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The six elastic constants (and six elastic compliances) of corundum were determined in

the kilocyele per second frequency range by an accurate resonance method.

The results

were checked in the megacycle per second range with a less accurate, pulse velocity method.
The elastic moduli for polyerystalline alumina calculated from the single erystal compliances
determined by the resonance method are in good agreement with experimental values ob-

tained on high density polycrystalline alumina.

The variation of Young’s modulus and of

the shear modulus with orientation was calculated from the compliances and the results

are shown graphically.
work on single erystal sapphire.

The results of the present work do not agree well with previous
The specification of orientation and the theory used to

alculate the elastic constants are given in detail to support the contention that the results

of the present work are correct.

1. Introduction

The purpose of the present paper is to present a
set of values for the elastic constants of single crystal
corundum ! at room temperature and to argue that
these values are correct despite the fact that they
disagree with values reported in three other investi-
gations. Fifty-six independent measurements on
29 different specimens yielded consistent results for
the six elastic constants which this material should
have.?

The complete set of six elastic compliances and
six elastic constants were first reported by Sundara
Rao [1]?% for synthetic sapphire. A similar deter-
mination was made by Bhimasenachar [2] using
natural sapphire; very good agreement with Sundara
Rao was found except for ¢z, More recently, Mayer
and Hiedemann [3] have redetermined the elastic
constants and compliances for synthetic sapphire

with results which are rather different from the
previous investigators’ values. Mayer and Hiede-

mann suggest possible causes of incorrect resonance
frequency measurements in the experimental method
used by the Indian workers.

The present work began with measurements of
Young’s modulus which were intended as the basis
of a study of the changes in elastic moduli and
internal friction as a function of temperature. These
Young’s modulus values permit calculation of four
compliance constants which were found to be incon-
sistent with either of the previously reported sets of
compliance constants. All of the previous work was

1 Corundum is pure aluminum oxide, A1,03, in the stable, « phase. The term
sapphire is used synonymously in this paper.

2 A generalized theory, due to Laval and Raman, requires 10 constants and is
discussed later.

3 Figures in brackets indicate the literature references at the end of this paper.
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done at frequencies in the megacyele per second range,
but the present determination of Young’s modulus
values was made in the low kilocyele per second
range. A possible frequency dependence thus re-
quired consideration. The present authors under-
took a broadened program with the objectives of
determining a complete set of elastic constants in the
kilocycle per second range and checking the results
in the megacycle per second range. The results of
the broadened investigation are reported in this
paper.

In all the work discussed so far the classical theory
of elasticity was used. This classical theory has
been considered correct for more than 50 years and
is still accepted by most scientists.  Briefly, it
assumes a linear relationship (Hooke’s law) between
6 independent components of stress and 6 independ-
ent components of strain. The theory leads to 21
independent elastic constants for the most general
nonisotropic medium such as a ecrystal with no
symmetry, and to 6 independent constants for a
crystal with the symmetry of sapphire. This theory
was challenged in 1951 by Laval who asserted that
there are 9 independent components of stress and 9
independent components of strain which would lead
to 45 independent elastic constants for a crystal
with no symmetry. This idea was developed by
Laval and Le Corre, and independently by Raman
and his collaborators. A good list of references is
given by Joel and Wooster [4]. For the case of
crystals with the symmetry of sapphire, Raman [5]
asserts that there are 10 independent constants
instead of 6 as in the classical theory. If this gen-
eralized theory were correct, discrepancies in reported
values of elastic constants might result from analysis
of data in terms of a 6 constant theory when a 10-
constant theory should have been used. However,
results of the present work show that the classical,



6-constant theory represents the elastic behavior of
sapphire in the kilocyele frequency range quite well.
All equations in this paper are based on the classical
theory. Because the present results do disagree
with previous work, this paper presents the theory
and experimental procedure in some detail.

2. Specification of Crystal Orientation

The values of the elastic constants (or compliances)
of a nonisotropic material depend upon the choice
of coordinate system. The use of a rectangular
coordinate system is conventional. For each erystal-
line material, the orientation of this rectangular
coordinate system is usually chosen to take maximum
advantage of its point group symmetry, and the use
of this system is implied when elastic constants are
discussed. In this section the coordinate system
appropriate for sapphire (called the @z, system) is
described in terms of the point group symmetry and
the back reflection Laue pattern. Elastic property
measurements on a erystal must be related to this
coordinate system in order to interpret the results
of the measurements in terms of elastic constants.
The line in a specimen along which Young’s modulus,
the shear modulus, or the velocity of sound was
measured, will be referred to as the specimen axis
(SA). It is convenient to distinguish between the
opposite ends of this line and the reference end will
be taken as positive (4SA).

The point group of sapphire is 3m [6]. Figure 1
is a stereographic projection showing the symmetry
elements, the rectangular system 2,25 to which the
elastic constants are referred, and the hexagonal
coordinate system axyuz which is used for Miller-
Bravais indices. This notation for both systems is
used by Nye [7] and will be used throughout this
paper to refer to these coordinate systems.

Rigure 2 shows a stereographic projection of
prominent poles in a back reflection Laue pattern of
sapphire. Figure 2a shows the letter symbols of

Ficure 2.

o

Ficure 1. Stereogram of point group 3 m.

The heavy lines indicate mirror planes, the open triangle indicates the 3 axis,
and the diad symbols jlldlcal(- 2-fold ax 2w9rs is the right-handed cn(n'(lmatp
system used for elastic constant specification. z y w z is the Miller-Bravais
coordinate system,

morphological crystallography [8] which can be
assigned by measuring the angles between poles.
This process is without ambiguity and is described in
section 6. Figure 2b shows the Miller-Bravais
indices for the conventional choice of coordinate
system. Figure 2a is based on angular values ob-
tained from Winchell [8]. The recent X-ray pattern
by Swanson and Fuyat [9] gives ¢/a=1.365 for the
morphological unit cell. The distinction between
the morphological and the structural cells is discussed
by Kronberg [10].

The z2,2; system is not uniquely defined by figure
1 alone. Any 1 of 6 directions might be chosen for
~+axy; 1e., +x; might be chosen in either direction
along any of the three 2-fold axes. However,
opposite ends of a 2-fold axis can be distinguished
even though point group 3m has a center of sym-
metry. The opposite ends are designated +a and
—a 1n figure 2a. The distinetion between +a and
—a is illustrated in figure 3. The three +a direc-
tions can be identified by examining the neighboring
points on the stereographic projection. The choice
of which is to be called +a and which —a is, of

Stereograms of poles of prominent planes in sapphire.

Figure 2a shows the letter symbols which can be assigned by measuring the angles between poles.
choice of coordinate system.

