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Phase Shift Effects in Fabry-Perot Interferometry

Charles J. Koester !
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A method is demonstrated for utilizing in Fabry-Perot interferometry the data on

reflection phase shift dispersion obtained from fringes of equal chromatic order.

Unknown

wavelengths can be calculated from the Fabry-Perot patterns obtained with a large etalon

spacing, even without prior knowledge of the phase shift of the reflecting surfaces.

When

the theoretical phase shift as a function of wavelength is known approximately, then the
correct orders of interference can be determined for both the Fabry-Perot fringes and fringes

of equal chromatic order.
be measured to an accuracy of about 10 A.

From the wavelengths of the latter the phase shift dispersion can
The method is especially useful for reflectors
with large dispersion of phase shift, such as multilayers.

Results in the visible spectrum

are reported for aluminum films and a pair of dielectric 15-layer broadband reflectors.

1. Introduction

In the field of interferometric length and wave-
length measurement it has long been recognized that
the dispersion of phase shift on reflection must be
considered. In  Fabry-Perot interferometry, pro-
cedures for determining and/or correcting for phase
shift dispersion have been described by Fabry and
Buisson [1],* Eversheim [2], Meggers [3], Bauer [4],
Jackson [5], Meissner [6], Barrell and Teasdale-
Buckell [7], and by Rank and Bennett [8].

In wavelength intercomparison, the phase shift
dispersion enters the calculations at two points:
(1) The determination of the etalon spacing, and
(2) the caleulation of the unknown wavelength.

The purpose of this paper is to describe how the
accurate measurement of phase shift dispersion by
fringes of equal chromatic order (feco) [9, 10, 11] can
be used with Fabry-Perot interferometry in the
determination of the etalon spacing and in precise
measurement of unknown wavelengths.

1.1. Determination of Etalon Spacing

The method of exact fractions [12, 13] is generally
used to determine the etalon spacing from the
observed interference pattern. For three known
wavelengths, \,, N;, A, the fractional orders f,, f,
and f,, are calculated [6, 14] from the diameters of
the circular fringes. Then the integral order num-
bers, m,, my, m,, and the exact etalon spacing, t,
are found by trying many different integers for
Mg, My, and m, until the products (m,+f)N,,
(mp+1H)N, and (m.+f)N, are all essentially equal.
The etalon spacing is then set equal to

}‘é(m'a—hfu))\a: }§(7nb+_fb))‘b: }‘é(’nr“—fc)’\r- (1)

This method obviously ignores the phase shift.
The quantity }s(m-f)N really represents the optical

1 Now with American Optical Company, Southbridge, Mass.; work performed
under a National Research Council Postdoetoral Research Associateship.
2 Figures in brackets indicate the literature references on page. 199.

spacing of the etalon plates, which is the physical
separation plus the phase shift on reflection for
the particular wavelength. Since in general the
phase shift 1s a function of wavelength, the quantity
Y(m-f)N 18 not constant as implied in eq (1) but is
a function of wavelength. 1t is fortunate that for
the metals aluminum and silver which are commonly
used on IFabry-Perot mirrors, the phase shift disper-
sion 1s such that it is possible to find integers m,, ms,
and m, which satisfy eq (1). When two diflerent
etalon spacings are determined by this method
correct wavelengths values can be calculated.

Multilayer reflectors [15, 16, 17, 18] are finding
considerable application in interferometry because
of their low absorbance and high reflectance.  For
the common type of high reflection coating consisting
of alternate high and low index layers, each of
quarter-wave thickness for wavelength N, the phase
shift dispersion is small in the wavelength region
near N. Outside this spectral region the phase
shift dispersion is much larger than for silver and
aluminum  mirrors. A 15-layer broadband high
reflectance multilayer described by Baumeister and
Stone [19] has a very large phase shift dispersion
[20]. In such cases of high phase shift dispersion
it 1s possible that integers cannot be found which
will satisfy eq (1), or wrong integers may be selected.

Rank and Bennett [8] have described a method
for using caleulated values of the phase shift to
correct the order number of interference in a Fabry-
Perot etalon. Baumeister and Jenkins [20] have
described another method for employing calculated
phase shifts and have applied it to a nine-layer
coating. The latter authors have also made measure-
ments of the phase shift produced by the 15-layer
broadband multilayer using Fizeau fringes [1]. The
precision of this method was limited by the broad
two-beam fringes used for comparison.

1.2. Calculation of the Unknown Wavelength

For work of highest accuracy, the above method
of exact fractions is used only to determine the
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correct order numbers. The etalon spacing and
the unknown wavelength are computed from a
standard wavelength A, as follows. The method
eliminates phase shift dispersion errors.

The fractional orders of interference, f, and f, are
obtained for the unknown wavelength, X\,, and for
the standard wavelength, which can be one of the
wavelengths used to determine the etalon spacing.
The equations for interference at normal incidence
are

mz+fz) )‘z:2t+2¢()\z> (2>

and

Here ¢(\) is the phase shift in units of length; it is
the additional optical path introduced on reflection.
There are as many as four unknowns in these
equations: X\, t, ¢(\,), and ¢(A,). (The unknown
wavelength, X\, must be known in advance with
sufficient accuracy to determine the order number,
My.)

