face perpendicular to Xl ' The 
actual orientat ions are shown ill figure 7. It will be 
seen t hat for SB1 the e values are corrcct, but c/> is 6° 
instead of zero. For SB2 the c/> values are correct, 
but e is 47.5 instead of 45.0°. 

T ABLE 2. Dimensions and 01'ientation of s pecimens 

Specime n 

SRL .. ......... 
SR 2 ............ 
SR 3 ......•..... 
SRL .......... 
SR 5 . ........... 

SR 6 ............ 
SR 7 ........ . ... 
SIt 8 ........ .. . . 
SR 9 ............ 
SH JO ........... 

SIt 11 .•......... 
SIt J2 . .. . . ...... 
SR 13 . .... ...... 
SIt 14 . ...... ... . 
SIt 15 ........... 

SR 16 ........... 
SR 17 ........... 
SR 18 ........... 
SR J9 ..... ...... 
SR 20 . .... ...... 

SIt 21.. ......... 
SIt 22 ........... 
SR 23 ..... ...... 
SR 24 ........... 
SR 25 ...•....... 

SIt 26 ........... 
SIt 27 ....... .... 
SR28 ..... . . .... 
SIt 29 ..... ...... 

M ass a No minal A ctual Surface 
d iameter length co ndition 
---------

0 in. em 
2.9876 0. 100 14. 700 f.p .. ... . 
3.1008 . 100 15.244 Lp .... .. 
3. 0737 . 100 15.224 Lp ...... 
3.0767 .100 15.232 f.p ...•.. 
2. 1516 . JOO JO. 664 f.p ...... 

3. 0647 . 100 15. 188 f.p ...... 
3.0872 . 100 15.218 f.p .... .. 
3.0902 · Joo 15.258 f.p . .... . 
3.0636 . 100 15.240 f.p ...... 
1. 9297 . 100 9.591 f.p ...•.. 

6.9436 . 150 15.240 f.p ...... 
6.9374 . 150 15.282 e.g ...... 
6.9610 · J50 15.280 e.g ...... 
6.9J92 . 150 lr,.268 e.g ...... 
6.9099 . 150 15.288 e.g . . .... 

6.9151 . 150 15.212 e.g ...... 
6.9334 . 150 15.244 c.g ...... 
6.92 19 . 150 J5.268 e.g .. ... 
6.9231 · J50 ]5.280 e.g .. ... 
4.7551 .125 15.260 c.g ...... 

4. 7527 . 125 15.228 c.g . ..... 
3.1152 . 100 15.292 f.p ...... 
3. 1.1 15 . 100 J5.282 f.p ...... 
3. 1024 . 100 J5.246 Lp ...... 
3. J 127 · JOO J5.300 Lp ...... 

3.1154 . 100 15.296 f.p ...... 
3. 11 55 · JOO 15.300 f.p ...... 
3. 1121 . 100 15.296 f.p ...... 
3.1173 . 100 15.316 Lp .... .. 

• Corredcd for a ir buoyancy. 

NO'rE : e .g. means cen te rless·ground. f.p. means Jl ame 

------

13.6° + 13.0° 
10. 7 + 17.0 
65. 4 -2.8 
29. 4 -24.0 
45.6 +2.0 

41.2 +2.0 
67.8 -8. 0 
12.5 +20. 0 
89.0 - 0.5 
88.6 +2. 1 

59.5 -2. 0 
36. 2 +23. 0 
.1 1. 9 +27.0 
3.0 - 30.0 

18.8 + J1.0 

45.0 -29.0 
40.7 -28.3 
59.6 -28.0 
64.0 - 1. 0 
43.5 - 1. 0 

48. 8 -0.5 
89.0 +3. 0 
89.5 -3.5 
89.5 -2.8 
89.0 -3.6 

90.0 - 3.7 
88.8 -2.5 
89.5 -3. 0 
89.0 -3. 0 

polished after center· 
Jess grin ding. 'rhe nomin al diameters were not used in calculations. Instead, 
the average radius was com pu ted from the actual length, nlass, and density, 
p~3.9860±O.0010 g/em'. 

