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Radio-Wave Scattering by Tropospheric Irregularities
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The subject of radio-wave scattering by turbulent irregularities in the tropospheric
index of refraction is reviewed. Descriptions of the turbulent medium are considered first,

together with a status report on physical theories for the spectrum of irregularities.

Phase

and amplitude scintillations induced on electromagnetic waves propagated along line-of-

sight paths are discussed next.

The complementary problems of signal statistics and elec-

tromagnetic-propagation calculations are summarized and compared with available data.

Both the geometrical optics and wave theory approaches are discussed.

The theory of

propagation beyond the horizon by scattering from the same irregularities is then described.
A current review of the predictions for received power, signal fluctuations, and antenna

effects is given.

The paper is primarily a review of the essential and auxiliary predictions

of scatter theory, but also contains a considerable amount of unpublished research by the

author.

1. Introduction

The existence of random irregularities in the atmos-
pheric index of refraction has been well established
by direct measurements with microwave refractom-
eters [1, 2]2 The influence of these refractive
irregularities on electromagnetic waves is confirmed
by the random fading of microwave signals received
beyvond the optical horizon. Stochastic phase and
amplitude variations imposed on electromagnetic
waves propagated along line-of-sicht paths confirm
this cause-effect relationship. This is not to deny
the influence of other mechanisms (layers, ducts,
et al.) which may also contribute to scatter-field
strengths. It does certify that the electromagnetic-
ally predicted relation between (turbulent) refractive
variations and signal characteristics is indeed es-
tablished.

The entire subject of electromagnetic propagation
through turbulent refractive irregularities has re-
ceived considerable theoretical and experimental
attention during the post-war era. This attention
is due to the enormous importance of ‘“‘scatter
propagation” communication systems on the one
hand, and a basic limitation imposed on radio track-
ing and guidance systems for space vehicles on the
other. The subject also has considerable scientific
interest in its own right, particularly insofar as it
unites electromagnetic theory, turbulence theory,
and probability in an essential mixture. Once es-
tablished, the influence of atmospheric irregularities
on electromagnetic waves presents a valuable tool
for studying turbulence at very large Reynolds
numbers by simple radio means.

It now seems appropriate to try to establish how
far the considerable volume of original research
has brought the subject. This is particularly im-

! Consultant, Boulder Laboratories, NBS; permanent address, Space Tech-
nology Laboratories, Inc., Los Angeles 45, Calif.
2 Figures in brackets indicate the literature references at the end of this paper.

portant since the basic concept is periodically brought
under attacks of various sorts, and it is desirable
to try to set forth the essential and auxiliary pre-
dictions of the basic theory in a coherent, unam-
biguous fashion. More important, however, is the
need to present a balanced status report on the
theoretical predictions, against which accumulating
sxperimental results can be ranged to establish the
true role of this mechanism in an objective manner.

The present paper is primarily a review of the-
oretical research on line-of-sight and scatter prop-
agation in the United States, with a short status
report on turbulence theories of atmospheric irregu-
larities. It is not a genuine review, in that it leans
rather heavily on the author’s own research as a
basis for unifying diverse vesults. Furthermore, a
substantial amount of unpublished material is
included herein. The report goes one step further
and points out a number of outstanding problems
which are solved in principle, but not in detail. A
detailed, balanced comparison of these theoretical
results with experimental data was not attempted
for this broad field, although occasional references to
significant results and prior comparisons are indicated
by way of stimulating this crucial testing.