If another etalon spacing, t/, is used, two more
equations are obtained

(ms+ FON=2t"+2¢(N). (5)

The order number m; can be determined by the
method of exact fractions described above. Again
m., is determined from the approximate value of \,.
The four equations can be solved [6] for \, by fonmntr
tho difference between the two equations 1nvolv1n<r
s, also between the two equations involving A;, and
equating the differences.

M +fv T m; _f:

}\I:>\s ’ ’
mz'*'fz"‘ m’r_fz

(6)

The

is obtained by

The phase shift terms are thereby eliminated.
difference in etalon spacing, t—1t,
subtracting eq (5) from eq (3)

Variations of the above method of analysis have
been used by Meggers [3], Jackson [5], and "Meissner
[6]. The variations make analysis of an extended
series of data more convenient, but fundamentally
they depend on the measured (llldlllltl(‘ T T T
and . in the manner shown in eq (6).

The order numbers my, m:, m,, and m; are integers
which can be determined without ambiguity in cases
where ¢(\;) and ¢(\,) can be adequately approxi-
mated. The accuracy with which A, can be calcu-
lated from eq (6) therefore depends on the accuracy
with which the fractions, f, can be measured. In
particular, the error in \, is given approximately by

(%)
- msA—fsmé>+<mMs 2+<mzA—f;n’> +(mAfr 2
(M

where AN, Afs, A, o Afz, and Af; represent the stand-
ard deviations in the values of Ny T oy Ty and f7,
respectively.

If the phase shift dispersion can be determined by
independent measurements, then the unknown wave-
length can be calculated from eqs (2) and (3)

. M+ ®
The error in A, is given approximately by
()
A
_(A fg) +<A f;) 2A¢>(xz>> <2A¢(x IV, (9)

Comparison of eqs (7) and (9) shows under what
conditions the second method (eq 8) gives more
accurate results than the first method (eq 6). For a
given value of Af;, the value of Af;/m; in eq (9) will
be smaller than Af/(ms—m;) in eq (7). However,
the difference need not be great if m; is small com-
pared to m; (that is, if the smaller etalon spacing,
t’, is small compared to the large etalon spacing, ?).

The greatest gain is realized if 2A¢(\;)/m\; can be
made significantly smaller than Af:/(m,—m;), simi-
larly for the quantities involving the unknown wave-
length, X\,. Since it is possible to have m,—m;=~m,,
this requirement can be written as 2A¢/NAf".
The limit on determination of the fraction f” from the
diameters of the circular fringes is about Af"=0.01
[21,22]. Tt will be shown that when fringes of equal
chromatic order are used to determine the phase
shift dispersion, the quantity 2A¢/N can be con-
siderably less than 0.01.

2. Theoretical Calculation of Phase Shift on
Reflection

The convention used in this paper is that the phase
shift on reflection, ¢, represents an increase in optical
path. The angular phase shift, e=2r¢/\, enters
the expressions for the reflected waves as follows
(6=0; see fig. 1)

F,= (wave incident on surface 2)

:11161(&1'—;(12)’ (10)
E,= (reflected wave)
- 11261. (wT—kTy— €3) , (1 1 )
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Iy= (F;, incident on surface 1 from inside)
i '1.)()i(w'1'—xr2~(z—xl)

. (12)

7y= (reflected component of /7;)

:114(11(1.:'1‘—;(1'2—@ el—xl)’ (13)
E;—= (wave F, incident on surface 2)
:A_lliel(w'l'*xrz*eg—-e]*‘b({)' (14)

Here o is the angular frequency, 7" the time, k=2m/X.

A

| 2

Y

X, X2

Fraure 1. Schematic diagram of interferometer.

Thereflecting surfaces are denoted by 1 and 2. For feco and for the center of the
Fabry-Perot interference pattern the angle of incidence, 6, is zero.

The condition for constructive interference in
transmission is that the optical path difference be-
tween two successive rays should be an integral
number of wavelengths.

2mn=arg B —arg Es=wT— kt,— (01— kty—e;— €, — 2kt)
=€+ €+ 2kt
NAN=¢p,+¢;+21.

From eqs (10) and (11) we have

(15)

£, A,

E A

e_iEZ.

For metals or for dielectric multilayers, theory can
be used to calculate the quantity

E) 11

s elo2.

E, A

Therefore the relation between the desired angular

phase shift, €, and the calculated value, 6, is

e=12r—0o (16)
where » is an integer.

For a metal reflector the angular phase shift,
is calculated from the index of the incident medium,
uo, and the optical constants, u and k, of the metal.
The expression for the complex amplitude reflectance
1s [23]

oid— po—p+1k ,U-g A"'+?/2M(1A
potp—ik uo+u +k +2uon

The tangent of the phase shift § is then found by
taking the ratio of imaginary part to real part:

(17)

2 uok
_:‘zL_kZ' (18)

tan 6=—;
Mo

The quadrant for § is determined by taking into
account the signs of the real and imaginary parts of
eq (17). Thus for w’+k*>u? (the case for all metals
commonly omploy(‘(l in interferometry, when the
separation medium is air or vacuum) the real part is
negative and the imaginary part is positive, which
means that ¢ is in the second quadrant. The phase
shift ¢=eN2r=(12r—06)N/2r therefore represents
an increase of optical path of between A/2 and 3\/4.°
Figure 2 shows the phase shift for aluminum calcu-
lated from the optical constants (24, 25].

