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Pattern Synthesis for Slotted-Cylinder Antennas”
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The radiation from a cylinder excited by an array of axial slots is discussed.

A pro-

cedure for synethesizing a given radiation pattern is developed with particular attention

being paid to a Tchebyscheff-type pattern.

Specifying the side lobe level and the width

of the main beam, the required source distributions are computed for a number of cases.
The effect of using a finite number of slot elements to approximate the continuous source

distribution is also considered.

1. Introduction

It is the purpose of this communication to discuss
the synthesis of radiation patterns for antennas of
slotted-cylinder type. The particular model em-
ployed is a metallic cylinder of infinite length and
perfect conductivity. The cylinder is to be energized
by an array of slots of rectangular shape which are
oriented in the axial direction and disposed around
the circumference. Each slot is to be energized in
such a way that the tangential field in the slot has
only a transverse component. The radiation field
of such a slot on an infinite cylinder is plane polarized.
Furthermore, the idealization of an infinitely long
cylinder is not overly restrictive since the surface
currents excited by the axial slot are very similar to
what they would be on a finite cylinder. This con-
jecture is substantiated by experimental data on the
conductance of axial slots on finite eylinders [1].!

2. Basic Pattern Function

Choosing a cylindrical coordinate system (p, ¢, 2),
the cylinder is defined by p=a. Since attention is
only confined to the azimuthal or ¢ behavior, it is only
necessary to specify the ¢ variation of the field in the
axial slot. For example, if the slot width extends
from ¢, to ¢, the azimuthal radiation pattern
M* (z, ¢) was shown to be given by [1]
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where H®'(x) is the derivative with respect to x of
the Hankel function of order m, ./, is the Bessel func-
tion of order zero, k==2r/wavelength, z=Fka sin 0,
e,=1, e,—2 (m5£0), and 0 is the angle subtended by
the cylinder or z axis and the direction to the observer
(i. e., the usual polar angle in spherical coordinates).

*The research reported in this paper was sponsored, in part, by the U.S. Air
Force Cambridge Research Center under Contract CSO and A 58-40.
1 Figures in brackets indicate the literature references at the end of this paper.

The above form for the pattern M* (z, ¢) is strictly
valid only when the field £, in the slot is
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where 17 (z)) is the voltage across the slot at z=z,.
The field approaches infinity as the inverse square
root of the distance to the edge of the slot. Such a
behavior is characteristic of the field in the vicinity
of a perfectly conducting knife edge.

The amplitude and normalized phase ® [=phase
M*(x, ¢)—x cos ¢] of the quantity M*(z, ¢) is cal-
culated for a series of values of z and ¢,—¢;. These
are listed in tables 1 and 2 for z equal to 3 and 5,
respectively, and ¢,—¢; varying from 0° to 30°.
For the smaller cylinder, it is seen that the effect of
widening the slot (for a given voltage) is small.  For
the larger cylinders, the effect is becoming more
significant although if the angular slot width is also
less than 10°; the pattern is indistinguishable from
that of zero width.

It should be emphasized that these F-plane
patterns characterize only the azimuthal dependence
of the radiation field for a given value of 2(=/ka sin 0).
The elevation patterns or 7 plane pattern of such an
axial slot requires that the longitudinal distribution
of voltage along the slot be specified [1].

3. General Array Synthesis

By superimposing the patterns of individual axial
slots arranged circumferentially around the cylinder,
various forms of patterns can be obtained. The
problem sometimes arises that a pattern is specified
and the manner of excitation must be determined.
This is described as synthesis. Some elegant pro-
cedures have been developed for linear arrays and
these have been described extensively in the litera-
ture [2 through 5]. When the antennas are disposed
around circular ares, the techniques [6] are not so
straightforward, particularly if diffraction is involved.,
An example falling in this category will be considered
in what follows.
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TABLE 12

(From reference [7])