A Laue camera of conventional design was used to 
detennin e the orientation; 35KVp X-radiation (cop­
per targeL) was used with exposure times of about 
6 to 10 hr. The samples were supported with the 
spccimen axis perpendicular to the X-ray beam and 
parallel to the edge of a small shield on the film 
hold er. The shadow cast by this shield on tbe film 
establis hed th e referen ce line on the film. A speci­
men to film di Lance of 3 cm was used , and the stereo­
gr aphic proj ecLion was madc according to the pro­
cedure described by BarretL [29] using the Greninger 
chart given in his figure 22 on page 170, and a 21-in . 
Wulff net.. The r esulting projection was Lhen in-

5B I 5B2 

FIGUR E 7. The orienta/ion of the two 1'ectangulCt1' block 
specimens. 

dexcd with the let ter sy mbols shown in figure 2a. 
This ind exing was done by a tri al and error method 
of making a tenLative assignment and comparino­
angles with t he valu es for sapphire given by Winchell 
[8]. This process was continued until the proper 
fit was obtained . 

The second m eLhod of measuring c/> , describ ed in 
section 2, was used. The actual cO lls truction obtained 
from a back refl ection Laue patLern al ways f e embled 
the proj ection hown in figure 8, that is, the opposite 
ends of the specimen axis were aL opposite points of the 
s tereographic eq ua,tor. The value of e can be read 
directly from this proj ection, as shown , but the 
specim en axis must be projected on Lh e X1X2 plane to 
m easure </>. Proj ection of + SA would require rota­
tion of the whole pa ttern because PSA would lie on 
the hemisph ere not shown in fi gure 8. This proj ec­
tion can be don e but requires more graphical con­
stru ction with atte ndant possibili t~T of errol'. It. 
is more convenient to project - SA and choose Xl as 
the ±a, direction nearest - PSA. Th e sig n conven­
t ion for determining cp is shown in figure 5. Orienta­
tions were determined twice on 12 specimens with the 
resulting standard deviations ~e= 0.6 ° and ~cp= 1.6 °. 

The longitudinal resonan ce frequency of each rod 
shapcd specimen was measured by hanging the speci­
men vertically from a crystal pickup. A single, fin e 
cotton thread was tied around the specimen some­
what off center so that the specimen hung approxi­
mately verLicall:v. Th e other end of the thread was 
tied to the needle of a high output Ro chelle salt 
pickup . VibraLion wa s excited by placing a high 
frequ ency speaker just und er th e specim en and driv­
in g through air. The electron ic components used to 
drive the speak er , to amplify the pickup signal , and to 
measure tbe frequ ency have been described [30]. 
With this system it was possible to de tect resonances 
in Lhe range 30 Lo 50 kc. Th e response was woak 
but very sharp , and careful huntin g was someLim es 
necessary. 
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- S A + S A 

FlG UR E 8. Stereogram illustrat'ing the actual measurement of 
q, and O. 

The flexural resonance frcq ucncy was measurcd 
with the specimen suspended hori zontall.,: on two 
threads ncar the nodes. One thread was dnven b.\T a 
magnetic cutting head. The other thre~d was con­
nected to a crystal pickup. Each speci men would 
v ibrate in two fiexural modes at right angles to each 
other. By tumin~ the specimen ~n t he string it \~as 
possible to excite Clth~r m~de at wIll and to deterrmne 
t he direction of vlbratlOll for each . The two 
resonn,nce frequencies usu al~~r differe~ by ~ few 
cycles, presumably because of small Val'latl~n s 111 the 
diameter of the specimen. The n,verage of the two 
resonn,nce frequencies was used in eq (13). An 
averaO'e value of r2 for each rod calculated from. the 
d ensit}r, the mass,' and the length, wa~ used. This 
approach wn,s used becn,use the d~nslty c?uld be 
determined accumtely by hydros~atlC wClghmg, but 
t he average radius was more chfficul t to measure 
accurately . . 

The torsional resonance frequency was determined 
with the same speaker and pick.up used in the longi­
tudinal resonance frequency measurements. The 
tweeter was modified by covering its output open~n g 
'with a sheet of paper. The thread used to dnve 
the specimen was fastened to the center of this sheet. 
The thread was wrapped around th e speCImen several 
t imes to provide an off-center driving force ~l1d the 
pickup t hread was wrapped around t~e specnnen ~n 
the opposite direction. Careful huntmg was agam 
necessary to find the weak but sharp resonance. 
It was necessary to distinguish b etween the funda­
mental of torsion n,nd the overtones of fi exur e. Thls 
distinction was accomplished by moving the drivin g 
a nd pickup strings until the nodes were located. 
The counter used for freq uency measuremen ts had an 
accuracy of ± 0.1 cps. 

