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The problem of determining path antenna gain is treated here in greater detail than
previously [1, 2, 3]0 The method used here takes into account for the first time the exponen-
tial decrease of the gradient of refractive index with height, and a scattering cross section
inversely proportional to the fifth power of the scattering angle. Results are given for all
combinations of beamwidths and path geometry, assuming that symmetrical beams are
used on both ends of the path and that atmospheric turbulence is isotropic. The result
appears as a function of both of the beamwidths, in addition to other parameters, and thus
the loss in gain cannot be determined independently for the transmitting and receiving
antennas. The values of the loss in gain are generally lower than the previous estimates
for which a comparison is possible.

1. Introduction

Theories of the forward scatter of radio waves in the troposphere or stratosphere usually
differ only in their assumptions about the radio wave scattering cross section and pertinent
meteorological parameters. With any theory, the total effective gain of highly directive
antennas is less over a scatter circuit than it would be in free space. The “path antenna gain”
is less than or equal to the sum of the free space gains G, and @, of the transmitting and receiv-
ing antennas. KExpressed in decibels above the gain of an isotropic radiation [1],

G,<G.+G.. (1-1)

Booker and de Bettencourt [2], Norton, Rice, and Vogler [1], and more recently Staras [3]
have estimated the loss in antenna gain ¢/, where G, in decibels is given by

G,=G,+6,—G,, (1-2)

for an atmosphere in which the variance of the gradient of the radio refractive index is either
constant or varies parabolically with height. This paper estimates G, with a model atmos-
phere in which the refractive index decreases exponentially with height. G, is evaluated using
antenna radiation patterns which are the same horizontally and vertically. To the authors’
knowledge, G, has not been evaluated using antenna patterns which are not symmetric about
the beam axis. Figures 6 and 7 show graphs of Gy, for various values of the parameters, and
section 4 summarizes important definitions and gives a simplified method for predicting @G,
The reader who desires only an estimate of G, may skip to section 4.

2. Antenna Gain in Free Space

The gain function f(6, ¢) is the ratio of the power radiated in the direction (6, ¢) per unit
solid angle to the average power radiated per unit solid angle. This expresses the increase in
power radiated in a given direction by the antenna over that from an isotropic radiator emitting
the same total power. It is convenient to express the gain pattern of an antenna and its free
space gain in terms of the electric field distribution (¢, 5) over the antenna aperture. Figure 1
shows a coordinate system with an antenna aperture in the z,  plane and centered at the origin.

1 Figures in brackets indicate the literature references at the end of this paper.
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Ficure 1. Geometry for determining the gain of an antenna.

The point P(x, y, z) is in free space in the Fraunhofer or far zone. Using this notation, the
power radiated per unit solid angle in a given direction by an antenna having constant phase
distribution over the aperture is approximately [4]

P0,6)=4

LF(g,n) exp [7ksin 6(¢ cos ¢+ nsin ¢)|dédn 2; (2-1)

where 4/ /e is the impedance of the propagating medium, \ is the free space radio wavelength,
k=2x/\, ana d&dn is a surface element of the aperture. The average power radiated per
steradian in terms of the total power P, across the aperture is

Pojtn=XSlt f () P, (2-2)

and the ratio of (2-1) to (2-2) is the gain function.
(0,0)=47P(0,4)/P,. (2-3)

If the aperture illumination F(£7) is symmetrical about the origin, the maximum value
Fmax(0,0) of (2-3) corresponds to the direction =0 along the antenna beam axis, the z-axis in
figure 1,

Jmax(8,0) =1(0,¢) =A,/(N/4). (24)

The factor A,, called the “effective absorbing area’” of an antenna, is given in terms of the
distribution function as

. ¥
Ap=j ] f‘(s,n)ds«/n' / L|F<s,n)t2dzdn. (2-5)

For an isotropie radiator, A,=N\?/4m, as follows from (2-1) and (2-2). For any antenna with

a uniformly illuminated aperture (F(¢7) constant), the effective area equals the actual area.

as may readily be seen from (2-5). For the more usual 10 db tapered illumination of the

aperture of a parabolic dish antenna, the effective area A, is about 56 percent of the actual area.
The free-space gain of an antenna in decibels above the gain of an isotropic radiator is

G =10 102 ¢fmax(0,0) =10 log,o[A,/(N2/47)]db. (2-6)
Define the normalized gain function, ¢,,(6,¢) :
Im(0,0) = (0,8) [fmax(0,8). (2-7)
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Figure 2 shows the normalized gain function g,(6,¢) versus 6 for a uniformly illuminated
circular aperture of 100 wavelengths diameter.  Figure 2 would be the same for’any value of ¢.
Figure 2 also shows a ‘“‘square” antenna power pattern, where ¢,(6,0) maintains the value
unity for 0<0<6 and is zero when 6 exceeds 6.
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Fraure 2. Computed polar pattern (without side lobes) for a parabolic dish (circular aperture uniformly
llumanated) with D/N= 100

The “square” power pattern will be used throughout the calculations in this paper.