Figure 2b gives the Miller-Bravais indices which require a
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course, a convention. This choice 1s important
because the sign of the elastic compliance s, de-
pends upon it.*  No convention for this choice for a
nonpiezoelectric erystal is given by Nye [7] or by
the Standards on Piezoelectric Crystals [11]. The
convention used here has been chosen to agree with
that implied by figure 151 from Phillips [12], by
figure 2 from Kronberg [10], and by figure 5 and
table 1 from Winchell [8]. The angles specifying
the orientation of the specimen axis are shown in
figure 4. Theta, the colatitude, or zenith angle, is
the angle between 43 and SA. Phi is the angle

in the 2z, plane from -+, to the projected specimen
axis (PSA). The angle 6 is exactly the same as the
angle p used by Winchell [8]. However, his angle ¢
1s measured from —a instead of from +a and is
measured clockwise (looking in the —u; direction).
Winchell’s definition of ¢ 1s not used here because
we wish to adhere to the usual spherical polar angles
in a right-handed system.

4This can be seen by examining a coordinate system yiyoys with y1=—z;. If
y3=1x3, then one must have ys=—2z, to maintain right-handedness. Examination

of the transformation of s;s shows that it is equal in magnitude but opposite in
sign when expressed in the y1y5y3 system.

FiGure 3.

The stereogram in figure 3a is centered on +a and shows that the sequence of poles m ¢ r ¢ ¢ R s in the nearer mirror planes has counterclockwise sense.

3b, centered on —a, shows that the corresponding sequence has clockwise sense.

A3

+a

a

FI1GURE 4.

4a shows a perspective of the important orientation angles.

Distinction between

+a and —a.
Figure

The angles used in specifying the direction of ihe specimen axis, SA, and its projection, PSA, in the x;x2 plane.

4b shows a stereographic representation of the orientation angles.
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In discussing the range of 6 and ¢ it is convenient
to introduce the concept of the asymmetric triangle,
which is the largest spherical triangle on a stereogram
not containing any symmetry related directions.
Any direction outside this triangle has a symmetry
related direction within it.

The range 0°<<90° and —30° <¢<30° is suffi-
cient to specify the orientation. That is, on a
stereographic projection the range 0°<§<90° and
—30°<¢<30° defines an asymmetric spherical tri-
angle. However, this range of ¢ is not sufficient
to distinguish between equivalent points with mirror-
image_environment. For example, the environment
of (1120) is the mirror image of the environment of
(2110). To distinguish such directions a range of
0°<0<90° and —30° <¢p<90° is useful, and Kebler
and Rudness [13] have recommended the use of this
range in specifying the orientation. The range of
—30°<p<-+30° 1s adequate for specifying any
physical property, such as elastic properties, which
depend only on the direction of measurement and
not upon the left-handed or right-handed distribu-
tion of neighboring points.

In carrying out the actual measurement of ¢ either
of two equivalent methods may be used. In the
first method ¢ is measured from PSA to z, and the
fact that ¢=30°-+46 1s equivalent to ¢=30°—45 is
used to reduce any values larger than 30° to the
range —30°<¢<30° In the second method ¢ is
measured from PSA to the nearest a-type direction
without regard to whether it is +a or —a. The
rule shown in figure 5 is then%used to determine the
sign of ¢.

G c
. .
S A S A
m m m m
PSA PSA
+a R % -a
305 .30 S o, 2°
S0so =207 ®s300  .300
a b
Frcure 5. Stereograms illustrating the sign convention for ¢.

Note that the position of SA must be considered.
determined from the position of PSA alone.

The sign of ¢ cannot be

3. Relation of Young's Modulus and Shear
Modulus to Elastic Compliances and to
Orientation
The stresses ¢;, and the strains, €;, will be written

in Nye’s matrix notation [7]. Hooke’s law can be
written in terms of the elastic constants, ¢,;, as

(1)

O'i:ECi]‘Ej

or in terms of the elastic compliances, s;;, as

e 2)
i

where the matrix of the s;; is the inverse of the
matrix of the ¢;. For any material, ¢,;=¢;; (and
s:;=8;;) which reduces the number of independent
constants (or compliances) to 21. For sapphire,
the symmetry of point group 3m further reduces
the number of independent elastic constants (or
compliances) to six and the resulting matrices are
shown in table 1.

TaBre 1. Elasticity matrices

General elastic constant matrix

C1n C12 C13 C14 C15 €16
C12 C22 C23 C24 €25 C26
C13 €23 €33 C34 €35 €36
C14 C24 C34 Cy4 C45 C46
C15 €25 C35 C45 C55 C56
C16 €26 C36 C4f C56 Co6

Elastic constant matrix for sapphire referred to the
coordinate system 712273

C11 C12 C13 Ci4 0 0
C12 11 ci3 —Cy 0 0
13 €13 C33 0 0 0
C14 —Ci4 0 C44 0 0
0 0 0 0 C44 C14
0 0 0 0 ey ¥ (cu—cn)

Elastic compliance matrix for sapphire referred to
the coordinate system zizaz3

S11 $12 $13 Si4 0 0
812 S11 813 —S14 0 0
813 813 833 0 0 0
S14 —8u 0 S44 0 0
0 0 0 0 S44 2814
0 0 0 0 2814 2(811—812)

In relating the elastic compliances to Young’s
modulus, it 1s necessary to distinguish between
the “free” Young’s modulus, £, and the “pure”
Young's modulus, £, when analyzing flexural or
torsional tests. The free Young’s modulus is the
value obtained when the specimen is completely
free to deform elastically under the applied tensile
stress. The pure Young’s modulus is the value
obtained when the specimen is tested in flexure and
is prevented from twisting. In an isotropic medium
the free and pure moduli are identical. Calculation
of Young’s modulus from flexural vibrations of long,
thin rods of nonisotropic material corresponds to
measurement of /£, A similar distinction must
be made with the shear modulus, ¢. For rods of
nonisotropic material of the dimensions used in this
work, the modulus determined from torsional vibra-
tions is very accurately the pure shear modulus, @,.
The proof that £, and @, are the measured quantities
involves the substitution in equations given by
Hearmon [14] and by Brown [15]. We shall omit
the proof here and give the results connecting the
quantities determined experimentally, /£, and G,
with the elastic compliances. Consider a rectangular
coordinate system ;s with the zi axis along
SA. For stress application along the z; axis
(14, 15]:
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(3)

(4)
(5)

where

(6)

Equations (4), (5), and (6) can be combined to give

/2 /2

i: 1__ '“3174‘7 '», (7)
G/ Gp 2533

which is a more useful relation between @, and @,
than eq (5).