=3
| M*(z, ¢)| ®(deg)
d2—p1 | __ : .
0 20 | 30 0 20 30
p= 0 0.959 0.957 0.955 6.9 5.7 4.2
10 . 956 . 953 . 948 7.1 5.9 4.5
20 946 .937 . 926 7.7 6.6 5.2
30 927 . 909 . 888 8.4 7.4 6.2
40 895 . 869 . 838 8.9 8.1 7.2
50 859 .824 . 783 8.8 8.2 71l
60 825 . 782 . 731 8.0 7.9 8.0
70 794 . 743 . 684 7.4 8.0 8.7
80 747 . 691 . 626 7.8 8.8 10.2
90 664 . 609 . 545 7.6 | 9.0 11.0
100 561 .512 455 3.2 | 5.0 7.5
110 482 . 445 395 —7.0 —5.1 —2.0
120 .470 .428 .379 —18.1 —15.4 =11.7
130 .444 . 404 . 358 —23.5 —20.4 —16.1
140 . 349 . 320 .283 —28.7 —23.9 —19.2
150 . 206 .187 . 166 —43.5 —40.0 —35.2
160 . 155 . 142 . 126 —105.0 —101.7 —97.0
170 . 259 .237 .211 —137.0 —133.5 —128.6
180 .312 .285 . 254 —142.1 —138.5 —133.6
a All angles are shown in degrees.
TABLE 23
(From reference [7])
=5
[M*(, 0)| ®(deg)
$2—1 |_
0 10 20 30 0 10 20 30
¢= 0 0. 981 0. 980 0.979 0.979 4.9 4.5 2.8 0.2
10 L9977 . 976 .970 . 960 5.1 4.7 3.0 .5
20 966 . 963 945 .918 5.1 5.1 3.5 1.2
30 951 944 908 . 855 5.8 5.5 4.1 2.3
40 936 924 865 . 782 6.1 5.9 5.0 3.8
50 .914 . 899 .815 . 701 7.0 6.9 6.4 6.2
60 . 865 . 844 . 745 .610 7.9 7.9 8.0 8.7
70 . 804 . 781 672 . 527 7.0 781 7.9 10.1
80 757 . 732 615 . 462 5.5 5.8 7.6 1156
90 681 . 656 540 . 392 5.0 5.4 8.0 13.7
100 570 . 548 447 318 —0.6 0 3.4 10.5
110 513 .493 400 282 —11.3 —10.5 —6.2 257,
120 .452 .434 . 350 . 245 —17.5 —16.6 —11.6 -1.3
130 .318 . 306 . 246 .172 —32.7 —31.8 —26.4 —15.3
140 .288 L2717 .224 . 158 —68. —67.0 —61.4 —49.8
150 .293 .281 .228 .162 | —82.8 | —81.7 —75.7 —63.5
160 . 147 . 141 .114 . 082 —99.7 —98.8 —92.6 -=77.0
170 .142 .137 .112 .080 | —205.2 | —204.0 | —198.0 | —185.7
180 .241 .232 . 189 135 | —219.3 | —218.2 | —212.1 | —199.6

a All angles are shown in degrees.

The cylinder is now to have P axial slots equi-
spaced around a circumference of the cylinder as
illustrated in figures la and 1b. The individual slot
elements are centered at

¢=¢p=2~%1—) where p=0,1,2 . . . P—1.

The quantity L(¢,) is used to describe the relative
excitation of each element. Therefore, the resultant
azimuthal pattern of the array is

Me)=5 > Le)MG—s)  (Gu)

Observer

C

N

Fraure la. The azial slot-
ted-cylinder array.

Ficure 1b. Cross section of
the cylinder.

where M*(¢—¢,) is the pattern of the individual
elements of the array. (The factor 1/27 is included
for convenience in_what follows.) Now when P is
sufficiently large, M(¢) can be approximated by an
integral so that p is then regarded as a continuous
variable. This leads to

Mg~y | LM G6—o)ds,  (3b)

It is now assumed that the excitation function
L($,) is expressible as a Fourier series in the manner

=,
Ligp)= 33 Lue™s (4)

where the sum is over all integral values of n (in-
cluding positive and negative integers). It is also
assumed that the width of the individual slots is
very small and therefore

. 1 + o eimr/2eim(¢—¢,,)
Me—d)=r 2 ayw O

which follows directly from eq(1). Inserting these
expressions for L(¢,) and M*(¢—¢,) into eq(3b)
leads to

—_— 1 + o Lmeimr/zeim¢
M(d’):m‘m;m H(,?,)/(.’L‘) : (6)

Having the pattern expressed in this form enables a
synthesis procedure to be directly applied. Because
of orthogonality

Y 27 ___
Lo=5 P HY' @) [ H@emis @)

which, when inserted into eq(4), enables 1(¢,) to be
determined and is the excitation required to produce
the pattern M(¢). In a formal sense, any pattern
M(¢) could be specified, however directive, and a
corresponding function L(¢,) could be determined.
From a practical standpoint, there is a limitation
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when M(¢) becomes very directive since then
L(¢p) varies very rapidly in both amplitude and
phase and leads to a complicated procedure for
feeding the array. Furthermore, small errors in the
excitation of the elements lead to a large degradation
of the pattern.