For practical purposes the gain is often specified in terms of the half-power beamwidth, 26.
For an antenna with a symmetrical distribution of field intensity over the aperture one obtains
[4] -

26 ~= Ny po/ a, (2-8)

where y; is the 1th moment of the function F(z) which gives the aperture field in terms of
z=+/8-+n2.  Combining (2-1), (2-7), and (2-8).

J(0,0) = (uo/ua) /(20)* (2-9a)
f(0,0)=0C1/(26)?, (2-9b)

where () is a constant of proportionality depending on the characteristics of the antenna used.
As examples, with the beamwidth 26 expressed in radians, (;,=7.2 for a half-wave dipole, and
(,=8.2 for a parabolic dish with the edge illumination 10 db down from the center illumination.
This constant ; can be determined for some types of antennas using tables in the book, Refer-
ence Data for Radio Engineers [5].

The half-power beamwidth in figure 2 is 24, where § is the value of 6 corresponding to ¢,,(6) =
0.5 For the square pattern, assuming that é is small, the power is radiated through 78 stera-
dians if the aperture A is circular, and through (26)?2 steradians if A is square. The power gain
f(0,¢) is then 47/7é* for the circular aperture or 47/(26)2 for the square aperture, that is, C;=16
or (1=4r.

or

275



(1, as determined by calculations in this report, depends directly on the semibeamwidths 3,
and §,, and to a lesser extent on the shapes of the associated power patterns. Subscripts ¢ and r
in this paper refer to transmitting and receiving antennas, respectively.

3. Scatter Integral

If we denote by K the received power relative to free space of a given scatter propagation
circuit with arbitrary antennas, and by K, the received power relative to free space of the same
cireuit using isotropic antennas, then the loss in gain in decibels may be defined as

K
GL:—IOIOng (3—1)
and the total path antenna gain is
Gp=0G,+G,—Gh. (1-2)

The loss in gain G, depends on the plane wave power patterns of the two antennas and upon
the path parameters in such a way that the effect of one antenna cannot be evaluated inde-
pendently of the power pattern of the other.

In this report, it will be assumed that the antennas are sufficiently high so that ground
reflection effectively doubles the power incident on the scattering volume over what it would
be in free space and again doubles the power at the receiver. In general, K is given by the
volume integral

o 9:grod .
K=d f V(R (3-2)

where d is the straight line distance between transmitter and receiver, R and R, are distances
from transmitter and receiver, respectively, to a scattering element dv, and ¢, and ¢, are 2¢,,,
and 2¢,,, that is, double the power patterns defined by (2-7). The scattering cross section o
gives the fractional part of the incident power scattered in a given direction (at an angle, a8
from the forward direction) per unit volume per unit solid angle. Refer to figure 3, which shows
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F1cure 3. Geometry for the scattering integral.
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some of the geometry appropriate for the evaluation of (3-2). In this figure and throughout
the lomumd('l of this paper, 6 is the angular distance, or the minimum scattering angle. A
detailed discussion of the derivation of the form for ¢ used here may be found in a recent paper
[6]. The following result is obtained:

A2 [asin ()] (3-3)

where a8 is the angle between the directions /2 and 2y as shown in figure 3, N\ is the wave-
length, <(An)?>>> is the variance of refractive index fluctuations in the scattering medium,
and /, is a “scale of turbulence’” appropriate for the scattering medium, assuming homogeneous
and isotropic turbulence. Following Booker and Gordon [7], Abbott [8] derived in a sub-
stantially different fashion the following expression for < (An)? > /l*:

<(An)2> [12=S" exp (—2v h)=S8 exp (—27 2) (3-4)

where S’ is the value of this parameter at sea level, h~z—h/2, S~S8’ exp (vho), and 1/ is the
scale height of the atmosphere, here assumed constant.
Using the coordinate system shown in figure 3, (3—2) becomes

o\ Q72 (72 29 ‘o ==
:'))\b(] J ([J‘J (]ZJ (lw o (]mt(/mr(axp( 7"‘)
us 1 2 =

I:‘) sin ( +B>] (RR, )2. )