The primed quantities in eqs (3), (4), and (7)
must be related to the orientation and to the elastic
compliances measured in the z;r,x; system. It can
be shown [14] that the values of si, \;1+ 2, and
s53+s52 depend only upon the (lu(\( ‘tion of x5 an(l not
upon the direction of z; and z. Accordingly z; and
x5 were chosen to simplify the transformation equa-
tions as much as possible subject to the condition
that z{xsz; form a right-handed rectangular set. This
was accomplished by choosing z; to lie in the zz,
plane, then choosing x| orthogonal to 5 and z;. The
relation of I{Jéa'; to x,2,x3 1s shown in figure 6.

Equation 25 on page 70 and equation 10 on page ()1
of C d(l\ |1()] give the general transformation for si,
and si;+si; respec tl\(l\ An error in sign wt 1S f()un(l
in 12 of tlu' last 18 terms of the equation for ‘\H—r\
When this error is corrected, the resulting ('\pl(‘bsmns
are:

0

1
S33——=———
33 44](0,(1))

=8, SIN*0+ 833 cos’d

+ (28131 544) SIN%0 cos*d

+ 254 SIN*0 cosf Sindg,

(8)

and

I i 1+ cos
) H:G}(a'g)jz(sn*‘ﬁz) SINZ0+-844 <+T)

— S44) SIN%H cos?l

+2 (s11+833— 2833

(9)

which agree with eqs 48 and 49, page 76 of Cady [16]
for trigonal symmetry.

The transformations for sj; and s;; were obtained
by using the general transformation law for fourth
rank tensors, then reducing this to the trigonal
symmetry of sapphire and making use of the particu-
lar choice of xjx; desceribed above. The resulting

—4514 8100 cosf sin3ep,

expressions are

0 cos 0 cos3¢, (10)
and
=2(28,3+F S44— 11— S33) Sind cos®d
+2( 8y;—815— “2>sme cosf
+ 814 sInf sin36 sin3é. (11)

A set of elastic compliances can be determined from
these equations in the following manner: It is neces-
sary to determine the values of I, and G, on at least
four rods of known orientation. Equatlou (8) 1s
written for each rod and the resulting system of
simultaneous linear equations is solved_ for S11, S33,
2813+ 84, and s, These values are substituted into
eqs (8), (10), and (11) and the results are used in
eq (7) to calculate G, for each rod. These values of
(1,, 0, and ¢ are substituted into eq (9) for each rod.
The resulting system of simultaneous linear equa-
tions is solved for S11— 812, Sa4, S11-+Ss3—2813—84, and
S14.

4. Relation of Elastic Moduli to Resonance
Frequencies

The values of £, and @, needed for the calculation
of the elastic compliances were obtained by resonance
frequency measurements on thin, circular rods.
Young’s modulus was calculated from the longi-
tudinal resonance frequency and independently from
the flexural resonance frequency. The shear modulus

was calculated from the torsional resonance f[re-
quency. For both of the Young’s modulus calcula-

tions, the equation relating the resonance frequency
to the appropriate modulus is approximate, but the
approximations are very good.

For longitudinal vibrations, Young’s modulus of
an isotropic medium can be calculated from Ray-
leigh’s equation [17] which can be written

") (12)

where pis the density in grams per cubic centimeter,
[ is the length in centimeters, f is the longitudinal
resonance frequency in cycles per second, ¢ is
Poisson’s ratio, 7 is the radius in centimeters, and /£
is Young’s modulus in dynes per square centimeter;
1 dyne/em?*=10"° ki kg/em?=
1.450<107° Ib/in.>.  The term in parenthesis is the
Rayleigh correction term for the finite thickness of
the rod and neglects higher powers of »/[.  Bancroft
[18] has made an accurate calculation of the velocity
of longitudinal waves as a function of 7/, where \ 1s
the wavelength which is equal to 2/ for resonance in
the fundamental mode. The smallest value for
which Baneroft gives a numerical result corresponds
to 7/l=0.05. Assuming Poisson’s ratio is 0.25, the
Rayleigh correction for this value is 1.00077 and

F—4 1j<1-|— kA
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PSA m

X' X'z X'y
X, | cos © cos -sin @ sin © cos
X, | cos © sin @ cos ¢ sin© sin®
X3 -sin© 0 cos©
C
Frcure 6. The rotated coordinate system xyxyx3 and the direction cosine scheme.

Figure 6a is a perspective drawing of the relation between I;I'ZI; and zyzaz3.

direction cosines.

Bancroft’s results give 1.00078. Evidently the
Rayleigh correction is very good for small values of
r/l. The largest value of r// used in the present work
was 0.0125 so that eq (12) is thought to be very
accurate. For the range of /I used in this work, the
entire correction factor can be taken to be 1.0000.
This equation was derived on the assumption of

Figure 6b shows the relation stereographically. Figure 6c¢ gives the values of the

elastic isotropy, but the actual specimens were an-
isotropic. Equation (12) gives £, for crystalline
rods of the dimensions used. The value of Poisson’s
ratio varies somewhat for single crystals but for
polycrystalline alumina is about 0.25, and since
this only enters in the correction term, it seems that
eq (12) can be used with this value of Poisson’s
ratio.
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For flexural vibrations of an isotropic medium
the best existing theory seems to be that based on
an approximate differential equation derived by
Timoshenko [19] and studied by Goens [20] and by
Pickett [21]. Pickett’s results are given in the form
of a correction factor, 7', which multiplies the result
for an infinitely thin rod. His results can be ex-
pressed as

112
F=0.31547 p—i—/ T

(13)

where /£ 1s in dynes per square centimeter, and the
symbols have the same meaning as in eq (12) except

f which here is the flexural resonance frequency.

In his original paper, Pickett [21] gives equations for
calculating 7" for Poisson’s ratio values of zero,
1/6, and 1/3. A subsequent ASTM Standard [22]
gives an interpolation formula without giving the
derivation or stating the range of validity. It
seems best to use Pickett’s original formula and
interpolate using a quadratic approximation. The
question 1s not significant for rods of the size used in
this investigation, the thinnest rods having »=0.050
mn. (r/l=0.0083) and 7'=1.0015, the thickest rods
having »=0.075 in. (r/[=0.0125) and 7=1.0033.
The equation relating the shear modulus to the
resonance frequency of an isotropic cylinder can be
derived by considering the propagation of torsional
waves and requiring that the wavelength have a

value such that standing waves are formed. The
result is
G=40", (14)

where G/ is the shear modulus in dynes per square
centimeter, f i1s the torsional resonance frequency,
p 1s the density in grams per square centimeter, and
[ is the length. The significance of this equation for
crystalline eylinders has been considered by Brown
[15] and by Hearmon [14]. The details are compli-
cated, but the result is, as previously stated, that for
thin rods eq (14) gives G, and eq (13) gives F,.