The velocity of sound measurements on the two 
block specimens were made by sending an ultrason ic 
pulse into the specimen and measuring the transit 
time. A quartz crystal 0.5 in. in diameter and cut to 
resonate at 10 Mc was used as transmitter and pick-

up. An X-cut crystal was used to f:e nentte 101l ~1-
tudinal waves, and an AC-cut crystal was used for 
transverse waves. These crystal cuts are described 
b\- Buchanan [31]. The crystals were mounted on 
the specimen with salol (phenyl salicylate). The 
specimen was coated with a very thin layer of evap?­
r ated aluminum before the crystals were mounted m 
order to provide a ground. 

The crvstals were cxcited n,nd the echoes were arn­
plified wrth a COI?lmercial ul traso n! c generator and 
receiver. Thls umt had a pulsed oscillator of vanable 
frequency with a fixed pulse repetition rate of 100/ 
sec. The n,mplified output of the oscillator was con­
nected to an electrode on a qUfl,l'tz crystal. Th e same 
electrode served as an input con nector for the re­
ceiver. The output of t he receiver was conn ected to ' 
one input of an oscilloscope with a dual trace pre­
amplifier. A crystal controlled 1- Mc oscill ator was 
co nnected to t he other input of the dual trace pre­
amplifi er. The oscilloscope thus displayed t he stfl,nd­
ard 1- Mc sigllal on one trace followed by the echo 
pattern on the next trace. These two traces were 
s imul taneo uslv visible, and the l -:Mc pattern was 
used fl,S a time"scale for the transit time .meaSUl'ement. 
The O'cneral technique of pulse velocity measurement 
is l'e~iewed by Huntington [32]. 

The sweep expansion feature of the oscilloscope 
co uld be read to 0.01 iJ. sec. The actual measurements 
were much less accurate, howcver, because the pulses 
werc rou nded and did not llfl,ve a sharply defin ed lead- .­
ing edge. Consequently the maximum of t he pulse 
envelope was used as a reference point . . Repeated 
mettSUl'ements suggested that the resul ting trans it 
time might have an e1'1'or of several percent. For 
this reason no transit time correction , sueh as th fl,t 
discussed by Overton and Gaffncy [33], was made. 
The measured velocities givcn in this report should 
bc examined with this in mind. They arc provided 
as a rough check on the aCCUl'ate valLl es determined 
bv the resonance methods to show thfl,t the values 
of the elastic constants, within the aCCUl'acy of 
pulse velocity measurements, show no freq uen c.v 
dependence. 

7. Results 

The resonance frequencies are summ arized in 
table 3. These values were used to calculate E, and 
Op using the equations of section 4. The method de­
scribed in section 3 was then used to calculate the 
elastic compliances, 8ij. T ables 3 through 7 show 
various stages in these calculations and indicate t~ e 
precision. The reciprocals of the E, values used. ll1 

solving eq (8) are given in table 4, and the resu] tll1g 
values of the compliance combinations fl,re given in 
the first half of table 6. The clifference column in 
table 4 shows how well the observations on all 29 
rods were fitted by the foUl' parameters of eq (8). 
The shear modulus calculations are summarized in 
table 5 and the resulting compliance combinations 
fl,re giv~n in the second half of table 6. The difference 
column of table 5 shows how accurately eq (9) fit ted 
the data . 
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T ABLE 3. Resonance jl'equencies oj sapphil'e rods 

I" lcxura I 0. 

pccimcn Longitudin al 'rorsional 

II fz 

SR 1 _________________ 1100. 1 1100. 7 35673 20850 S H L _______________ 1032.5 1033.7 J<I739 19940 S R 3 _________________ 97 1. 5 972.6 32747 21033 SR 4 _________________ 900.0 900. 9 33397 20547 S R 5 _________________ 1908.9 1907. 3 45000 ---------- ----
S R 6 _________________ 945. 1 943.6 31746 21600 SR 7 ______ . __________ 998.3 997.5 33538 206 16 SR 8 _________________ 102 1. 9 1023.7 34'164 20037 SR 9 ______________ ___ 993.8 1010.3 3J868 20505 S R 10 ________________ 2518. 0 2539.3 53817 -.-.-----.--- -
S R I L _______________ 1431. 9 1432.7 32'200 21210 SR 12 _______ _____ 137 .7 1380. I 31 145 21763 
SR 13 _______ _________ 1536.0 1537. 0 34607 19943 
SRIL ______________ 1557. I -------------- 35175 19704 
SR 15 _______ _________ 1487.6 1488.4 33703 20346 
S R 16 ________________ 1483. 0 1484. I 33336 20596 S R 1'- _______________ 1472.5 1473.5 33160 20587 
S R 18 ________________ 1508.0 1507. 7 34068 20152 
S R 19 ________________ 1433.7 1434. 1 32420 20992 S R 20 _______ __ ___ ____ 1166.7 11 69.2 31778 21331 
S R 2L _______________ 1172.7 1174.9 31819 21436 S R2'2 ________________ 101 5.4 989.0 33727 20251 SR2L ___ ___________ 10 15.9 992.2 33786 20247 SR2L ______________ 1022.6 999. I 33871 20332 SR 25 ________________ 1015. 0 989.9 33768 20236 