The substance of this report can be summarized
briefly. In so far as the single scattering (Born)
approximation and/or geometrical optics are valid
representations of the electromagnetic response of
propagating waves to refractive irregularities, the
entire subject is solved in principle. The geo-
metrical-propagation effects can be computed in
any desired detail (or at least be reduced to integrals),
independent of the turbulence model employed.
This important separation is achieved by using the
spectral representation for the space correlation of
refractive irregularities, which allows any spectrum
model to be combined with any propagation model.
The more difficult electromagnetic problem of
multiple scattering has not been considered ade-
quately and is not discussed here.
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2. Description of the Turbulent Medium

2.1. Statistical Characterization

The tropospheric index of refraction varies from
point-to-point in a random manner. To describe
this effect, one decomposes the dielectric constant
(e=n?) into its mean value and a small stochastic
component.

e(;'), t):eO+Ae(?, t). (2.1.1)
It is this quantity which enters into the basic elec-
tromagnetic equations. ¢ is usually a function of
altitude (h) only, and its gradient appears in certain
physical theories of turbulent irregularities. The

=
stochastic function Ae(r,t) is treated as a stationary,
zero-mean random process in space and time, and
is usually assumed to be spatially homogeneous and
isotropic. If brackets denote ensemble, space, or
time averages (which are equivalent for a statistically
stationary, homogeneous atmosphere) the first two
moments of Ae are:

(Ae(F, £))=0 (2.1.2)
(Ae(7, ) At R, 1)—=(ADC(R]).  (2.1.3)

The intensity of dielectric fluctuations (A¢?) is
measured experimentally [1, 2] as several parts in
1072, The space-correlation function C(R) falls
to 1/e in a distance of several hundred feet, which is
related to the scalelength /, of theirregularities. Little
attention has been paid to higher moments of Ae,
except to note that they are completely specified in
terms of C(R) if the Ae form a Gaussian random
process.

2.2. Space Correlation Models

The space-correlation function C'(R) is the funda-
mental characterization of the turbulence. First-
order propagation quantities depend upon integrals
of C(R), and one must assume an analytic model to
perform the relevant calculations. The correlation
must have the form

C(R)=f(R/[ly), (2.2.1)
where f(z) is the Fourier transform of a non-negative
function.  /; is called the scale length or average
size of the blobs in the hierarchy of decaying eddies.
The popular models for f(z) are plotted together in
figure 1.

1. Bessel: f(x)=zK,(x)

This correlation model was devised to predict:
(a) The observed linear-wavelength dependence of
average power for tropospheric scatter propagation;
and (b) certain features of line-of-sight propagation
experiments. It has zero slope at the origin, and
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Ficure 1.—Plot of four common space correlation models for
isotropic atmospheric vrregularities.

is suggested by the theory of turbulent mixing-in-
gradient.
2. FExponential: f(x)=e™*

This function has been widely used to study scatter
propagation. However, its cusplike behavicr (finite
slope) at the origin implies infinite values for angle-of-
arrival errors and other phase-derivative processes.
The exponential model is possibly suggested by the
physical theory of turbulent pressure fluctuations.

3. Gaussian: f(z)= e

This is widely used for line-of-sight calculations
because it can be integrated easily. It does not
predict the results of tropospheric scatter experiments
adequately and apparently has no foundation in
physical theories of turbulence.

4. Cauchy: f(x)=[14+2%"2

This model has been used for line-of-sight ray
theory calculations, but is not founded in physical
theories of turbulent irregularities.

It should be emphasized that any correlation function
is only a model of the atmospheric irregularities, and
must be carefully evaluated in terms of its ability to
predict the results of experiments.

It is possible to generalize the foregoing to include
anisotropic and inhomogeneous turbulent structures.
Anisotropic irregularities can be described by intro-
ducing different scale lengths in orthogonal direc-

tions, viz,
2 2 22 1/2
cw=1(5+htz]")
z v z

and such effects ave apparently relevant in the
troposphere.

Refractometer experiments show that the intensity
of dielectric fluctuations decreases with altitude [1].
One can describe an inhomogeneous field of this sort
with a height-dependent (Ae?) in eq (2.1.3), so long
as the intensity does not change significantly in the
several scale lengths [, required for the (space)
averages.