5. Relation of Elastic Constants to the Velcc-
ity of Ultrasonic Waves

The theory required for the determination of the
elastic constants of sapphire from resonance fre-
quency measurement was given in sections 3 and 4.
The present section presents the theory required for
elastic constant determinations from wave velocity
measurements. The velocity of sound as a function
of specimen size has been studied by Tu, Brennan,
and Sauer [23]. They found that in cylindrical rods
the velocity of longitudinal waves depended upon
r/X where 7 1s the radius of the rod and X 1s the wave-
length of the sound wave. For values of »/\ larger
than 2.5, the longitudinal waves traveled at the speed
of plane waves in an infinite medium.

Similar results should hold for waves propagated
in a rectangular block. The longest wavelength
used in the present work was about 0.11-em and the
smallest block was 1.25-cm thick. These values give

a thickness to wavelength ratio of 11.4. It seems
that the theory for plane waves in an infinite medium
an therefore be used.

This theory is summarized by Kolsky [24] and by
Markham [25]. The results are contained in a cubic
equation in the variable 2=p? where p is the density
and » is the velocity. This equation can conven-
iently be written in determinant form

A—zx H G
¢ F (—2

where
A =cnlt+ coem?+ cssn® 4 2ci6lm + 2c55mn + 2¢15nd, (16)
B=ceil? + coom? + can® + 2ca5lm + 2camn+ 2eq5nl, (17)
C=c55l2+ cam? + czan®+ 2¢5lm + 2c3ymn—+ 2¢33nl, (18)
F=c5l?+ com® - csm® + (c25+ cas) Im+ (ca3+ caa) mn

=+ (cs6+cas)nd, (19)
G =15l + csom®+ casn® + (crs+ cso) lm~+ (cas+ cas) mn

+ (('1:;+('35)I1/, (2())
and
H = cisl? + cosm?®+ casn® + (cr2+ cos) Im—+ (cas+ ca6) mn

-+ (e14+ cs6) nl. (21)

In these equations the ¢;; are the elastic constants
and [, m, n are the direction cosines of the normal
to the wave front. The distinetion between velocity
surface and wave surface for elastic waves has been
discussed by Musgrave [26] and Markham [25]. It
is sufficient to state that the measured velocities in
the direction defined by lmn are those given by eq
(15). It is important to notice that both the elastic
constants and the direction cosines are referred to
the same coordinate system. For sapphire, if the
coordinate system is chosen to be the z;z,x; system
previously deseribed, the matrix of elastic constants
given in table 1 may be substituted to simplify eqs
(16) through (21). This simplification has been done
by Bhimasenachar [27] for calcite which has the same
point group and consequently the same elastic con-
stant matrix as sapphire. The resulting equations
an be expressed directly in terms of the orientation
by substituting /=sinfcos¢,m—sinfsing, and n= cosf.
These substitutions give

o ; 1 . o
A=cy, sin20 cos-’dr%—; (¢11—c12) sin? @ sinp+

cyy €OS? O+ 2¢y4 Sinf cosh sing, (22)
lf:%((:“ffu) sin%g cos’p+ ¢y sin?g sin’p
+ €4y €OS%0— 24 SInf cosh sing, (23)
C'=cyy sin20-+ c33 cos?, (24)
F=cyy sin20(1—2 sin’p) + (c13+cyy) sind cosh sing, ;
G'=2cyy sin20 sing cosp+- (¢34 cy) sind cosh cose, \<9)
(26)
and
H:%((:11+('12) sin2f sing cos¢g-+2¢yy sind cosf cose.
(27)
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To solve for the velocity of sound in a given direc-
tion, the direction cosines must be substituted into
the expressions for A . . . H which must then be
substituted into (15) and the resulting cubic equa-
tion solved. For some directions this calculation is
easy. For example, waves propagated along the 3
axis will have /=0, m=0, n=1.

Equation (15) reduces to

cy—a 0 0
0cy—2x 0 |=0 (28)
0 0 ecy3—2
which gives three roots
U =—C33, Cid) Cadr (29)

These roots correspond to the propagation of a longi-
tudinal wave with velocity +/ess/p and two transverse
waves with velocity +eu/p. For other directions eq
(15) does not reduce to such a simple form and the
waves are quasi-longitudinal and quasi-transverse
rather than truly longitudinal and transverse.

A simplified method of treating directions for
which eq (15) is difficult to solve has been used by
each of the previous workers on the elastic constants
of sapphire. The method has been most fully de-
scribed by Mayer and Hiedemann [3]. They assert
that for any direction the velocity of the quasi-
longitudinal and quasi-transverse waves are given
respectively by

(30)

Vi
pPUL=2C33
and

(31)

where ¢i; and ¢iy are the value of ¢33 and ey when
the coordinate system is transformed into one with
the 23 axis in the direction of propagation. Expres-
sions for ¢;3 and egy are given by Mayer and Hiede-
mann [3]. The present writers do not question the
transformation equations for ¢f; and ¢ but do
assert that eqs (30) and (31) are not true in general.
That is, pv% or prk will in general be a more compli-
ated function of the elastic constants and direc-
tion of propagation which may reduce to eqs (30)
and (31) for certain directions of propagation.

An example of a direction for which the simplified
method gives a different answer than the general eq
(15) is the z; direction (parallel to a 2-fold axis) in
sapphire. Using eqs (30) and (31) Mayer and
Hiedemann obtain for pp® the three values

D
PUS=Cyy

pYL="c1, (32)

PUE= C4y, (33)
and

pv=Cos=13 (11— C12) (34)

Actually substituting into eq (15) gives

(35)

& —
pPUL=Cyy,

4c2
PU?S‘%(066+ Cas) £ 3 (Co6—Cas) X \/l ‘I“‘*H,—_‘z' (36)
(Cos—Cus)

The results agree for the longitudinal wave but do
not agree for the transverse wave unless ¢y, is zero.
In practice it might happen that 4¢3,/(cs—ei)? is
small compared with one. If this were so, eqs (30)
and (31) would give a good approximation for this
particular direction but might not for a different
direction. It seems that the results calculated from
(30) and (31) would have to be checked against the
results obtained from the fundamental eq (15), for
each direction of propagation. This fact, of course,
would mean that no time would be saved by the use
of the simplified method. In the present work, only
the exact eq (15) was used.

[t is perhaps worth noting why the simplified
method should not be expected to be correct. If
the xrrs coordinate system is transformed into the
rirgrs system, every term in eq (15) can be trans-
formed to give a correct result. KEquation (28),
however, is a special case of (15) resulting from a
special choice of coordinate system and direction of
propagation. If the nonzero terms are transformed
by a rotation of the coordinate system, eqs (30) and
(31) will result, but these equations cannot be ex-
pected to hold in general for directions of propagation
other than the direction assumed in deriving eq (28).