SR 2"-- ______________ 1013.5 99.2 33735 20230 SR 27 _______ _________ 1007. 7 996.0 33757 202 19 SR 28 ________________ 1013. I 986.3 33715 20233 SR 2L ___ . __________ 1010.6 995.6 33790 20240 

a. rr he two flexural frequen cies correspond to vibrations at right angles. The 
average va lue was used for calcula tions. A II va!urs are in cycles PCI' second. 

T ABLE 4. R eciprocal Young's modulus oj sapphil'e 

A ll values are in units o f 10- 13 em'/dyne. The standard dev iat ion for l iE, 
co mputed using the ta bulatecl d ifferen c'Cs is ± 0.0052X I0-13 cm'/dyne . 

Specimen I /E, I/E r I/E, Di ffe ren ce • 
F lexural Longitudinal Calculated a 

SRI : ________________ 2.2764 2.2805 2.2759 0. 0046 SR 2 _________________ 2.2392 2.2366 2.2369 -.0003 SH 3 __ ____________ . __ 2.5242 2.5233 2. 5193 . 0040 S R 4 ________________ _ 2.4262 2.4237 2.4277 -. 0040 SR 5 _____ . __ ___ ______ 2. 7124 2. 7167 2.7119 . 0048 
S R 6 ______ ___________ 2.6968 2.6976 2.6876 .0100 SH 7 ________ __ _______ 2.4088 2.4079 2.4 147 -.0068 SH 8 _________________ 2. 2684 2.268 1 2. 2621 .0060 SR 9 ____ _____ ________ 2.3530 2.3540 2.3529 . 00 11 SR 10 _____ _______ ____ 2. 3543 2.3540 2. 3564 -. 0024 
SR1L __ ____ _________ 2.6020 2. 6048 2.5967 . 0081 SR 12 ___ _____________ 2.7684 2. 7685 2.7708 -. 0023 SR 13 ___ ___ __________ 2.2505 2.2461 2.2545 -. 0084 SR 14 ___ __ ___________ 2. 1795 2. 1744 2.1 744 .0000 SR IL __________ ____ 2.3679 2. 3624 2.3632 -.0008 
SR 16 ____ ____________ 2. 4414 2.4390 2. 4404 -. 00 14 SR 17 ____ ______ ______ 2.4570 2.4546 2.4567 -. 002 1 SR 18 ___ __ ___________ 2.3214 2.3180 2.3125 . 0055 SR I9 ___ ___ __ _______ _ 2. 5564 2.5556 2.5645 -.0089 SR20 __ __ ___ __ _______ 2.6689 2.6674 2.6670 .0004 
SR2L ______________ 2. 6709 2.6717 2.6826 -. 0109 SR22 ________________ 2.3537 2. 3579 2. 3560 . 0019 SR 23 ___ __ __ ____ __ ___ 2. 3488 2.3527 2.3510 . 0012 SR 24 ________________ 2.3424 2.3521 2.3518 .0003 SR 25 ________________ 2.3440 2. 3497 2.3502 -.0005 
SR 2"-- ______ ______ __ 2.3535 2.3554 2. 3529 .0025 SR2L __________ ____ 2.3482 2.3512 2.3509 . 0003 SR 28 ________________ 2.3436 2.3477 2.3517 -. 0040 SR2L _________ _____ 2. 3486 2.3521 2.3507 . 0014 

a Calculated from eq (7) using the data of table 6. 
• Ditlerence= longitudinal value minus ca lculated val ue. 

TABL I, 5. RecipTocal shear m odulus oj sapphil'e 

All values a re in un its of 10- 13 cm'/ciyne. T he st andarcl deviation for I /G, 
calculated from t he di fference column is ±.0178XIO-13 cm'/dyne. 