(2.2.2)

206



A more difficult problem is encountered with the
assumption of stationarity. There now seems to be
experimental evidence [3] that the dielectric varia-
tions either: (1) do not form a stationary process; or
(2) that there is a great deal of power in the low-
frequency part of the spectrum of Ae, which appears
as trend when viewed over a short span of time or
space. Both explanations are probably partially
correct, with a rapidly fading stationary process
superimposed on long-period (diurnal, seasonal)
harmonic components. Unfortunately, there is no
adequate theory of nonstationary processes available
to deseribe such effects.

2.3. Turbulence Spectrum Method

An equivalent characterization of a turbulent
medium is given by the spectrum of irregularities

>
S(k) [4, 5], which is the Fourier decomposition of
the space correlation function,
- M =)
(Ae?) O (R)=5= | &®ke=*ES(k). (2.3.1)
8

This representation has the advantge of exhibiting
an explicit R-dependence for the correlation without
committing the study to a particular turbulence model.
Propagation calculations can be performed on the

- >
generic term exp [—k-F] by reversing the orders
of integration. The physics of the atmospheric
irregularities re-enters the problem eventually in the

=
spectrum S(&), which must be introduced to com-

plete the wavenumber (k) integration. If the
. . . . g -
medium is isotropic, S(k) depends only on |k|, and
the space correlation becomes:
: 1 (" sin kR
2 YO\ — Y/ 9 9«
(Ae)( (/xp?—réjﬂ akkS@E) 2 (@.32)
The mean square fluctuation at a point,
o 1 " 2
(Aeh=5 JO RS (k) (2.3.3)

indicates that the spectrum represents the ability of
each blob-size group (wavenumber range) to produce
irregularities.

Equation (2.3.1) may be inverted to establish the
spectrum which corresponds to each of the correla-
tion functions discussed earlier. Table 1 indicates

TasrLe 1. Correspondence of turbulence spectrum and space cor-
relation functions for several models of atmospheric irreqularities

Bessel Exponential Gaussian % Cauchy
Space R R . R27]-2
correlation | — K, (—) e~R/L, e“’fz/lg 14—
C (R) by ly &
—kzlg
Turbulence (Ae2)i3 (Ae2)i3 =
spectrum | 6x2 — 20 _ 7€V | 13/2(aeyBe 4 2(a €2\ 3e— ko
PS iy T [1+kzlg]5/2 T [1+k21312 T < e2)lje T < € )luc

)
the spectra for the Bessel, Exponential, Gaussian
and Cauchy models. The small 2 behavior of the
correlation is determined by the large & range of the
spectrum and vice versa.

2.4. Physical Theories of Dielectric Irregularities

The index of refraction in the (nonionized) tropo-
sphere and stratosphere is independent of radio-
frequency from 10 to 10,000 Mec. Variations of the
refractive index from unity are measured as several
hundred parts per million, and are related to standard
meteorological parameters by the empirical formula:

n—1=— "7(3£+';"';105f1}»10“6 (2.4.1)
(] == s ,[, 53 (G T2 Ve o

where
T = air temperature is degrees Kelvin (absolute),
P = total air pressure in millibars, and

e =

partial water-vapor pressure in millibars.

Dielectric variations (e=n?) are thus related to tem-
perature, pressure and water-vapor fluctuations by

e

70
[4AT <77.G ;;2—{—7.46 i

Ae=2 10-¢ (2.4.2)
77.6 3.73 10°
+A[’ <‘—f,9>+ Ae <if’;” 0.)
L 1 1%

Diclectric variations in the lower troposphere are
governed principally by water-vapor irregularities,
and one is dealing with the irregularities established
in a passive scalar by turbulent movements of the
random atmospheric velocity field. This process is
characterized by the turbulent mixing theories de-
seribed below.