The error in the simplified method can perhaps be
more easily seen from a physical arcument. The
transformed constants ¢, ¢4, and ¢;;, would be appro-
priate for calculation of the velocities of waves
traveling in the z; direction and with particle motion
along the x5, 5, and z] axes, respectively. However,
as Cady [16] has shown, these are not necessarily the
directions of motion of the particles, and the devia-
tion in some cases can be quite large.

A method of solving eq (15) for the elastic con-
stants which utilizes tensor transformations has been
developed by Neighbours [28]. In his method all
terms are taken into account, and in place of eqs
(30) and (31) a set of equations is obtained each of
which contains an infinite series which presumably
converges rapidly. Equations (30) and (31) are
equivalent to the zeroth approximation in this per-
turbation method of Neighbours. He shows how
rapidly the approximations converge in some cases
but does not discuss the trigonal system.

In his paper on calcite, Bhimasenachar [27] uses
equations equivalent to (30) and (31) but explicitly
states that small coupling terms have been neglected.
In his subsequent paper on sapphire, Bhimasenachar
[2] uses the simplified method without mentioning
that it is approximate. Both Sundara Rao [1] and
Mayer and Hiedemann [3] also use the simplified
method but present it as if it were exact.
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6. Specimens and Experimental Procedure

The single erystal sapphire specimens were of two

types: rods and blocks. The dimensions, mass,
surface condition, and orientation of the 29 rod

specimens are deseribed in table 2. Two rectangu-
lar block specimens were ground to our order by the
Linde (‘()mpdn\' The first block, SB1, was supposed
to be 1 x % x % in. with the long u\ls pzu allel to the z;
axis and one fn(o [)(‘I])(‘Il(ll(‘ll]dl to the z, axis. The
second block, SB2, was specified as 1 x % x % in. with
the long axis in the a,2; plane making an angle of 135°
with z; and with one face perpendicular to z;. The
actual orientations are shown in figure 7. It will be
seen that for SB1 the 6 values are correct, but ¢ is 6°
instead of zero. For SB2 the ¢ values are correct,
but 6 is 47.5 instead of 45.0°.

TaBLE 2. Dimensions and orientation of specimens
Specimen Mass® | Nominal | Actual | Surface 0 @
diameter | length |condition
g in. cm
SR1.....___ 2. 9876 0. 100 14. 700 13.6° +13.0°
SR2__. = 3.1008 100 15. 244 10.7 =+17.0
SR 3 3.0737 . 100 15. 224 65. 4 —2.8
QR A 3.0767 . 100 15. 232 29. 4 —24.0
2.1516 . 100 10. 664 45.6 +2.0
3. 0647 . 100 15. 188 41.2 +2.0
3. 0872 100 15. 218 67.8 —8.0
3. 0902 . 100 15. 258 12. 5 -+20.0
\l{ [ . 3. 0636 . 100 15. 240 89.0 —0.5
SRAL(S e 1. 92¢ .100 9. 591 88.6 +2.1
(RN — 6. 9436 .150 15. 240 59.5 —-2.0
SR12.._._.____. 6. 9374 . 150 15. 282 36.2 +23.0
SR 13. e 6. 9610 .150 15. 280 11.9 =+27.0
SR I4-io o 6. 9192 .150 15. 268 3.0 —30.0
UG S 6. 9099 . 150 15. 288 18.8 -+11.0
SR 16.____ |  6.9151 150 15.212 | c.g------ 45.0 —29.0
SRI17._..__.....| 6.9334 150 15. 244 ll (e 40.7 —28.3
SR SINET— 6. 9219 150 15. 268 | g 59. 6 —28.0
SR 19. e 6. 9231 .150 15.280 | c.g---- 64.0 —-1.0
SR20_._..______ 4. 7551 .125 15.260 | ¢.g----.- 43.5 -=1.0
SHI21=eneenees 4.7527 L1256 15.228 | c.g----- 48.8 —0.5
SR 22. oEs 3.1152 . 100 16.202 | f.p_--- 89.0 +3.0
SR23 = 2 3.1115 100 15.282 | f.p----. 89.5 —3.5
SR24 __________ 3.1024 100 15.246 | f.p-__. 89.5 —2.8
S5 3.1127 . 100 15.300 | fp-. . 89.0 —3.6
SR205aE. 3.1154 . 100 15.296 | f.p---- 90.0 -3.7
SR 27. 3. 1155 . 100 16.300 | f.p---- 88. H —2.5
SR 28. 3.1121 . 100 15.296 | f.p-.-.__ 89.5 —3.0
SRI295en 3.1173 . 100 15.316 | f.p-__. 89, () —3.0

a Corrected for air buoyancy.

NOTE: c¢.g. means centerless-ground. f.p. means flame polished after center-
less grinding. The nominal diameters were not used in calculations. Instead,
the average radius was computed from the actual length, mass, and density,
p=3.9860-0.0010 g/cms,

A Laue camera of conventional design was used to
determine the orientation; 35K Vp X-radiation (cop-
per target) was used with exposure times of about
6 to 10 hr. The samples were supported with the
specimen axis perpendicular to the X-ray beam and
parallel to the edge of a small shield on the film
holder. The shadow cast by this shield on the film
established the reference line on the film. A speci-
men to film distance of 3 em was used, and the stereo-
graphic projection was made according to the pro-
cedure described by Barrett [29] using the Greninger
chart given in his figure 22 on page 170, and a 21-in.
Wulff net. The resulting projection was then in-

Frgure 7.

The orientation of the two block

rectangular
specimens.

dexed with the letter symbols shown in figure 2a.
This indexing was done by a trial and error method
of making a tentative assignment and comparing
angles with the values for %d])phn e given by Winchell
[8]. This process was continued “until the proper
fit was obtained.

The second method of measuring ¢, described in
section 2, was used. The actual construction obtained
from a back reflection Laue pattern always resembled
the projection shown in figure 8, that is, the opposite
ends of the specimen axis were at opposite pointsof the
stereographic equator. The value of 6 can be read
directly from this projection, as shown, but the
specimen axis must be projected on the a2, plane to
measure ¢. Projection of +SA would require rota-
tion of the whole pattern because PSA would lie on
the hemisphere not shown in figure S. Thix projec-
tion can be done but requires more graphical con-
struction with attendant possibility “of error. It
1s more convenient to project —SA and choose x; as
the £a direction nearest —PSA.  The sign conven-
tion for determining ¢ is shown in figure 5. Orienta-
tions were determined twice on 12 specimens with the
resulting standard deviations A=0.6° and A¢=1.6°.