For a multilayer the phase shift can be calculated
from electromagnetic theory by one of several meth-
ods.  An accurate method employs multiplication
of matrices, each matrix representing a single layer
[26, 27].  An exhaustive treatment of the subject
has been given by Abelés [28], but the outline given
by Koehler [29] 1s adequate for many pr oblems.

T T T T T T T T T T T T 1T 206:10%
B B <
L — 204
7:103 - e =
=
6 202 =
-
N "
» 5r THEORETICAL ,
[= =
L 4t —o— EXPERIMENTAL H200 <
n ~
< L -]
w
2
T L T30 S| (S
=
= T Y Y S S S SO TR SO B
4000 5000 6000

WAVELENGTH, A

Fiaure 2. Dispersion of phase shift on reflection for aluminum
films.

The theoretical values were calculated from the optical constants as given by
Schulz [24, 25]. For the upper experimental curve the data from table 1 and the
integer ¢=31 were used. Since this curve is parallel to the theoretical curve, it
follows that ¢=31 is the correct order number for the fringe at Ao =6593.7A.. For
the lower experimental curve the integer ¢=30 was used.

3 The integer »=1 was selected for simplicity. Some other authors select »=0,
which makes ¢ represent a decrease of optical path of between A/4 and A/2. For
an infinite wave train the two interpretations are physically identical. They do
lead to different order numbers of interference.
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In dealing with phase shifts on reflection from
multilayers the concept of nodes is very useful {20].

For light reflected from a plane interface between air

and a high index dielectric, the phase shift is ¢=»\/2,
and there is a node at the surface. For ¢ >\/2, as
with a metal, the node is inside the metal. For
&<N/2, the node is on the air side of the surface.
With multilayers of the common type, having a high
index layer on the outside, a node for the tuned wave-
length, A, falls at the outer surface. For the broad-
band multilayer it has been shown [20] that there 1s
one wavelength for which a node falls at the outer
surface. At longer wavelengths the node is outside
of this surface, and vice versa. Figure 3 shows the
dependence of phase shift on wavelength.
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Fiaure 3. Dispersion of phase shift on reflection for 15 layer
broadband reflecting films.

The angular phase shift, 8, as given by Baumeister and Jenkins [20] was con-
verted to linear phase shift ¢ by means of eq (16) in which »=1 and the relation
¢ =e\/2w. The experimental curve has the same general shape except that it is
shifted to longer wavelengths. Wavelengths from table 2 were used.

3. Experimental Procedure

Data on the phase shift dispersion were obtained
by means of fringes of equal chromatic order [9, 10,

11, 30]. As shown in figure 4 collimated white light
illuminated the interferometer. The very small

spacing, 10 to 30u, was accomplished by means of
aluminum foil. The transmitted light entered a
spectrograph, with the image of the interferometer
surface being focused on the slit. As illustrated in
figure 5, bright fringes appeared in the focal plane
of the spectrograph for those wavelengths at which
constructive interference occurred. After photo-
graphing the fringes along with an iron arc reference
spectrum, the wavelengths of the fringes were meas-
ured. The method of calculating the phase shift
dispersion is given below.

Fabry-Perot interference patterns were obtained
using invar spacers of 2 and 5 mm, also fused quartz
spacers of 20-mm length. The light source was a
natural krypton lamp, krypton being selected be-
cause of its relatively sharp and well-distributed

lines. The etalons were used in air maintained near
20° C and 10-mm water vapor pressure, and correc-
tions to the wavelengths were made by the method
described by Bruce [31].

From the photograph of the interference pattern .
the ring diameters were measured for several wave-
lengths. For the 2-mm spacer, two rings were meas-
ured at each wavelength; for the others, four rings
were measured. The fractional orders, f, of inter-
ference at the center of the patterns were calculated
with a least squares procedure described by Meissner

[6].

F1GuRre 4. Interferometer for fringes of equal chromatic order.

A. White light source. B. pinhole, C. collimator, D. beam-divider (for reflected
fringes), E. flats with metal or multilayer reflect ing films, F. achromatic doublet,
G. interferometer base, and I. spectrograph.

For Fabry-Perot interferometry the setup is changed as follows: The line
source is placed at the focal point of the collimator, C. A larger spacer is intro-
duced between the flats, E. A lens with longer focal length than F is used to
focus the fringe pattern on the spectrograph slit, which in this case is wide.

4. Equations for Fringes of Equal Chromatic
Order and Fabry-Perot Fringes

For the wavelengths N, \;, ete., at which feco oceur
in the spectrograph, the normal incidence interference
eq (15) can be written as

71)\(;‘:21/*{"24)()\0)y (19)

(m+1)M=2t"+2¢6(N\;), etec., (20)
N and A, are the wavelengths of adjacent fringes,
N _>\i. The order number for the fringe at \, is n,
and for each successive fringe the order number is in-
creased by one. t" is the physical separation of the
reflecting surfaces; and ¢(\) is the phase shift in
units of length at each surface.

In these equations the left sides can be evaluated
only at the wavelengths Ny, \;, ete., at which there are
fringes. However the quantity on the right side is a
continuous function of X which is conveniently de-
noted as 7,(\),

7.(N)=2t"+2¢6(N). (21)
The function 7,(\) is then evaluated by plotting
NNy versus Ny, (n—+1) \; versus A, etc., and connecting
the points by a smooth curve. This curve has the
same shape as the 2¢(\) curve but is displaced verti-
cally by 2t".