In the stratosphere there is a negligible amount
of water vapor, and dielectric variations are produced
almost exclusively by thermodynamic fluctuations:
AT and AP. The primary mechanism for producing
irregularities in the stratosphere is also probably
turbulent mixing by rotating eddies. However, one
must now recognize thermodynamic expansion (per-
haps adiabatic [6]) of the gas as the eddies transfer
parcels of air between different altitude levels, cor-
responding to different ambient temperatures and
pressures. This expansion correction is not domi-
nant in the lower troposphere, but probably plays
a central role in the propagation of scatter signals
to distances greater than 700 km by common volume
elements in the stratosphere [6].

The spectrum method makes direct contact with
physical theories or turbulent irregularities which
predict S(k) in certain wavenumber ranges. These
theories identify three distinct ranges of the spec-
trum, as shown in figure 2.

1. 0<k<ky: The input or blob-creating range
corresponds to very large scale lengths, which are
probably anisotropic. The upper end, k, of this
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Ficure 2.—Typical spectrum of dielectric irregularities plotted
versus wavenumber, showing various turbulence ranges.

range is approximately the reciprocal of the correla-
tion or scale length [, discussed earlier, which is of
the order of 100 m in the troposphere. Since we do
not know (in detail) how turbulence is created from
a laminar flow, turbulence theories carefully avoid
this range. It is important to note that the spectra
listed in table 1 do make definite statements about
this range, so the large R behavior of the correspond-
ing correlation models must be regarded as extra-
polation or pure guesswork.

2. ky<k<ks: The inertial subrange is character-
ized by redistribution of the turbulent “energy”
toward higher wavenumbers and represents the
progressive subdivision of eddies in the turbulent
structure. Dimensional analysis can be used here
with considerable confidence. Tropospheric-scatter
propagation depends principally on this inertial
range.

3. ky<k< «: The dissipation range is character-
ized by a sharp drop in turbulent activity, due to the
destructive action of viscosity and diffusion. In the
troposphere, [;=Fk;' is of the order of millimeters.
We do not consider the dissipation range, since
aperture and recorder smoothing effectively elimi-
nate the contributions of such tiny blobs in the
troposphere.?

Three turbulence theories have been developed
which predict S(k) in the inertial range:

a. Pressure Fluctuations

Fluctuations of the velocity field induce pressure
variations according to Bernoulli’s law. If variation
of pressure, density, and water-vapor content are
related linearly, the spectrum of dielectric fluctua-
tions is given by [7],

N vo\* k&' o
S—(2) g >k (2.4.3)
where v, 1s the speed of the largest blobs and ¢ the

3 The dissipation is apparently quite important for ionospheric-scatter propa-
gation at vhf.

local speed of sound. Most writers now agree that
this mechanism is unimportant for the lower tropo-
sphere [8].

b. Obukhov’'s Mixing Theory

In this theory, an external source is imagined to
feed fluctuations into the spectrum at the largest size
(ko). Subsequent redistribution down the inertial
range is attributed to turbulent convection, for which
dimensional arguments give [9, 10, 11]

S(k) = (Ae) ]%q- (> ko). (2.4.4)

If the external source is identified only with the
mixing of a gradient by the largest blobs, the in-
tensity is given by

D . dég 2.
n__1.-2 (%
(A =k (dh> ;

which is supplied at the input wavenumber #k,.
Adiabatic expansions of the mixing eddies modify
the ambient gradient in the stratosphere [6].

(2.4.5)

c. Mixing-in-Gradient Theory

This approach considers an initial refractive-index
gradient and how it is changed by turbulent con-
vection at all wavenumbers. The rotating turbu-
lent eddies transfer parcels of water vapor from low
to high points on the profile and vice versa, and
establish irregular contrasts thereby. The mech-
anism for turbulent fluctuations appears explicitly in
this theory at all wavenumbers and no external
source 1s required. The inertial range is again
amenable to unambiguous dimensional arguments

8, 12].
_(day 1
S(k) ((//L) £’

and the result is independent of turbulent param-
eters, except for restrictions on its range of validity.
Adiabatic expansions of the eddies are again im-
portant in the stratosphere [6]. In the range
ke >ko, we see that this model agrees with the spec-
trum computed from the Bessel space-correlation
model indicated in table 1.