The lonmtudlnal resonance frequency of each rod
shaped specimen was measured by hanging the speci-
men vertically from a crystal pickup. A single, fine
cotton thread was tied around the specimen some-
what off center so that the specimen hung approxi-
mately vertically. The other end of the thread was
tied to the needle of a high output Rochelle salt
pickup. Vibration was excited by placing a high
frequency speaker just under the specimen and driv-
ing through air. The electronic components used to
drive the speaker, to amplify the pickup signal, and to
measure the h(\quon(\ have been (losulbod [30].
With this system 1t was possible to detect resonances
in the range 30 to 50 ke. The response was weak
but very sharp, and careful hunting was sometimes
necessary.
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Froure 8. Stereogram illustrating the actual measurement of

¢ and 0.

The flexural resonance frequency was measured
with the specimen suspended horizontally on two
threads near the nodes. One thread was driven by a
magnetic cutting head. The other thread was con-
nected to a crystal pickup. Each specimen would
vibrate in two flexural modes at right angles to each
other. By turning the specimen in the string it was
possible to excite either mode at will and to determine
the direction of vibration for each. The two
resonance frequencies usually differed by a few
cycles, presumably because of small variations in the
diameter of the specimen. The average of the two
resonance frequencies was used in eq (13). An
average value of 7% for each rod calculated from the
density, the mass, and the length, was used. This
approach was used because the density could be
determined accurately by hydrostatic weighing, but
the average radius was more difficult to measure
accurately.

The torsional resonance frequency was determined
with the same speaker and pickup used in the longi-
tudinal resonance frequency measurements. The
tweeter was modified by covering its output opening
with a sheet of paper. The thread used to drive
the specimen was fastened to the center of this sheet.
The thread was wrapped around the specimen several
times to provide an off-center driving force and the
pickup thread was wrapped around the specimen in
the opposite direction. Careful hunting was again
necessary to find the weak but sharp resonance.
It was necessary to distinguish between the funda-
mental of torsion and the overtones of flexure. This
distinetion was accomplished by moving the driving
and pickup strings until the nodes were located.
The counter used for frequency measurements had an
accuracy of £0.1 cps.

The velocity of sound measurements on the two
block specimens were made by sending an ultrasonie
pulse into the specimen and measuring the transit
time. A quartz crystal 0.5 in. in diameter and cut to
resonate at 10 Mc was used as transmitter and pick-

up. An X-cut crystal was used to generate longi-
tudinal waves, and an AC-cut crystal was used for
transverse waves. These erystal cuts are described
by Buchanan [31]. The crystals were mounted on
the specimen with salol (phenyl salicylate). The
specimen was coated with a very thin layer of evapo-
ated aluminum before the crystals were mounted in
order to provide a ground.

The crystals were excited and the echoes were am-
plified with a commercial ultrasonic generator and
receiver. This unit had a pulsed oscillator of variable
frequency with a fixed pulse repetition rate of 100/
sec. The amplified output of the oscillator was con-
nected to an electrode on a quartz crystal. The same
clectrode served as an input connector for the re-
ceiver. The output of the receiver was connected to
one input of an oscilloscope with a dual trace pre-
amplifier. A crystal controlled 1-Me oscillator was
connected to the other input of the dual trace pre-
amplifier. The oscilloscope thus displayed the stand-
ard 1-Mec signal on one trace followed by the echo
pattern on the next trace. These two traces were
simultaneously visible, and the 1-Mec¢ pattern was
used as a time scale for the transit time measurement.
The general technique of pulse velocity measurement
is reviewed by Huntington [32].

The sweep expansion feature of the oscilloscope
could be read to 0.01 wsec. The actual measurements
were much less accurate, however, because the pulses
were rounded and did not have a sharply defined lead-
ing edge. Consequently the maximum of the pulse
envelope was used as a reference point. Repeated

- measurements suggested that the resulting transit

time might have an error of several percent. For
this reason no transit time correction, such as that
discussed by Overton and Gaffney [33], was made.
The measured velocities given in this report should
be examined with this in mind. They are provided
as a rough check on the accurate values determined
by the resonance methods to show that the values
of the elastic constants, within the accuracy of
pulse velocity measurements, show no frequency
dependence.

7. Results

The resonance frequencies are summarized 1n
table 3. These values were used to calculate £, and
G, using the equations of section 4. The method de-
scribed in section 3 was then used to calculate the
elastic compliances, s;;. Tables 3 through 7 show
various stages in these calculations and indicate the
precision. The reciprocals of the F, values used in
solving eq (8) are given in table 4, and the resulting
values of the compliance combinations are given in
the first half of table 6. The difference column in
table 4 shows how well the observations on all 29
rods were fitted by the four parameters of eq (8).
The shear modulus calculations are summarized in
table 5, and the resulting compliance combinations
are given in the second half of table 6. The difference
column of table 5 shows how accurately eq (9) fitted
the data.
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TasLe 3.  Resonance frequencies of sapphire rods

Flexural »
Specimen - Longitudinal| Torsional
I J2
1100. 1 1100. 7 35673 20850
1032. 5 1033. 7 34739 19940
971. 5 972.6 32747 21033
990.0 990. 9 33397 20547
1908. 9 1907.3 45060 |-
945. 1 943. 6 31746 21600
H998. 3 997.5 33538 20616
1021. 9 1023.7 34464 20037
993. 8 1010. 3 33868 20505
2518.0 2539. 3 53817
1431. 9 1432.7 32200 21210
1378.7 1380. 1 31145 21763
1536. 0 1537.0 34607 19943
1557.1 | oo . 35175 19704
1487. 6 1488. 4 33703 20346,
1483.0 1484.1 33336 20596
1472.5 1473.5 33160 20587
1508. 0 1507.7 34068 20152
1433.7 1434.1 32420 20992
1166. 7 1169. 2 31778 21331
1172.7 1174.9 31819 21436
1015. 4 989. 0 33727 20251
1015.9 992. 2 33786 20247
1022. 6 999. 1 33871 20332
1015.0 989. 9 33768 20236
1013. 5 989. 2 33735 20230
1007.7 996. 0 33757 20219
1013. 1 986. 3 33715 20233
1010. 6 995. 6 33790 20240

« The two flexural frequencies correspond to vibrations at right angles. The
average value was used for calculations.  All values are in eyeles per second.

TaBLe 4. Reciprocal Young’s modulus of sapphire

All values are in units of 1013 ecm?/dyne. The standard deviation for 1/E,
computed using the tabulated differences is #40.0052X10-1% e¢m2/dyne.