With the Fabry-Perot etalon the interference equa-
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Ficure 5. Fringes of equal chromatic order with iron reference spectra (positive print).

a. Aluminum films, reflection fringes, 10-u spacer;
b. aluminum films, transmission fringes, 10-u spacer;

c. 15 layer broadband films, transmis

on fringes, 17-u spacer.

In ¢, the only obvious indication of the large dispersion of phase shift is the fact that the fringe spacing does not decrease monotonically with increasing wavelength.

In the red the last few fringes are more widely spac
in determination of wavelengths is about 0.4 A, whe

tions for the centers of the ring pattern at known |
wavelengths \,, Ny, A, are: ‘

(,,tll—}f‘fﬂ))\(l::z{AlX 2¢()\!l)v (2:‘)
(my+fo)hy=2t+2¢(\,), (23)
(1"c+fr))\(;2[+2¢()\r) (24)

Here again the quantity on the right side is a continu-
ous function of A, the curve being displaced upward
from the curve 7,(\) by the amount 2(t—t’). There-
fore, in general the points (m,+f)N,, (Mp+12)Ns,
and (m.+f,)\. lie along a curve which 1s parallel to
the 7, curve.

5. Methods of Analysis
5.1. Method I

The first method for obtaining the order numbers
n and m is used in cases where the phase shift
dispersion is known approximately, as for example
with metallic films with known optical constants for
rarious wavelengths.  For the feco an integer p is
selected and the curve 7,(N\) is determined by
plotting pX\, versus N\, (p-+1)\; versus A\, ete. If it

1 than those immediately preceding.
as in other portions of the spectrum it is from 0.1 to 0.3 A.

Where several fringes are overexposed in the red the standard deviation

does not have the same shape as the known 2¢(\)
curve, then other integers are tried until an integer,
n, is found which makes 7,(\) essentially parallel to
2¢(N). This procedure is illustrated in figure 2.
Similarly for the Fabry-Perot data, integers m,,
my, m. are found such that when (m,+7f,)\, 1s plotted
against \,, (m,+ f»)\, against X,, ete., the points fall
along a curve parallel to 7,(X\). In order to measure
an unknown wavelength, \,, in terms of a standard
wavelength, N, a modification of eq (8) is employed.
Although the absolute values of ¢(X\,) and ¢(\,) have
not been determined, it can be seen from eq (21)
that the difference, 2¢(\,) —2¢(X\,), 1s given by

2‘1)()\;)_2‘#()‘.\'):771()‘;)_Tn()‘s)' (25)
Therefore eq (8) becomes
(HINJFfx))\x+7'n()\r)*7'u()‘x)
— AP S ) AT T\ a) 7 Tl s/, 9
. s (26)
The method has been deseribed in  terms of

eraphical procedures. A possible variation utilizes
numerical calculations similar to those in the usual
method of exact fractions. For wavelength X\, the
value of 7,(\,) is found from the curve or by means
of a numerical interpolation of the 7,(\) data. An
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integer 7, is selected and the product (r,--f,)\, 18
formed, also the difference (r,-+7f)No—7,(\,). Thisis
done for all the integers, r,, which lie within the range
of possibility. Similarly different integers are tried
for 7, and 7, until a set is found which satisfy the
equation

(ra +fa))‘ u - (7’1, +fb)>\b

= (rc—%_fc))\c— Tn ()‘c)

Once the correct integers have been found by this
technique eq (26) can be used to compute unknown

wavelengths.
5.2. Method II

Tn )\b)

The second, more general, method can be used
when the phase shift dispersion is unknown. An
arbitrary integer, g, is selected and the curve r,(\) is
determined as before. Then for the Fabry-Perot
data, different integers are tried for r,, r,, and r,
until a set 1s found for which the points (r,47.)\,,
(ry+1) N, and (7,1 )N fall along a curve parallel to
7,(\). That is,

(7'a+fa))‘a'_ Tq ()‘a) = (rb+fb))‘b_ Tq()‘b)

- (rc+fc))‘c’_ Tq (>\0)

In appendix 9.1 it is shown that when the integers
r; are chosen in this manner then we have

(rytfIN—1(N\)=2(—1")

regardless of the value of ¢. Here the subscript j
represents the subseript a, b, ¢, s, or .

The final step is to determine an unknown wave-
length X\, in terms of a standard wavelength, \,, and
the mes: 1surod fractions f, and f;. The integers », and
7, are determined in the same manner as r,, 7y,
and r.. When these quantities are substituted in eq
(28) two equations result which can be solved for A,:

(rs+fs))‘s+ Tq(>\r) i 'Tq()‘.v).
2 +fs

Just as in the standard method, the wavelength
A, must be known in advance with sufficient accuracy
that the proper integer, r,, can be selected. The
correct integer, 7., 1s the one which makes the
quantity (r,-7f,)\; fall closest to the curve (r;+71;)\,

versus Aj.
6. Results

6.1. Evaporated Aluminum Films

(27)

(28)

Table 1 gives the waveleneths of feco obtained in
transmission with a 10-u spacer, the aluminum films
having a transmittance of 5 to 8 percent. In prin-
ciple the phase shift should be calculated taking into
account the finite thickness of the aluminum films
[32]. However, figure 2 shows that for the thicknesses
used, the phase shift values calculated from the bulk
constants yield a curve quite parallel to the experi-

mental curve. Method I was used to determine the
order number, n, as illustrated in figure 2.