SpeCimen 
(8;,) '+ (8;,)' 

28;3 
I /G, 

Torsional 
I/G, 

Ca lcu lated j)ifl'ercnce 

SR L _______________ 0.0'121 6.7186 6.7296 -0. 0110 
SR L _______________ .0291 6.8175 6.8066 . 0109 
SR L _______________ .07l(j 6. 1888 6.2242 - .0354 
SR L _______________ . 0124 6. 41 56 6. 4294 -.0138 
SR 5' ________________________ ____________ __ _____ ___________________________ _ 

SR 6_ ________________ . 052 1 5.8792 5.9099 -.0307 
SR L _____________ __ . 05ij4 6.4282 6.4 295 - . 0013 
SR L_______________ .0390 6. 7491 6.7569 -.0078 
S R L _______________ . 0002 G.5208 6.5396 - .0188 
SR 10 a ______________ _ ___ _____________ __ __ __________________________________ _ 

SR IL _______________ .0734 6.0765 6. 0763 . 0002 
SR 12. _______________ .0664 5.7365 5. 7468 -. 0103 
SR 13 ____ ____ ________ .0371 6.8003 6.7718 . 0285 
SR 14 ____ ___ ___ ______ 

. 0020 (i. 9320 6.9302 .0018 
SR 15 ________________ . 0643 (j.5469 6.5571 -.0102 

SR 16 __ ______________ .0049 G.3939 6.3990 -. 0051 
SR 

17 ______ __________ 
. 0010 6.3692 6. 3690 . 0002 

SR 18 ____ ______ ______ . 0189 6.6439 6.6407 .0032 
SR 19 ________________ . 0748 6. 1704 6. 1355 . 0349 
SR 20 ________________ .0506 5.9698 5.9498 . 0200 

SR 2L _______________ .0564 5.9428 5. 9153 .0275 
SH 22 ________________ 

. 0024 6.5421 6.5334 .0087 
S R 2L ______________ . 00 14 6. 5528 6.5425 . 0103 
SR 24 ________ ___ _____ 

.0008 6.52 2 6.54 19 - .0137 
SR 25 ______________ _ . .0010 6.5439 0.5451 - .0012 

R 26 ________________ . 0019 6.5520 6.5396 . 0124 
SR 27 __ ______________ . 0004 6.5544 6.5435 . 0109 
SR 28 ________________ .0009 6. 5445 n. 5421 . 0024 
SR 29 _____________ ___ . 0007 G.5319 6.5440 -.0121 

• Too short for use. 

TABJ"E 6. B est estimates oj some cO'mpl1:ances 

Co mplian ce Value Standard cieviation 

CalcuJated from Youn g's mod ulus va lues a 

8]] 
833 
B.u+2s13 
8,. 

2.3529XIO- 13cm'/d yne 
2.169'1 
6.2 183 
0.4901 

0. 0016X IO- 13cm' /dyn e 
. 0024 
.0088 
. 0057 

Calculated from shea r modulus valu es b 

811-81 2 
SH 
811+833- (2813+8«) 
8,. 

3. 0696X 1O- 13cm' /d yne 
6.9400 

- 1. 6539 
0. 4868 

0.0067X lO- 13crn '/dy ne 
. 0084 
. 0197 
. 0101 

" Calcu lated b y fitting eq (7) to Young's modulus values calculated from 
longitudinal reson an ce freq uencies. 

b Calculated by fittin g eq (8) to shear modulus values. 

The final result for the elastic compliances and 
cons tan ts is given in table 7. The six compliances 
were calculated from the eight values in table 6 by 
weighting each value according to its standard de­
viation. The constants were ca.lcula ted from the 
compliances using the standard matrix inversion 
equations given, for example, by Nye [7] . 

The ejj values of table 7 were used in eq (15) to 
calculate the velocity of sound for comparison with 
the measured velocities for all directions of propa­
gation normal to the faces of SBI and SB2. In 
some cases this necessitil ted the solution of a cubi c 
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equation by succeSSIve approximations. The re­
sults are given in table 8 along with th c m easured 
values. In this table the faces hnve b een described 
by the labels shown in figure 9, e.g., the 45YZ face. 
The actual orientation w as used in the calculations, 
however; that is, the 45YZ face normal actually had 
8= 47.500 instead of 45 0 • 

The Sij values were used to calculate E J and GJ as a 
function of orientation. Th e results are shown in 
figures 9 and 10 and in contour form in figures 11 
and 12 . 