A different approach to the synthesis problem is to
utilize the remarkable properties of the Tchebyscheff
polynomials. These polynomials are particularly
appropriate when the pattern is to have side lobes of
specified and equal amplitude. As shown by Dolph
[2] and others [3, 4, 5, 6], the resultant design is an
optimum one for a linear array of discrete elements.
In the case of a circular array, a similar procedure
can be adopted as follows:

" The Tchebyscheff polynomial of order NV is defined
v

Ty(2)=cos (N arc cos z), 2=<1,
=cosh (V arc cosh 2), z2>1. (8)

In order to utilize the optimum properties of the poly-
nomial, the following transformation is introduced

z=a cos ¢-+b,
where a and b are constants. Now ¢=0 and z=z2,

are to correspond to the direction of the main boam
In fact, as ¢ varies from 0 to 27, 2z is to vary from

zo to —1 back to z,. Therefore
_ Barll _E==ll
== and b_A2

As shown by Duhamel [5],

Tx(a cos p-+b)= Z_‘,C” COS N, (9)

n=0
where O are functions of @ and b. For example,
when N=4, they are given by
Ot=1—8b2+8b*+24a2b%+3a*—4a2
(4= —16ab-}32ab*+24a%b

(3= —4a?+24a2b*+4a* (10)
C4=8a’h
¢ =0

and for N=6, they are given by
O8=—1-+418b2—48b*+ 32b%+- 9a*— 144 b%a?
+240b*a?—18a*-+180b%a*+10a®
=36ba—192b%a+192b%a— 144ba®+-480b°a* - 120ba’
CS=9a2—144b%*-+240b%a*—24a*+240b%* +15a°
8 — —48ba’+ 160b%* -+ 60ba’
(%= —6a*+60b%a*+6a’
Ci=12ba*

=gt}

The next step is to equate the T'chebyscheff pattern
to the general form of the slotted eylinder pattern
given by eq (6). Thus

h imm /2
Ty(a cos ¢+b)_ﬁ Z €nLne™™* cos me

WL = H2 ()

(11)

This enables the coefficients 7, to be specified in
terms of the coefficients C% as follows

emLm=1m2xe~ "™ 2CNH Q' () for m =N,

= for m >N. (12)
The corresponding excitation is then given by
L(p,)= 2 €L, cos me,. (13)
m=0

It is thus possible to produce a Tchebyschefl type
of pattern from a distribution of axial slots around a
circular cylinder. As shown below, either the side-
lobe level or the first null can be specified by a proper
choice of z,. For a constant side-lobe level, the beam
width is decreased by increasing the order of the
polynomial.

The nulls of 7Ty (z) occur when

arc cos zk=<2§—;71> mnk=1,2,3... N

and the nulls in the ¢ domain are thus

cos I:(H —1) ]
¢,— +-arc cos [ 2N :l k=1,2...N.

(14)

On the other hand, the center of the lobes occur at
¢—¢; which is a solution of

dTy(a cos ¢+b)/dp=0.

These are given by

ke
cos N_b
¢y=-karc cos [—d—jl

When the ratio of the side lobe to the main beam is
B then

(15)

TN(ZO):B (16)

since

The quantity B thus spec ifies z, which in turn deter-
mines a, b, ¢, and ¢ for a given value of N. The
requlred excitation L($,) actually is a continuous
function. From a practical standpoint, the number
of elements must be finite. It would be expected,
however, if the separation between the elements is
small compared to the wavelength, the actual pat-
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tern would not differ appreciably from the Tcheby-
scheff pattern. This conjecture is verified by actu-
ally computing the pattern for a finite number of
equispaced slots disposed around the cylinder. For
example, the polynomial 7'y (a cos ¢--b) is to be com-
pared with the function

1I

Mg)= pz_ol L L@)M6—9) (7

with 7 being a finite integer. In this case, the spac-
ing between the axial slots is 2za/P.__In spite of the
fact that the spacing is finite, the M (¢) pattern is
quite close to the ideal Ty pattern as indicated in
the following results.

4. Presentation of Numerical Results

The theoretical basis of the synthesis procedure
has been outlined in the previous section. Here
numerical results are presented for certain specific
cases which illustrate the interrelation between the
parameters of the problem.

The basic patterns used are illustrated in figure
2a and 2b. They are derived from the 7', and 7
polynomials, respectively. The quantity B, which
1s the (voltage) ratio of the major lobe to the minor
lobe, is taken as 5, 10, 15, and 20 for the two cases.
It is seen that for a given polynomial the beam is
broadened as the side-lobe level is reduced. Conse-
quently, if for a given side-lobe level, one wishes to
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Ficure 2.