Ifor the 2-, 5-, and 20-mm spacers the integers, m,
were found as described in 5.1 and illustrated in figure
6. With each spacer the points have the same verti-
cal displacement from the curve 7,, within experi-
mental error.

TaBLe 1. Fabry-Perot and feco data obtained with aluminum
films

Ambient conditions for Fabry-Perot data, 20-mm, 5-mm spacers: 21.2°C, 754.6-

mm Hg barometric pressure, 10-mm vapor pressure; 2-mm spacer: 22.0°C, 758.8-
mm, 10-mm vapor pressure.
Wave- O?,S%al Wavelength Order, m, of Optical
lengths i ({i‘ln'r- of krypton interference path
of feco e line, Aj plus difference,
i (mi)hs (ambient) fraction, f (m+f)\i
A 4 A 20-mm spacer
31| 204,404 4 £

6593. 7

32 | 204,153
33 | 203,962
34 | 203,787
35 | 203, 599
36 | 203,433
37 | 203,272
38 | 203,129
39 | 202,998

6456. 3448
6056. 1779
5570. 3369
4502. 3929
4274. 0066

62160. 634 401, 330, 486
66267. 895 4()1.&5() lhl
72047. 649 401,
89136. 737 401,
93899. 833 401, 328, 506

5-mm spacer

40 | 202, 862 6456. 3448 15473. 779 99, 904, 053
41 202, 734 6056. 1779 16496. 155 99, 903, 649
42 | 202, 616 5570. 3369 17934. 851 99, 903, 162
43 | 202,510 4502. 3929 22188. 669 99, 902, 106
44 | 202,404 4274. 0066 23374. 296 901, 895

45 | 202,295
46 | 202,191
47 | 202,112

2-mm spacer

6456. 3399 6179. 600 39, 897, 598

6056. 1733 6587. 857 39, 897, 204
5570. 3326 7162. 346 39, 896, 649
4502. 3894 8860. 985 39, 895, 605
4274. 0033 9334. 420 39, 895, 342
As an example, the wavelengths 5570.34 and

4502.39 are considered being known approximately
to the nearest 0.02 A, this precision being necessary
to establish the order numbers. The more precise

ralues are to be determined by interferometric com-
parison with the standard line at 6056 A. From
figure 6,

751(5570) — 75, (6056) =203,350 — 203,830= —480 A.
Therefore from eq (26) we have

66267.895<6056.1779—480
72047.649

=5570.3369 A.
Similarly for \,=4502 A

A=

66267.895 X 6056.1779— 1530
89136.737

=4502.3931 A.

A=

These values agree to experimental accuracy with the
wavelengths for ambient conditions, as given in
table 1

In 1llustrat1nw method II, rather than choose an
dI‘blU’d[’V 1nteger we choose an integer, ¢, such that
7, 1s as nearly constant as possfblo ‘As shown in
figure 2, 73 has only a very slight negative slope.
The 111t0(rors r,, which make the pomts (r,+1 )N, lie
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Ficure 6. Optical path differences: aluminum films.

A constant was subtracted from the (m;+f;)\; values to bring them on the same
scale as the 73 curve obtained from transmission feco. For the 20-, 5-, and 2-mm
spacers the constants were 401119-103, 99696.108, and 39691-102A respectively. For
the 5-mm spacer (open circles) several different sets of integers, mj, were tried
together with the appropriate fractions, f;. One set gives values of (mj+fi)\;
which lie along the dashed line, which is parallel to ;1. The other sets give points
which obviously do not lie along lines parallel to z3i. For the 2- and 20-mm
spacers the correct integers plus fractions are given in table 1, and the optical path
differences}are plotted above.

along a curve parallel to 75 are one less than the
corresponding integers my, in table 1. That is, for
A=6456, r,=62,159.

Then for the unknown line, \,~4502.39 A

~ 66266.89 X 56056.1779—197770-+197,800
o 89135.737

A
=4502.3932 A.

Thus with aluminum films if a certain integer, ¢, 1s
chosen the 7,(N\) curve is nearly constant and the
phase shift correction is very small. Furthermore
the quantities (r,-+f;)\; are nearly constant. In the
standard method of exact fractions the integers are
selected so that the quantities (r,-+f;)\; are equal.
Therefore the method of exact fractions as normally
used gives integers, r;, which are each one less than
the “true’”” order numbers, m;.* This introduces no
error into the determination of unknown wavelengths
because only differences in order numbers for two
different etalon spacings are used in the final
calculation.

6.2. Fifteen-Layer Broadband Reflectors

Table 2 gives the wavelengths of feco obtained in
transmission for a broadband multilayer [19] made
from alternate layers of cerium dioxide and mag-
nesium fluoride [33]. The measured reflectance was
between 83 and 94 percent over the region 4500 to
7000 A. In figure 3 the theoretical phase shift curve
was obtained from values published by Baumeister

4 The word “true” is in quotation marks because some authors use another

convention for sign of the phase shift, which results in another order number.
See section 2.