8. Discussion 

The values of the elastic constants and compliances 
for sapphire which hav e been reported by other 
investigators are given in table 7. Mayer and 
Hiedemann have suggested that the method of 

4400 

(j) 

0:: 4200 
<I 
m 
o 
-' 

'" 
w 4000 

(j) 

=> 
-' 
=> o 

~ 3800 
TABLE 7. Elastic compliances and constants of sapphil'e CJ) 

All St i values in uni ts of 1O- llcm 2/dync. All eii val ues in units of 1O I2c1 ync/cm2• 

Sunclara Bllimase· l\r[aycr & P resent work 
R ao nachar Il iedemann 

81 1 ________________________ 2.84 2.32 2. 18 2. 353± 0. 002 
833 ______________________ __ 2.2 1 1. 93 2.02 2. 170± . 002 
844 _____________________ __ _ 5. 47 5. 77 5.04 6.940± . 008 
812 ___ ___ ____________ __ ____ - 0.95 - 1.05 - 0.50 - 0.716± .007 
81 3 __ ______________________ -. 47 - 0.38 - 16 - .364 ± . 006 
814 ____________ __ ___ _______ - I. 52 - 1.71 -.49 . 489± . 005 

el l _____ _ _ ____ _____________ 4.66 4.65 4. 96 4. 06S± 0. 01 8 
CS3 ________________________ 5.06 5.63 5. 02 4. 981± .014 
CH __________________ ______ 2.35 2.33 2.06 1. 474± . 002 
CI2 ________________ _ _______ 1. 27 I. 24 1. 00 1. 636± .018 
CI 3 ____ __ __________________ I. 17 1. 17 0.48 1.109± . 022 
CJ4 _________________ _ __ ___ _ 0. 94 1.01 . 38 -0. 235± . 003 

TABLE 8. Veloczty of sound in sapphil'C 

All velocities in lO'cm/sec. 

Direction a Mode b I Calculated I Measurcci I Percent 
velocity velocity difference 

Specimen SB1 

X __________ __ ___ __ ___________ L 1117 1092 - 2. 2 
Tpol Y 667 669 +0.3 
Tpol Z 585 579 - 1.0 

y--- --------------------- --- - L 1118 111 6 - 0.2 
T pol X 651 645 - 0.9 
l' pol Z 600 609 + 1.5 

Z ___________ _________________ 
L 111 8 1100 - 1.7 
l' 608 594 - 2. 3 

Specimen SB2 

::y~--::j 
L 111 6 1088 - 2.5 

l' pol Y 676 662 - 2.1 
Tpol Z 575 564 - 1. 9 

L 1C95 11 46 + 4.7 
Tpo] X 581 609 + 4.0 
l' other 691 710 +2. 7 

pol 

1350 YZ _____ _________________ L 1041 1040 - 0.1 
1'])01 X 671 659 - 1. 8 
l' other 690 687 - 0.4 

po] 

a rrbe present directions are tho actual face normals shown in figure 8. 
hi I L" means longitudinal, II T pol Y" means transverse with the direction of 

vibration along Y, and" '1' other pol" means transverse with the direction of 
vibration perpendicular to the other two modes. 
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FIGUR E 9. YOlmg's nwdnlus , E(, as a .f1mction of orientation 
for single crystal sapphire . 
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FIGUR E 10. The shear modulus, G(, as afnnction of orientation 

for sin&le crystal sap phire. 

224 



~xciting v ibratio n used b y t h e India n workers may ' 
g ive spurious r eso nan ces. F or t his r eason w e com­
p ar e primarily with th e et of values give n by M ayer 
a nd Hied em ann . 

The m eth od used b.\' Nll1,)'c r n,nd Hied clll a nn gav e 
th e Cij valu cs directly;}w ClT01' in [t s in glc o l1 e 01 tb e 
Ci j migh t lead t o errors in sevc ntl o r t he S fj valu es. 

rl A ccordin gly we cO l1lp ,U'e C valu c J'ath('1' th a n S 

values. Cll and C33 tt rc in good ,tgrcc ill en t, bu t UI C 
I o th er v alues ar e Il Ot. Th c difJ'c l'c ll cC in s ig n o r C1 '1 

I is strikin g . As w as p oin ted o u t earlicr , tll C s ign o r 
CI4 (and SJ4) d ep ends on which end o r t he 2-f01d ax is 