: =2y +2)°
[‘7 sin (a+6>:| (RR, )2 d¥(w?-2%)2

Using the approximation

)

(3-6)

which is justified in appendix 1, and assuming that the effects of back scatter are negligible so
that we may limit our z integration to the region between the transmitter and receiver, and
limiting z to the region above the horizon rays, we obtain

47”'”{1 (I.I‘J f (]wf(L‘H‘f de zmdzj (wa(b)} (3-7)

where
(dy—x)3(dy+2)3Se=? .
f(v):.(]mt.(]mr ! (wg_f_ 22)5/2 (v§—8>
and
21m = Bo(dz+ 1) (3-9)
ngga()(dl—".l') (3“]0)
We can express K in terms of four parameters, g, Jmr,
C!() .
(311
=8, ‘ )
and
n="d#, (3-12)
where
0:a0+ﬂo, (3—]3)
Thus
K:K(S; n, 91, (]r) (3*14)

277



For isotropic antennas ¢,,,= ¢,,—1, and thus g,=¢,=2, including the effects of ground reflection
as explained previously. K then becomes

e “ @ —7)3 3,—27z
K(s,n,Z,Q)EKO:%‘g{J l(le (12f dw L=2) [y t-2)°e>
0 e .

2 2)5/2
1m (w +2)

v @ di—2)3 (d, - x)3e=27%
+f_0d2d;rJ:2mdzf_w dw & 202(_}_2;)228 } (3-15)

(3-15) is evaluated exactly in appendix 2 with the result given by (7-14). K (3-7) was eval-
uated by imposing geometric limits on the integrals and using Taylor series expansions. The
limits vary as su<1, su=1, or su>1 where

p=g (3-16)

Figure 4 is a composite drawing and figure 5 is a drawing showing the zw and zh planes for
sp<1. This leads to five integrals corresponding to the regions shown in figure 5 since it
was found necessary to evaluate the integrals corresponding to the regions I, and I as one
integral, and then subtract the integral for I;. The integral K was also evaluated numerically
with < (An)?>/I% proportional to z=% and z~* using the antenna power pattern [2.J;(u)/u]? of
figure 2 (without side lobes), and the value obtained for ¢, was found to be always within one
and a half decibels of the value obtained using a ‘“‘square” pattern with the same half-power
beamwidth and height dependence.
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Fiaure 4. Scattering volume with ““ square” antenna Fraure 5. Shape of scattering volume in vertical and horizontal
patterns. planes, su>1.

Effects of anisotropic turbulence have not been evaluated in this paper, but it can be shown
that anisotropic turbulence arising from scale length changes has no effect on K, [isotropic
antennas| except to add a multiplicative factor of », where

pdo scale of turbulence in vertical dimension (3-17
~ 1, scale of turbulence in horizontal dimension )

However, it has been shown [6, 9] that anisotropic turbulence produces the following effect in
the integrand, (3—-8) of the scatter integral (3-7)

(d1—x)*(dy+x)*Se2"*
(Wl 271, %)

=!]ngmr (dl_x)a(df']r‘ $)3SE—2'"
NGE)
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where f4 (v) is f () with the effects of anisotropy included. Using the square pattern as was
done in this paper, with geometric limits acting as a cutoff for the antenna beamwidths, it
will be shown that, at least qualitatively, anisotropy will have some effect when using high
gain antennas. As can be seen using (3-18), only the w integration is affected. A typical w
integral using the geometric limits for anisotropic turbulence would be of the form

*5(dy+2) dw
J e (3-19)
* ()]
o
w .
Let = Then (3-19) becomes
s Tdyta) I
( .
A (520

This integrand is the same as in the case of isotropic turbulence, but the range of integration
is larger, since »<_1. Thus, the values of @, obtained here would be lower if the effects of
anisotropy were included. This effect is the same as if antennas with larger beamwidths in
the horizontal dimension than in the vertical dimension were used in an isotropic atmosphere.

4. Results

The integrals in the preceding section were calculated for numerous combinations of the
parameters. Typical curves which resulted from these calculations are plotted in figure 6.
The curves in figure 6 corresponding to path symmetry (s=1), and identical antennas (u=1),
are shown again in figure 7 using a different coordinate system which facilitates interpolation.
Because of the number of parameters involved it was found impractical to show all of the curves
of the type shown in figure 6, and instead, an empirical formula was derived, using these curves,
which gives good accuracy using only two graphs and a few simple calculations. The following
discussion defines the necessary parameters and shows how to use the empirical curves.