TaBLE 2.

broadband multilayers

Fabry-Perot and feco data obtained with 15-layer

Ambient conditions for Fabry-Perot data: 19.5° C, 757.05 mm Hg barometrie
pressure, 6.5-mm vapor pressure.

l‘e‘n:z‘tltl-s ) If)lll’ltllﬁ‘:} Wavelength of | Order, m, of | Optical path
of fecd n+i fvrvnoo kryptonline,\;| interference difference,

< ('!-f-i)/)\i (ambient) plus fraction, f (m+f)\;

A A 20-mm spacer

6769. 1 48 | 324,920 A -

6651. 8 49 | 325,937 6456. 3278 62168. 014 401,377,077

6447.2 51 328,807 6056. 1620 66276. 498 401, 381, 209

6257. 5 53 331,647 5570. 3222 72057. 199 401, 381, 815

6055. 4 55 333,049 4502. 3809 89148. 651 401, 381, 184

5852.1 57 333, 571 4273. 9952 93912. 374 401, 381, 036

5655. 3 59 333, 660

5469. 9 61 333, 661 5-mm spacer

5295. 6 63 333, 623

5131. 5 65 333, 548 6456. 3278 15470. 386 99, 881, 883

4976. 4 67 333,421 6056. 1620 16493. 291 99, 886, 042

4830. 4 69 333,295 5570. 3222 17931. 927 99, 886, 611

4693. 1 71 333,209 4502. 3809 22185. 150 99, 885, 996

4563. 4 73 | 333,128 4273. 9952 23370. 598 99, 885, 824

4440.2 75 333,014

4323.3 77 332,891 2-mm spacer

4211.6 79 332,713
6456. 3278 6183. 25 39, 921, 087
6056. 1620 65 9 39, 925, 189
5570. 3222 71 60 39, 925, 841
4502. 3809 8867. 57 39, 925, 178
4273. 9952 9341. 38 39, 925, 013

and Jenkins [20]. The experimental phase shift
curve confirms the general shape of the theoretical
curve. The displacement of about 400 A to longer
wavelengths indicates that the individual layers are
somewhat thicker than the theoretical values [19].
This is confirmed by the location of the reflectance
maximums and minimums.

For the 2-; 5-, and 20-mm spacers the integral
orders of interference, m, were obtained as described
in section 5.1. For each spacer, the total optical
path differences (m;+f,)N; plotted against \; fell
along a curve parallel to the 74 curve, as shown in
figure 7.

336103 —r—T1 71T T T T T T T T T
L . B
= °© .
e 2 334fs 8 o 8 _
o w
o —
2
—~ @ 332 i
o <
Q w
o d
=S8 20-mm SPACER
=
SO u o 5-mm SPACER
o
— O3 28 NI= o 2-mm SPACER
~<
= L L 174 SPACER (feco)
o) ~<
S =
T 326
£
324 Lo
4200 5000 6000 6800

WAVELENGTH, A

Ficure 7. Optical path differences: 15 layer broadband films.

743 was obtained from feco in transmission. See table 2. For the 2-, 5-, and 20-
mm spacers, the correct integers m; were selected as described in section 5.1.
Each set of points, (m;-+fj)\;, lies along a curve parallel to the =4 curve. The
constants subtracted from (m;+f;)\; values for the 20-, 5-, andj2-mm spacers were
401047-103, 99552-10% and 39592-10°A. respectively.
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Table 3 gives data for the calculation of wave-
lengths 5570 and 4502 A, taking as the standard the
line at 6056 A. Both method I and the “standard”
method (eq 6) have been used.

TasrLe 3. Wavelength calculations from Fabry-Perot and feco

data obtained with multilayer reflectors

a. Calculation using eq (26), 20-mm spacer and feco.

s (ms+rfs) (ms=+fo)Ne Tas(Ns)
1 [ A 1
|
6056.1620%___| 66276. 498 | 401, 381, 209 1 333, 030
At () | (metfr) | Az At
- ‘\ - |—
A ‘ A ‘ A | 4
| |
5570.32 b H50 72057. 199 | *5570.3224 |  5570.3222
45( } 333,070 ‘ 89148, 651 | *4502. 3816 4502. 3809
|

b. Calculation using eq (6), 20-mm and 5-mm spacers.

A I T 7 N B 0 R D

A 1 1 A
5570.32_ 3. 291 \ 17931. 927 *5570. 3215
4502.38._ - 22185. 150 *4502. 3806

16493.201 |

*The wavelengths of the standard line at 6056 A and of the unknown lines
are for the ambient conditions given in table 2.

fRough value.

{From Bruce [31] (converted to ambient conditions).

6.3. Precision of Measurements

In the determination of wavelength of fringes the
standard deviation for an individual reading was
generally from 0.1 to 0.3 A. This resulted in a
standard deviation for the values of = of from 5 to
10 A, with a rare value as high as 30 A. With
A7=10 A as an example and A=5000 A, the ratio
2A¢/\ discussed earlier in connection with eq (9)
becomes 2A¢/A=A7/A=0.002. This is to be com-
pared with the usual error in exact fraction determi-
nation, Af=0.01.