I is tak en as +x1. Th e conven t ions g ivcn by N ye [7] 
a nd b.v t he S tandards on P iezoelectric l'rystaLs [11] 
leave this ullsp cc ificd. I'll is po in t is not III on t iOIH'd 
b y a ny of LilC previous workers on sapphire, ,wd w e 
have Ilo t b een a ble t o find a ll,' inforill ation in th c ir 
p ap ers on Wllich choice was r"nad e. H NJayer ,wei 
Hied e lnfwn used t he opposi te end o f a 2-fold axis as 
+x1, th e differ ence in s ig n of C14 would be accoun ted 
for a nd th e valu es of Cl4 wo uld be in rail' ag reem cn t. 
Th e most troublesome disagreemcnt is t /r,tL b etw ec n 
t he valu e o f C44 ob tain cd ill th e prescn t work, ] .47 X 

C 

o 
+0 

----- --- --

1012 d YIl C/CIll 2, }wd th e valu e 01' 2.06 X 1012 dy ne/cm2 

o btaill ed b~' M aye r a nd Hi ed e rn a nn . Th c 1.47 v alue 
callil ot be ver v Illu ch ill ClT01' bec,w sc th e value of 
th e velociLy o r" Lhc tra nsvcrsc wave ill Ut C X3 direc tion 
d cpclld o nl .\' o n Lhi co ns la nt , and the m e,tsured 
v,du e is - 2 .;3 percc ll t fr OIll t b e calculated v alue as 
shown in Utblc 8. Th e h oL th ,tt eqs (3 0) and (3 1), 
uscd by .\ 1',t)'c1' ItIld Hicd c lmtlll1 , ar c no t stric tly cor­
r ceL w a p oin tcd o ut in scc tion 5. Howevcr , it does 
not sec lll t haL thi s rttc t has ,tn v conn ec tion with the 
disn.g rec illen t -in tilc valucs 'o f C44 b ecause th ese 
cq Ult t ioll s ar c not neec/ ed 1'01' a \Va ve propagated in t h e 
X3 dircctio n . '1 

A co mparison can b e muci c to suppor t th e validity 
o r t hc prese n t ci tt t ,t. Lntll g [34J hn s rc ported valu es 
o r chtst ic m oduli c\cLc l'lnill ccl d~'nn,mjcH lly on ho t 
pressed pol~Tcrys tallin e ttlplHt alumin>t o r density 
3.983 g/CIll3. This d Cll s iLy is so d ose to th e value of 
:3.986 g /C1ll 3 o bhtill ecl 0 11 sillg le crystals th at th e 

<I n a pri vate communication dated M arch 28, 19no, R. IT. 'l'rueU (Brown 
U ni versity) gives as LClltativc resul ts from bisjointinvest igaLion with P. E . Levy 
(Brookhave n National Laboratory) using a pulse velocity techniq ue, 0 ,,=5.013 
X lO"dyncsjcm' and C,, = 1.478X IO " cyncsjrm'. Thcsc values are seen to be in 
good agr('cment with the results presented here. 

461 0 

¢-

1"J OVR E 11. Young' s modulus, B r, inte1'vals of 100 kilobars. 
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values of the elastic moduli of his specimens must 
be only slightly less than the values for zero porosity. 
He gives E = 4012 kilobars and G= 1591 kilo bars as 
his best values. An exact theoretical relationship 
between single crystal elastic constants and poly­
crystalline moduli has not been developed, but two 
good approximations are discussed by Huntington 
[32]. One method, due to Voigt, should give values 
slightly too high, and the other method, due to Reuss, 
should give values slightly too low. Using the elastic 
constant and compliance data of table 7 and the 
equations given in Huntington's article, one obtains 
the results shown in table 9. The values of E and G 
calculated from the elastic constants obtained in this 
investigation are in rather good agreement with 
Lang's values . 

All elastic constants, compliances, and moduli so 
far discussed have been for adiabatic conditions; i.e., 
measured under conditions when appreciable heat 

C 

flow could not occur during one cycle of vibration. 
Isothermal values are measured in static tests . 1 

Hearmon [14] gives an equation from which the differ­
ence between isothermal and adiabatic values can 
be calculated. This difference ranges from 0.2 
percent for 811 to 1 percent for 813' 

TABLE 9. Comparison of calculated and measured elastic , 
moduli fO l polycrystalline alumina 

All values in kilobars. 