The basic parameters which depend on the path geometry are shown in figure 3 and are
as follows:

X, 60: (]y (4_] )
from which may be calculated
8:%2, (4—2a)
0=ao+Bo (4-2b)
and
ho=7—r (4-2¢)

e

Combining these with the rate of decay of the variance of the refractive index with height, v,
one obtains

n="db (4-3a)

and

298
14 ZQ’YIlro :m' (4:-3}))

For the purpose of illustration? y=0.23/mile will be used here.

2 For additional values of v, see reference [10].
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GELOSS IN PATH ANTENNA GAIN IN DECIBELS
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Ficure 6. Loss in path antenna gain. 8:=0, s=1.

The parameters which depend on the antenna characteristics are the half power semibeam-
widths, 6, and §,. These are used to calculate

ﬂ:5r/5t- (4"4)

At the end of this section, formulas are given for calculating § from the free space gain of the
antenna or from the frequency and area of the antenna aperture.

In the empirical formula, the two parameters s and g, are combined in the single parameter
su, and two separate cases arise.

Case I, su>1.
Calculate
=l (4-5)
Read f (») from figure 8 and calculate
h=(n+0.03»)/f(»). (4-6)

Read @, from figure 9 for the appropriate value of su. Linear interpolation is possible using
the formula

1 1
GL:GL,"}‘ Sll-" (SM.)I (GL”““GL,)y (4_7>

(s (sm)”
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where G/ and G/ correspond to the graphically obtained values for (su)” and (su)’’ less than
su and greater than su, respectively.

Case 11, su<1.
Calculate

n=Fo/6,. (4-8)

Read f(v) from figure 8 and calculate

= (n+0.03»)/f(v). (4-9)

Read @, from figure 9 on the curve corresponding to the value of 1/su. Use formula (4-7) for
interpolating replacing (su) by (1/su), (sw)’/ by (1/sp)” and (sp)’” by (1/su)’’.

If the gain @ in decibels is known, the half-power semibeamwidth may be calculated using
the following formulas which may be derived from the formulas in section 2, and are given here
for a parabolic dish of diameter D) feet at a frequency f,,, megacycles per second. @ is given by

G=10 log 1[0.5672(D/\)?] (4-10a)
=20 log;y D;,+20 logofm.—52.431 db.
Also,
G=10 log,[8.2/(26)%] (4-10Db)
with 6 in radians, and thus,
5= 143210~ 40— 609)/D mr. (4-10¢)
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5. Comparison with Previous Estimates

In figure 10, our estimates of @, are plotted together with the estimates given by the previous
authors [1, 2, 3]. The values from Staras’ [3] paper which are shown in figure 10 correspond
to the assumption of isotropic turbulence. For this comparison, it was necessary to use only
the curves corresponding to the assumptions of path symmetry and identical antennas on each
end of the path since some of the previous estimates are available only for these cases. In
addition, our assumption that the gradient of refractivity of the atmosphere decreases expo-
nentially with height leads to the parameter y=2+vh, which does not appear in the other papers.
For making this comparison we chose the typical value of »=2 corresponding to y~0.23,
d~300 mi, and §~50 mr. Our values of @5, in figure 10 are lower than the other estimates, and
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Fraure 10. A comparison of loss in path antenna gain obtained from different scatter theories for a symmetrical
path for d=300 miles, u=28:/6,=1, s=a,/Bo=1 (antennas on the surface).

as can be seen in figure 6, they would be even lower if a larger value of » were used or if an
allowance were made for some degree of anisotropy. The difference between our curve and the
others is primarily the result of the use of the exponential model atmosphere which is supported
by ample data [10] and a scattering cross section that is proportional to [2 sin {(a+B)/2}]7°.

The authors acknowledge the assistance of P. L. Rice and H. K. Hansen in the preparation
of this paper.
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6. Appendix 1
The approximation

(di—1)3(dy+1)°
& = d5(w? 2)5/2 :
[2 sin (a+6>:| (RR)? d®(w*+-2°)% (3-6)

is usually derived by assuming that a8 is small [1]. The following method is used to obtain
this approximation, because it has the advantage that the error is evaluated. It

p_BtRtd

5 (6-1)
Then, using a well known formula from geometry,
2 sin “+B> ' _g-s <(1’—11’o) (= (1)>1“ PP— 1fo)>”2
2 Ryd Rd
’1’(1’—[:’))1/2 el (1)>‘/2 (B+Ro)*—d*\ ~%2 .
(- Rd T ARR, (6-2)
From the geometry
Ro=+/(d—2)*+2*+w? (6-3)
R =+/(ds+x)*4-2>4w’ (6-4)
and
~2+w 2 +w .
RRy=(d,—x)(dy+2x) {1+ r)z} { +({1>+1) : (6-5)