The improvement in precision of wavelength
measurement is not so dramatic, however, since this
is limited by the errors in measuring the fractions
fs and f;. For example, in the standard method,
eq (6), we take data from the 20-mm and 5-mm
spacers (table 2) on the known line and the unknown
line, 5570 A. For Af;=Af,=0.01, eq (7) yields
AN,=0.0022 A.

To compute the error obtained in the method em-
ploying feco, we take Af;=Af,=0.01 and 2A¢(\)/A=
A7/A=0.002. Then eq (9) yields AX,=0.0012 A.

The precision of both methods can, of course, be
improved by repeated readings. For example,
Stanley and Meggers [34] report that in the measure-
ment of iron lines with 20- or 25-mm spacers, the
average of 5 or 6 readings had a probable error of 1
part in 7 million.

The question arises as to the best etalon spacing to
be used for feco. Since the wavelength is multiplied
by the order number to obtain the 7 curve, smaller

spacings and the resulting low order numbers tend
to give smaller errors. But smaller spacings give
fringes widely spaced in the spectrum. If the phase
shift has a nonlinear variation with wavelength, as
with the broadband multilayer, it is desirable to have
the experimental points fairly close together. In
this case, the best spacing was found to be 10 to 20,
whereas for aluminum the smallest possible spacing
was desirable.

6.4. Differences Between Transmission and
Reflection Data

By placing a semireflecting mirror between the
collimator and interferometer in figure 4 it is possible
to project the light reflected from the interferometer
onto the spectograph slit.  With a small separation
between the interferometer plates the resulting spec-
trum consists of dark fringes crossing the bright
continuum. See figure 5a.

If the reflecting surfaces are nonabsorbing, the
principle of conservation of energy requires that the
reflected spectrum be the exact complement of the
transmitted spectrum. Under these circumstances
the wavelengths of the fringes should be the same in
the two spectra. Then the 7, curve plotted from
the reflection data should also give the phase shift
dispersion.

If the reflecting films are partially absorbing, this
conclusion does not necessarily hold. Holden [35]
has shown that there can be asymmetry in the in-
tensity distribution of fringes obtained in reflection.

Experiments were conducted to determine whether
or not the 7, curve obtained from reflection feco was
the same as that obtained by transmission. Ex-
posures were taken within a few minutes of each
other, and the same areas of the reflecting films were
used. As expected, the aluminum films showed a
small but significant difference. As shown in figure
8 the slopes are different, the maximum discrepancy
between 4200 and 6500 A amounting to about 40 A.
The reflection fringes showed a definite asymmetry,
which made determination of their wavelengths
more difficult.

The two curves for the 15-layer multilayer showed
a difference of about 150 A between 4800 and 6600 A.
See figure 8. This result was unexpected because
of the low absorption of dielectric multilayers.
Transmittance and reflectance measurments on
these multilayers indicated with the absorptance
is no more than 2.5 percent at 4800 A and no more
than 1 percent at 6000 A. However, no error is
introduced if phase shift data obtained by trans-
mission feco are used in connection with Fabry-
Perot fringes obtained in transmission since both

are governed by the interference eq (15). The
reflection fringes are governed by a different

interference condition [11, 35, 36].

6.5. Uniformity of Phase Shift Dispersion

With multilayer films the reflectance and phase
shift on reflection are generally more sensitive
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Differences in data obtained by transmission and
reflection.

The experimental points represent (n+4i)X\;, where n is the order number of the
fringe at \o, 7 is an integer, and \; is the wavelength of a fringe observed either by
transmission or by reflection. 1In the case of the 15-layer films a relatively thick
spacer (40u) was used and fringes were closely spaced. Only about one-third of
the fringes were measured and plotted. In the case of the aluminum films the
vertical scale interval has been expanded to four times that of the multilayer in
order to show more clearly the small but significant difference between the trans-
mission and reflection data. Only the transmission feco should be used in connec-
tion with Fabry-Perot fringes obtained by transmission.

Ficure 8.

functions of the thickness of the individual layers
than with metal reflectors. If the absolute value
of the phase shift is not constant over the aperture,
it has the same effect as nonflatness of the support
plate. If the dispersion of phase shift is not constant,
then the shape of the reflected wavefront will depend
on the wavelength [37]. In particular, if two such
mirrors are adjusted to be optically parallel when
a green line is used, they may not be optically
parallel in the red or blue.

The phase shift dispersion was measured at six
points across the 15-layer films. Over a 40-mm
distance there was a definite change in the shape
of the curve, amounting to 300 A from the blue to
the red end of the spectrum. For precision Fabry-
Perot interferometry this variation is too large to
be tolerated. For the experiments reported here
a 10-mm-diam aperture was placed between the
interferometer plates. The total variation in phase
shift dispersion over this area was less than 100 A,
which is the same order of magnitude as the departure
from flatness of the support plates.

Freshly deposited aluminum films showed very
little variation in phase shift dispersion over a
40-mm aperture, the maximum discrepancy being
about 40 A over the region 4300 to 6600 A.

These results indicate that multilayers for inter-
ferometers in which several wavelengths are to be
used should be checked for uniformity of phase
shift dispersion. The use of feco provides a con-
venient and precise method.