Both of the mixing theories predict that the
intensity of turbulent fluctuations should be pro-
portional to the local gradient of the inhomogeneous
mean profile. A good correlation between the
strength of scatter signals and the monthly mean
refractive gradient has been observed experimentally
on many paths [13]. Since strong scattered signals
are associated with large dielectric fluctuations,
this must be considered an important success for
the gradient-dependent mixing mechanisms. On
the other hand, observed absences of dielectric
irregularities at inversion layers and other stable
meteorological interfaces suggests that the mixing-
in-gradient models may not be applicable to very
sharp gradients.

(ke > ko) (2.4.6)
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2.5. Space-Time Correlations of Irregularities

The averaged product of two dielectric fluctua-
tions taken at different positions and times is of
considerable importance in studying the time vari-
ability of signal amplitude and phase for both line-
of-sight and beyond-the-horizon propagation.

(Ae(rB)Ac(rt RE+m)=(ADOR,7)  (2.5.1)

Temporal variations of Ae are associated with motion
of the carrier medium, and two distinet types of
atmospheric motion are important:

a. Drifting Convection

"
A prevailing wind with constant velocity U
would bear a frozen turbulent structure along intact

and would translate the entire structure a distance
-

{J 7 in a time 7. Since the atmosphere is assumed
to be homogeneous, this would be just the same as
measuring the space correlation between irregu-

5
larities separated by a distance of U/ 7 at the same
time.

b. Random Motion

The random motion associated with the con-
tinuous eddy-breakup process rearranges the tur-
bulent irregularities in time. This self-motion effect
is probably isotropic for small (k) scale irregularities.
The random motion would be apparent even if there
were no drift velocity, or if one rode along on the
prevailing winds.

The spectrum method is particularly well-suited
to describing the combined effect of these two
motions, in that their effects can be explicitly
separated in the integrand of the wavenumber
integral representation of the space-time correla-
tion [4, 14].

s

RS () et 00y (f, 1)
(2.5.2)

<Ae(7,t)Ae(}¥7f,t+7)>:gi—r§ '

For an isotropic spectrum of irregularities, this
becomes:

(Ae(mt)Ae(rt R 4+ 7))

R ——

SJL%ULD n(k,7).
|R+U~|

.
- f kS (k) (2.5.3)

The function n(k,r) describes the time autocorrela-
tion of fluctuations contained in a fixed wavenumber
interval £, and is unity for zero time displacement 7.
Dimensional turbulence arguments indicate that
n(k,7) should depend only on the product* Voki? k7
in the inertial subrange [15, 16], although no func-

tional dependence has yet been established. How-
ever, detailed studies of the turbulent velocity
field-time correlations over the entire spectrum
indicate that the coefficient of 7 varies from £*7 to
ke [17].

Convective motion is probably the dominant
effect for line-of-sight propagation, since eddy
speeds Vi are usually much less than the prevailing
wind speed (/. However, scatter propagation
geometry diseriminates against a horizontal drift
velocity at the path midpoint and Doppler shifts
introduced by the random motion can dominate.

3. Line-of-Sight Propagation
3.1. Introduction

Phase and amplitude instability on line-of-sight
propagation paths is important in practice because
of the limitations it imposes on interferometric track-
ing schemes and frequency synchronization opera-
tions. Before launching into detailed discussions of
problems; it is well to examine the two principal geo-
metrical situations shown in figure 3. These prob-
lems are idealized by omission of ground reflections,
which are ignored since they do not contribute scin-
tillations unless moving foliage or water surfaces are
a major factor.