Young's Shear 
modulus modulus 

M easured (Lang) . ~~ ~~ ~~ ~~~~ ~~~ ~ . ~~~~~ 40]2 1591 

Present Rouss theory ____ 3973 1606 
data Yoigt t heory ~~ ~. 4084 1660 

Mayer & Reuss theory~~~~ 4554 1996 
Hiedemann Voigt t heory ~ ~ ~ ~ 4682 2070 

1440 

o 
+0 
1>-

FIGURE 12. Shear modulus, G f , intervals of 20 kilobars. 
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The compl'es ibili tics e,lll be calculated from the 
compliances usin g equat ioll s given by Nye [7] . Th e 
adiabatic compl'cssibilit.i es c.nlculated in this way are 
given in table 10. Th ese should differ from the 
isothermal compres ibili ties b.'~ abou t 1 percent. 
Values of the isotherml!l compre sibili ties meas ured 
in stati c. tests by Bridgmll n [35] nnd by M adclung 
and Fu c.hs [36] are given in ta bl e 10. Bridgmnn's 
lin ear compressibili ty parnllcl to the X3 axis is based 
on the ini tial slope of his c. urve and is iJl co nsistent 
with all the other data. T t is listed in the first row 
of measured valu es in tnble 10 even tho ugh it docs 
not. appear to be consis tent wi th his report,ed valu e 
of volume compressibili t.\~. If t he slope of t he s ub~ 
seq uen t section of Bridgman 's c. urve is used, t he 
values labeled " Bridgman , in tcrpreted" are obtained. 
Th e present work is in somewhat better agreement 
with the experimentnl vnlu es of volume compress~ 
ibility t han tbe res ults of )''1nyel' and Hiedemann. 
Visual inspection of Bridgman 's curves suggests that 
the difference between the YHlu e of 3.6 X IO - 13 cm2/ 
dyn e, cnlculated from his da ta, Iwcl. 3.988 X 10- 13 

cm2/d.'~n e may be largely dll e to cxpenmental error 
ill his data. 

T ABLE 10. Compan·son of co1ilpi"ess1·bilities calculated j1"om 
elastic compliances with values measw·ed directly 

A II values in 1O~13 em' dyne. 

P resent data, 25° C __ ___ .. _____ _ 
Mayer and Hiedemann, 270 C _ 

Li near com press­
ibility 

1 ___ ,-__ 1 Vol ume 

I 
compress-

Parallel Peq)cn- ibi lity 
to X3 dicular 

to X3 

--------------
Calculated from com pliances 

1. 442 1 1. 70 1. 273 1 1. 52 

Measured 

3.988 
4. 74 

Bridgman,300 C,as reported ___ 0. 40 1 1.13 1 3.23 
llridgma n. 30° C, inierpreted ___ 1. 35 1. 13 ~: g 
M adeltlllg and F uchs, 0° C ____ _ _____ ______ ________ _ 

Finally, t he difference columns in table 4 and table 
5 show how well the classical, 6-constant theory 
fits the accurate res ults obtained in the kilocycle 
per second range. The standard deviation calculated 
from ei ther set of differences is 0.3 percent of the 
average value of l /E or l /G, r espectively. The 
worst disagreement for either l /E or l /G is ollly 
0.6 percent. I t is evident tha t th e classical t.11 eory 
of elastic.ity gives a ver.\- accurate r epres('ntatlOn of 
the elastic behavior in th e kilo c~~cle per second range. 

9. Summary 

(1) The complet(' set of elastic constants and 
complian ces for sapphire c~llcul~Lted from resonance 
meas u~·en~ents in the kilocycle per second frequ en cy 
range IS gl ven . 

(2) Les accurate pulse velocity meas urements in 
m egacycle per seco nd range indi cai.e li ttle, if any, 
frequency dependence of the cla tIC co n inn Ls. 

(3) Th e valu es of CI I and C33 agree well wi th the 
result of the mo t accu rate p revious measurements, 
bu t t he rema ining constants and flU of the compli­
ances arc in serious disagreement. 

(4) Values of Yo un o- 's modulus and the shear 
modulus for polycrystallin e aluminH, cdlculated frot?J­
~h e compliances are in good agreement with expen­
mental valu es . 

(5) Curves for estimating Young's modulus and 
the shear modulus for single crystal sapphire of any 
ori entation are given. 

The a uthors thank t he Wright Air D evelopment 
Center for supporting this work and the Linde 
Company for supplying specimens. They are grate~ 
full to R. W . Kebler and R. G. Rudn ess for a copy of 
their memomndum on the orientation of sctpphire. 
The au thors thallk H. S. Peiser and D. K. Smi th for 
discussion of t he orien tfLtion process and of the 
equations relating moduli and compliances. 
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