(6-5) can be expanded if 22-+w? < (d;—x)? and 22+w? < (d,-+x)2. Thislis generally the case for
a bevond-the-horizon propagation path. Then,

B 2+w7 (dy+x)*+ (di—x)*? o e
R By = (dy—2) (dy 1)+ @—z) ot a) }+ - (6-6)
Using (6-3), (6—4), and the first two terms of (6-6), we obtain
. : (d2+x)2+(d1—r)2} (Z2+w)d?
Ry)2—d?>~2 (221 w? = . -
R+ Rt —ea(eton{ 1+ RSO L =GR 0
Using (6-2), (6-7), and the first term of (6-6) we obtain
. faB\] 8
[2 b“‘( 2 )] _ (RRy  __(d—)*(dyt2)? (6-8)

(RR)? T [(R+ 11’0)2—([2]5“ B tz2)52
which is the same as (3-6).
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7. Appendix 2

The derivation of (3-15) with g,,,=1, ¢,.,,=1 is as follows:

)3 3,—27z
Ksm22)=20 { [ j o [ aw =D

0 e ® )3 )3,—272
i+ f do J dz f dw'@ 2%?23 }:K1+K2, (7-1a)
—d, 2am e & =

where A, and K. correspond to the scattering regions to the left and right of the crossover ('
of radio horizon rays in figure 3.

21m=Po(d2+1). (7-1b)
el (-1¢)
In K, let
ar={ (7-2)
and
_a()dl : LC ~
n s) (7-3)
where
s=ap/Bo=ds/d;.
In K, let
r=—rkd, (7-4)
and
20:[307(12 (1+sk). (7-5)

Then, integrating with respect to w, we obtain

nsd .
0 ,"_03(1_;_\) {f (]- ]{,‘)3([kj O exp [?0 (1+k/8) (150

sf (l—k)B(lkJ A exp [—ZO—V(I—}—sk)](/zO}, (7-6)

where we have set

v=2vho=2vayd; =2vByd,. (4-3)
Let
1 K K —y
— J (l—k)s(lkj e |:—<1+k/.>-)](1;0, (7-78)
1—1—-\' 0 0 20
and
Jg= 12 gJ (1—Fk) (MJ 22 exp [_ (lisk)](lzo. (7-7b)
N ~0

We need only consider (7-7a) since (7=7b) can be obtained from (7—7a) by replacing s by 1/s.
Thus, performing the integration with respect to &, we obtain:

= )2 3(s2.)3 oz )4 3 (s2.)% ex — Sz
L1_1+f 22 exp (—v/z 0){svo 5('%.)0) +g(%;()> _6(s20 +(> (s20) (,.\])4[ u/(sﬂ,)]}dzo‘ 7-8)

V- (»)* v
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Let

14
oy, (7-9)
: vo=v(1+41/s), (7-10)
anc
4 3 32 g
Cl:s +7s —|—§ls +.358_ (7-11)
Then
1
o A D I 382+683 6s* 1684e—u(1+?) /
1+s), \e woouS T u® @
P =, 6s? 84—|—783 4—|—7s3—¢—215
7(1—{—8){6 I: V7+ 5 5p° +24( 1/3 >:|__
4 7| ) -
P (17”/6)[ 66+§0v2 120u4+%0»2 720»2+720u 720 M= ”2)]} =)
where
© 1
—E?f(——r)zf <. (7-13)

Thus, adding L, and L, we obtain:

K":WM {€7"[—720 (s"41) 4120 (s'+ 755+ Ts+1)r—24p*[(s+1)7

— 358 (s 1))+ (s+1)% (6— 22— )| — (s 1) W[ i (—») — Ei (—v[14-1/s])

— Ei(—y[L+45])] +se~* SH9[72055—1205% (1 4-8) v+ 24541 +8) 22— 653 (1 4-5) 3

+252(1+8) ' —s(14-5)*5 4 (14-5) 0]+ e~ 0 [720—120(14-5) y+ 24 (1 4-5) 2
—6(1+9)%*+2(148) ' — (14-5)%°+ (1+5)%%}.  (7-14)

Figure 11 shows 3 n6*(1+4-s) Ko/2\Sd plotted versus n/2 for several values of the path asym-
metry factor, s.
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Fraure 11.  Dependence of the scaltering integral on s and 7.
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