7. Conclusions

It has been found that measurements of reflection
phase shift dispersion by means of fringes of equal

543405—60

chromatic order are useful at three stages in wave-
length comparisons by Fabry-Perot interferometry.
First, for multilayer reflectors it must be established
that the phase shift dispersion is sufficiently uni-
form over the aperture. This can be done by obtain-
ing the feco at several points across the aperture.

Second, the phase shift data can be combined
with the method of exact fractions to yield the inte-
gral order numbers. This is especially valuable in
the case of multilayers where the dispersion of the
phase shift is high and where calculated phase shifts
may be in error due to poorly known layer thicknesses.

Third, the accuracy of measurements of unknown
wavelengths can be improved somewhat. The basie
reason is that for high reflection mirrors, wavelengths
of feco can be measured to about -+0.002 order,
whereas the error in determining fractions in Fabry-
Perot patterns is about -+0.01 order. This differ-
ence is due primarily to the fact that feco are obtained
from a very small area of the plate. Small depart-
ures from flatness of the substrate surface do not
reduce the sharpness of the feco.  On the other hand,
the Fabry-Perot fringes result from interference over
the entire aperture, and variations in the surface
reduce the fringe sharpness. In return for the gain
in precision afforded by the feco the necessary pre-
caution is that the variation in phase shift dispersion
across the aperture is sufficiently small.

The author benefited from many discussions with
J. B. Saunders. Karl Nefflen kindly loaned much
equipment. Calculations of wavelength were very
much easier as a result of an IBM 704 program
modified for this purpose by Stanley Prusch. The
aluminum coatings were prepared by W. L. Griffith,
Jr. Finally, the author is grateful to the National
Academy of Sciences—National Research Council
and to the National Bureau of Standards for the
postdoctoral research associateship under which this
work was performed.
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9. Appendix
9.1. Derivation of Equation (28)

It is to be shown that for an arbitrary integer ¢
and for integers, 7, selected as described, the differ-
ences (r;+f;) Nj—7, (\;) are equal to 2(t—t’). To
both sides of eq (19) we add the quantity (g—mn) X,.

g M=2t"1+2¢ (N)+(g—n) .

Adding (g—mn) \; to each side of eq (20) gives

(@+1) M=2t'"+2¢ (\)+(g—n) N\

Therefore the smooth curve connecting the points
g\, (g-+1) Ny, ete., is the continuous function

7o(N) =2t"+2¢(N) + (¢—n)\. (30)
Now from eq (22) we obtain the relation
(ratSa)Na= (MatJo)Nat (ra—ma) e
=2t+2¢(No) + (ra—ma) (31)

The integers r,, 7, etc., are selected so as to
satisfy eq (27). Substitution of eq (31) and the
corresponding equation for X\, into eq (27) yields
(ra+fa))‘a_7'q()‘a):2t+2¢()‘a)+(ra'_")a))\a

—[2t' +2¢(Ne) + (@—n)N] =28 +2¢ (No) + (rs—ma) Ny

—[2t"+2¢(N) + (g—n)N)]

or (ra—mg—q+n)Ng=(ry—mpy—q-+n)N,. (32)

Since 7, m, ¢, and n are integers, the only general
way in which eq (32) can be satisfied 18 7,—m,
=r,—my=¢—mn, In which case

(i INi—7,(\)=2(@E—1') (33)
where j stands for a, b, or ¢. Thus the difference
between the etalon spacings can be determined,

regardless of the phase shift dispersion and of the
integer, ¢, which is arbitrarily selected.

9.2. Required Accuracy of Theoretical Phase Shift
Curve

The phase shift curve must be known from theoret-
ical calculations with a certain accuracy 1if the
“true” order numbers are to be determined, as in
section 5.1. We wish to show that the slope of the
curve 2¢ versus A must be known to better than
+0.5.

With feco the criterion for selection of the true
order number, n, for the fringe at A\, is that the plot
of mX\y versus N, (n-+ 1)\, versus A, ete., gives a curve
7.(A) which is parallel to 2¢(N), 1.e., 7,(N\)=2t'+42¢

(\). The curve which results for an incorrect
integer, ¢, is given by eq (30). Now the smallest
possible error is one unit, i.e., ¢g=n-+1. Then by

eq (30),
Tn41 ()\):‘)t’ +2¢(>‘) SN

It is evident that at all values of X the slope of the
7.41(N) curve is greater by one than the slope of the
7,(\) curve. Thus the possible 7, curves are a
family of curves which at a given value of X differ
in slope by one. In order to make the correct
selection of n, therefore, the slope of the 2¢(X\) curve
should be known to better than 4 0.5.

Similarly for Fabry-Perot data, the criterion for
selection of the order numbers m;(j=a,b, or ¢) is that
when the values of (m;+f,)\; are plotted against \;
the points fall along a curve, A, parallel to 2¢(N).
If the integers, m, are each increased by one, the
resulting points (m;-+1-+f,)X; versus \; fall along a
curve having a slope greater by one than curve A.
Therefore in order to make the correct selection of
my, the slope of the 2¢(\) curve should be known to
better than +£0.5.

This is not a severe restriction, amounting to a
maximum permissible uncertainty in e=2w¢/\ of
about +35° over the wavelength interval between
5000 and 6000 A. Therefore in most cases of
metallic reflectors and multilayers the theoretical
phase shift will be known accurately enough to
calculate the true order numbers. When it is not
known with sufficient accuracy, method IT can be
used.
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