Optimum patierns based on Tckebyscheff polynomials Tx(z).
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Ezxcitation required for a Tchebyschefl pattern.
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Freure 11. |ﬁ(¢)l compared with | Tx(z)]|.

reduce the beam width, a higher order polynomial
must be employed. This fact is illustrated by noting
that the beam width is narrower for the 7, poly-
n;)mial than for the 7' polynomial for a given value
of B.

The curves shown in figure 3a, 3b, 3¢ to figure 10a,
10b, 10¢, inclusive, are plots of the amplitude and
phase of the excitation function L(¢,). The abscis-
sas are the azimuthal coordinates ¢, expressed in
degrees. On each figure is listed the revelant value
of the order N of the Tchebyscheff polynomial, the

lobe ratio B and cylinder parameter .

311

It should be noted that the quantity =, which is
ka sin 6, is fixed for each set of curves. In the equa-
torial plane (i.e., #=90°) z becomes equal to ka
which is the circumference of the cylinder in wave-
lengths.

In figure 7a (for z=3) it is noted that the excita-
tion amplitude is varying in a very pronounced
manner. Here, although the diameter of the cyl-
inder 1s only about one-half wavelength, the main
beam width is less than 32°. In figure 7b (for z=5)
and figure 7¢ (for 2=8), the oscillatory nature of the
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Ficure 12.  Patlern comparison for various assumplions.

excitation is less evident. The following sequence
of figures for the larger E values show a similar trend.

In nearly every case shown in figure 3a to figure
10¢, the phase of the excitation increases as ¢,
ranges from 0° to 180°. When the amplitude is
rapidly varying such as in figure 7a the phase in-
creases almost abruptly by = radians (or 180°)
near each minimum in the amplitude. There are

5. Effect of Using Discrete Sources

The excitation functions presented above are
really deseriptions of continuous source distribu-
tions. In a practical scheme it is usually necessary
to approximate these by an array of discrete sources.
As mentioned above, this is to be accomplished by

several seemingly anomalous cases (fig. 7¢, for ex-
ample) where the 7 radian phase jump is down rather

than up.

an array of thin axial slots disposed uniformly around
the circumference of the cylinder. In figure 11a is
shown the pattern |[M (¢)| calculated from eq
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(17) using 36 slots to approximate the continuous
source distribution given by figure 6b. These
salculated points lie virtually on top of the ideal
Tchebyscheff (7)) pattern. The apparent coinci-
dence of the calculated and the ideal patterns is not
surprising since the separation between the discrete
sources is only X4, of a wavelength, and thus the
excitation is virtually a continuous one. A similar
set of calculations are shown in figure 11b where
the source distribution of figure 10¢ is approximated
by both 18 and 36 discrete elements. There now
appears to be some notable departures from the
ideal Tehebyscheft pattern, particularly in the case
for 18 elements where the side lobes are increased.
In both cases, however, the main beam is preserved.
In these two cases, the separation between the ele-
ments is % and % of a wavelength, so the degradation
of pattern is not unexpected.

On examining some of the excitation functions
(for example, fig. 6b), it is seen that on the rear half
of the cylinder, the amplitude |L(¢,)| is less than
10 percent of the maximum at ¢,—0. As a matter
of interest, the function M (¢) was computed using
eq (17) again, but now approximating /L(¢,) by
discrete sources located only on a front portion of
the eylinder (. e., |$,] <80°. Such results are
shown in figure 12a for angular intervals between
the slots of 10°and 20°. The computed pattern M (¢)
bears only a slight resemblance to the ideal 7
pattern which would be closely simulated if the
slots extended right around to the back of the
cylinder. Similar calculations are shown in figure
12b where the excitation function shown in figure
10¢ is approximated by discrete sources on the front
portion of the cylinder. Here again the pattern is
considerably degraded from the ideal 73 pattern
although the increase of the side-lobe level may be
tolerated for certain applicatioas.

6. Concluding Remarks

It can be seen from the above curves that, in
principle, any pattern may be obtained if the exci-

tation function or source distribution is specified
in a certain way. Unfortunately, if narrow main
beams are desired, the cylinder must be sufliciently
large, otherwise very complicated excitation func-
tions are required.

It appears that usually the continuous excitation
or source function £ (¢,) can be approximated by
discrete sources (i.e., narrow axial slots) if the sepa-
ration is less than about N/8. However, the rapidly
varying excitation functions associated with small
cylinders and narrow beams would require smaller
spacing between the source elements.
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Note added in proof:

A closely related problem has been studied by Adolf Giger
in On the Construction of Antenna Arrays with Prescribed
Radiation Patterns, doctoral thesis, Technischen Hochschule,
Zurich, 1956. This was brought to our attention recently by
Prof. Franz Tank.

BourLper, Coro. (Paper 63D3-27)
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