Specimen 1/Ey 1/E; 1/Ey Difference b
Flexural Longitudinal | Calculated @
2. 2764 2.2805 2.2759 0.0046
2. 2392 2.2366 2.2369 —. 0003
2. 5242 2. 5233 2. 5193 .0040
2. 4262 2. 4237 2. 4277 —. 0040
2.7124 2. 7167 2.7119 . 0048
2. 6968 2. 6976 2. 6876 L0100
2. 4088 2. 4079 2. 4147 —. 0068
2. 2684 2. 2681 2. 2621 . 0060
2. 3530 2. 3540 2. 3529 L0011
2.3543 2. 3540 2. 3564 —. 0024
2. 6020 2. 6048 2. 5967 . 0081
2. 7684 2. 7685 2.7708 —. 0023
2. 2505 2. 2461 2. 2545 —. 0084
2.1795 2.1744 2. 1744 . 0000
2.3679 2. 3624 2. 3632 —. 0008
2. 4414 2. 4390 2. 4404 —.0014
2. 4570 2. 4546 2. 4567 —. 0021
2. 3214 2. 3180 2. 3125 0055
2. 5564 2. 5556 2. 5645 —. 0089
2. 6689 2. 6674 2. 6670 . 0004
2. 6709 2.6717 2. 6826 —. 0109
2. 3537 2.3579 2. 3560 L0019
2. 3488 2. 3527 2. 3515 . 0012
2. 3424 2. 3521 2. 3518 . 0003
2. 3440 2. 3497 2. 3502 —. 0005
2. 3535 2. 3554 2. 3529 . 0025
2. 3482 2. 3512 2. 3509 . 0003
2. 3436 2. 3477 2.3517 —. 0040
2. 3486 2. 3521 2. 3507 L0014

e Calculated from eq (7) using the data of table 6.
b Difference=Ilongitudinal value minus calculated value,

543405—60——3

TABLE 5.

All values are in units of 10-1* em?/dyne. The standard deviation for 1/G s
calculated from the difference column is 4-.0178X10-1% em?/dyne.

7( ":;4) "+ (33'.5)2 1/Gy

Reciprocal shear modulus of sapphire

1/Gy
Calculated

Specimen Torsional Difference
2 83
0. 0421 6. 7186 6. 7296 —0.0110
. 0291 6. 8175 6. 8066 . 0109
L0716 6. 1888 6.2242 —. 0354
L0124 6. 4156 6. 4294 —. 0138

L0734 6. 0765 6.0763 . 0002
. 0664 5. 7365 5.7468 —. 0103
. 0371 6. 8003 6.7718 0285
. 0020 6. 9320 6.9302 0018
. 0643 6. 5469 6. 5571 —. 0102
. 0049 6. 3939 6. 3990 —. 0051
. 0010 6. 3692 6. 3690 . 0002
. 0189 6. 6439 6. 6407 . 0032
. 0748 6.1704 6.1355 . 0349
. 0506 5. 9698 5. 9498 . 0200
. 0564 5. 9428 5.9153 . 0275
0024 6. 5421 6. 5334 . 0087
. 0014 6. 5528 6. 5425 L0103
. 0008 6. 5282 6.5419 —.0137
. 0010 6. 5439 6. 5451 —. 0012
.0019 6. 5520 6. 5396 0124
. 0004 6. 5544 6. 5435 . 0109
. 0009 6. 5445 6. 5421 0024
0007 6. 5319 6. 5440 —. 0121

"

Too short for use.

TaBLE 6.  Best estimates of some compliances

Compliance Value Standard deviation

»

Calculated from Young’s modulus values o

$11 2.3529X10-1Bem?/dyne 0.0016X10-13cm?/dyne
833 2. 1694 L0024
$44+2813 6. 2183 L0088
S14 0. 4901 L0057

Calculated from shear modulus values ©

S11—812 3.0696X10-13cm?2/dyne 0.0067 X10-13e¢m?2/dyne
844 6. 9400 L0084
$11+833— (2813+844) —1. 6539 0197
$14 0. 4868 L0101

« Calculated by fitting eq (7) to Young’s modulus values calculated from
longitudinal resonance frequencies.
b Calculated by fitting eq (8) to shear modulus values.

The final result for the elastic compliances and
constants is given in table 7. The six compliances
were calculated from the eight values in table 6 by
weighting each value according to its standard de-
viation. The constants were calculated from the
compliances using the standard matrix inversion
equations given, for example, by Nye [7].

The ¢;; values of table 7 were used in eq (15) to
calculate the velocity of sound for comparison with
the measured velocities for all directions of propa-
gation normal to the faces of SB1 and SB2. In
some cases this necessitated the solution of a cubic
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equation by successive approximations. The re-
sults are given in table 8 along with the measured
values. In this table the faces have been described
by the labels shown in figure 9, e.g., the 45YZ face.
The actual orientation was used in the calculations,
however; that is, the 45YZ face normal actually had
0=47.50° instead of 45°.

The s,, values were used to calculate £, and G, as a
function of orientation. The results are shown in
figures 9 and 10 and in contour form in figures 11
and 12.

8. Discussion

The values of the elastic constants and compliances
for sapphire which have been reported by other
investigators are given in table 7. Mayer and
Hiedemann have suggested that the method of

TaBLe 7. Elastic compliances and constants of sapphire

All si; values in units of 10-13¢m?/dyne. All ¢;; values in units of 1012dyne/cm?.

|
Sundara Bhimase- | Mayer & | Present work
Rao nachar | Hiedemann

2.84 2.32 2.18 2. 35340. 002
2.21 1.93 2.02 2.1704= . 002
5.47 5. 77 5.04 6. 9404 . 008
—0.95 =i (1 —0.50 —0.716+ . 007
—. 47 —0. 38 —.16 —. 364+ . 006
—1.:62 —1.71 —.49 . 489+ . 005
4. 66 4. 65 4. 96 4. 96840. 018
5.06 5. 63 5.02 4.9814 .014
2.35 2.33 2.06 1. 474+ . 002
1.27 1.24 1.09 1. 636+ . 018
1217 1.17 0.48 1.109+ .022
0.94 1.01 .38 | —0.235+ .003

TasrLe 8. Velocity of sound in sapphire

All velocities in 103cm/sec.

Direction = Mode b | Calculated | Measured | Percent
velocity velocity difference
Specimen SB1
[ |

=N S, L 1117 1092 —2.2
T pol Y 667 669 +0.3
T pol Z 585 579 -1.0
D e S R S L 1118 1116 —0.2
T pol X 651 645 —0.9
T pol Z 600 609 rik b
L7 Y SR IS L 1118 1100 —1.7
[ T 608 594 —2.3

Specimen SB2
X e e L 1116 1088 —-2.5
T pol Y 676 662 —2.1
T pol Z 575 564 —1.9
452527 SRR /i 1095 1146 +4.7
T pol X 581 609 +4.0
T other 691 710 +2.7

pol
1352 Y7 = L g 1041 1040 —0.1
T pol X 671 659 —1.8
T other 690 687 —0.4
pol

a The present directions are the actual face normals shown in figure 8.

bé¢ 1’ means longitudinal, *“ 7" pol Y’ means transverse with the direction of
vibration along Y, and ‘7" other pol’’ means transverse with the direction of
vibration perpendicular to the other two modes.
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Young’s modulus, X;, as a function of orientation
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exciting vibrations used by the Indian workers may
give spurious resonances. For this reason we com-
pare primarily with the set of values given by Mayer
and Hiedemann.

The method used by Mayer and Hiedemann gave
the ¢;; values directly; an error in a single one of the
¢;; might lead to errors in several of the s, values.
Accordingly we compare ¢ values rather than s

values. ¢; and ¢ are in good agreement, but the
other values are not. The difference in sign of ¢,

1s striking.  As was pointed out earlier, the sign of
¢y (and sy4) depends on which end of the 2-fold axis
1s taken as +z;. The conventions given by Nye [7]
and by the Standards on Piezoelectric Crystals [11]
leave this unspecified. This point is not mentioned
by any of the previous workers on sapphire, and we
have not been able to find any information in their
papers on which choice was made. If Mayer and
Hiedemann used the opposite end of a 2-fold axis as
-y, the difference in sign of ¢4 would be accounted
for and the values of ¢;; would be in fair agreement.
The most troublesome disagreement is that between
the value of ¢y obtained in the present work, 1.47 <

Frcure 11.

10" dyne/em?, and the value of 2.06>10"™ dyne/em?
obtained by Mayer and Hiedemann. The 1.47 value
cannot be very much in error because the value of
the velocity of the transverse wave in the z; direction
depends only on this constant, and the measured
value is —2.3 percent from the calculated value as
shown in table 8. The fact that eqs (30) and (31),
used by Mayer and Hiedemann, are not strictly cor-
rect was pointed out in section 5. However, it does
not seem that this fact has any connection with the
disagreement in the values ol ¢y because these
equations are not needed for a wave propagated in the
ry direction.*

A comparison can be made to support the validity
of the present data. Lang [34] has reported values
ol elastic moduli determined dynamically on hot
pressed polyerystalline alpha alumina of density
3.983 g/em®. This density is so close to the value of
3.986 g/em?® obtained on single erystals that the

‘In a private communication dated March 28, 1960, R. H. Truell (Brown
University) gives as tentative results from his joint investigation with P. H, Levy
(Brookhaven National Laboratory) using a pulse velocity technique, Cy=>5.013
X102 dynes/em?and Cyu=1.478X10"2 eynes/cm?,  These values are seen to be in
good agreement with the results presented here.

4610

3357

20

Young’s modulus, ¥y, intervals of 100 kilobars.
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values of the elastic moduli of his specimens must
be only slightly less than the values for zero porosity.
He gives £/=4012 kilobars and G=1591 kilobars as
his best values. An exact theoretical relationship
between single crystal elastic constants and poly-
crystalline moduli has not been developed, but two
good approximations are discussed by Huntington
[32]. One method, due to Voigt, should give values
slightly too high, and the other method, due to Reuss,
should give values slightly too low. Using the elastic
constant and compliance data of table 7 and the

flow could not occur during one cycle of vibration.
Isothermal values are measured in static tests.
Hearmon [14] gives an equation from which the differ-
ence between isothermal and adiabatic values can

be calculated. This difference ranges from 0.2
percent for s;; to 1 percent for s;.
TaBrLe 9. Comparison of calculated and measured elastic

moduli for polycrystalline alumina

All values in kilobars.

equations given in Huntington’s article, one obtains Voung’s | Shear
. g modulus | moc S

the results shown in table 9. The values of £ and @ i
calculated from the elastic constants obtained in this e T
investigation are in rather good agreement with o .
Lang’s values o Volgs theors 1| doma 1660
J s . data oig eory. . - 3 H6¢
Al elastic constants, compliances, and moduli so Mayer & Rean theoryec) 4554 —
far discussed have been for adiabatic conditions; i.e., Hiedemann Voigt theory ~__| 4682 2070
measured under conditions when appreciable heat
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Froure 12. Shear modulus, Gi, intervals of 20 kilobars.
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The compressibilities can be calculated from the
compliances using equations given by Nye [7]. The
adiabatic compressibilities calculated in this way are
given in table 10. These should differ from the
1sothermal compressibilities by about 1 percent.
Values of the isothermal compressibilities measured
in static tests by Bridgman [35] and by Madelung
and Fuchs [36] are given in table 10. Bridgman’s
linear compressibility parallel to the x; axis is based
on the initial slope of his curve and is inconsistent
with all the other data. It is listed in the first row
of measured values in table 10 even though it does
not appear to be consistent with his reported value
of volume compressibility. If the slope of the sub-
sequent section of Bridgman’s curve is used, the
values labeled Bn(lglmm mterpreted’” are obtained.
The present work is in somewhat better agreement
with the experimental values of volume compress-
ibility than the results of Mayer and Hiedemann.
Visual inspection of Bridgman’s curves suggests that
the difference between the value of 3.6 X107 em?/
dyne, calculated from his data, and 3.98810°'3
cm?/dyne may be largely due to experimental error
in his data.

TaBre 10. Comparison of compressibilities calculated from
elastic compliances with values measured directly

All values in 10-13 cm? dyne.

Linear compress-

| ibility
Volume
compress-
Parallel | Perpen- ibility

dicular
tors

to 73

Calculated from compliances

Present data, 26° C_..._._____ e 1.442 1.273 3. 988
Mayer and Hiedemann, 27° C__| 1.70 1.52 4.74
Measured
Bridgman, 30° C, as reported___| 0.40 1.13 3.23
Bridgman, 30° C, inter]n'(‘ted,,,{ 1.35 1.13 3.6
Madelung and Fuchs, 0° C_____ RN 3.8

Finally, the difference (olumns in table 4 and table
5 show how well the classical al, 6-constant theory
fits the accurate results obtained in the kilocycle
per second range. The standard deviation calculated
from either set of differences is 0.3 percent of the
average value of 1/E or 1/G, respectively. The
worst, disagreement for either 1/£ or 1/G is only
0.6 percent. It is evident that the classical theory
of elasticity gives a very accurate representation of
the elastic behavior in the kilocyele per second range.

9. Summary

(1) The complete set of elastic constants and
compliances for sapphire calculated from resonance
measurements in the kilocyele per second frequency

range 1s given.

(2) Less accurate pulse velocity measurements in
megacycle per second range indicate little, if any,
frequency dependence of the elastic constants.

(3) The values of ¢, and ¢33 agree well with the
results of the most accurate previous measurements,
but the remaining constants and all of the compli-
ances are in serious disagreement.

(4) Values of Young’s modulus and the shear
modulus for polycrystalline alumina calculated from
the compliances are in good agreement with experi-
mental values.

(5) Curves for estimating Young’s modulus and
the shear modulus for single cry stal sapphire of any
orientation are given.
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