Primary Field
————Scattered Field Ray Path

Fiaure 3.—Typical ray paths for idealized line-of-sight prob-
lems: (a) Relay link immersed in an infinite turbulent me-
dium, and (b) radio star viewed vertically through a turbulent
mantel.

a. Relay Link Problem

Receiver and transmitter are both immersed in an
infinite turbulent region a distance L apart. The
transmitter emits spherical waves and the receiver is
also assumed to be omnidirectional.

b. Radio Star Problem

Plane waves are assumed to fall on a semi-infinite
turbulent medium with the receiver located a dis-
tance L below the upper boundary. The turbulence
may be graduated toward its upper boundary by

4 Vo and ko are the speed and wavenumber at the input stage of the turbulent
velocity spectrum.
i Since the turbulent velocity field itself is a (small) partition of the kinetic

energy in the laminar (drift) field.
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using an inhomogeneous turbulence intensity (A€*(r)).

It is significant that the receiver always stands in
the (tropospheric) turbulent medium for line-of-sight
propagation, and blobs which are just on top of the
receiver play an important role.

3.2. Signal Statistics and Vector Voltage Diagrams

The typical ray-path trajectories shown in figure 3
indicate that the field which falls on the receiver is
composed of two terms: (a) The unperturbed primary
field £, propagated along the line-of-sight, and (b)
the incoherent superposition of waves scattered to
the receiver by all volume elements in the scattering
region V. The primary field induces a constant
voltage A, in the receiver, which serves as a con-
venient phase reference. Because of the randomly
varying multipath combinations, the total scattered
wave induces statistical signal components z({) and
y(t) which are in and out-of-phase with respect to
the constant vector A,, as shown in the vector volt-
age diagrams of figure 4. Experiments measure the
comp0s1to amplitude A and the relative phase excur-
sions a about the phase reference A,. A typical
phase record is shown in figure 4, together with the
vector voltage diagrams appropria,te to two displaced
times #; and ¢,.

X, R2

Yy Yo

] apl

Ao A,

Fraure 4.—Typical phase record of randomly-varying line-of-
sight signal showing the corresponding time-displaced vector
voltage diagrams for a constant signal plus noise.

The basic statistical problem is to estimate the
probability distributions for amplitude A and phase
a, and from these the relevant statistical estimates
of the randomly varying quantities. Since the orthog-
onal signal components z(t) and y(t) are induced by
the scattering contributions from many independent
blobs, they may be characterized by a Gaussian dis-
tribution according to the Central Limit Theorem.

z?  y* 2pay
dedy 1 o2 ¢l a0,
Zroo, I—p? P L~ 2(1—p)

(3.1.1)

Plz,yldzdy =

The moment parameters,

(@¥)=03, <?/2>— i <1y>*0'z‘7yp

should be determined from explicit propagation cal-
culations.  Previous statistical discussions have
assumed,

oi=02=d? and p=0, (3.1.2)
in order to simplify the analysis. We should like to
point out, however, that such assumptions are not
in agreement with available propagation calculations,
which suggest rather that

o;+os=constant, p finite. (3.1.3)
A new effort on the statistical problem is required for
propagation work.

For present purposes, we simply review available
results derived on the assumptions (3.1.2). If the
(A4,) displaced cylindrical coordinates of figure 4 are
inserted into eq (3.1.1), the joint amplitude-phase
distribution becomes:

AdAda
ex

271a?

P(A,0)d Ada=

2 2__ 2
_{A + A2 22;;1[10 cos a} (3.1.4)

The distribution of total voltage amplitudes A
was established by Rice [18] from (3.1.4) by inte-
grating the phase « from —= to .

AA)\ | [AT+ 43
<—02—>exp-—|:— 252 :I (315)

From this expression one can calculate the ampli-
tude moments.

+(32)5 (32)] @r

(D= A2 420

P(A)(ZAzAZA

and
(3.1.7)

The probability that the amplitude exceeds a pre-
scribed level @ is obtained by integrating (3.1.5)
from @ to «=. Numerical tables of this probability
have been prepared [19] and are reproduced on
Rayleigh graph paper in figure 5. The addition of a
constant vector evidently increases the average signal
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Fraure 5.—Probability that the total amplitude exceeds a given
level, measured relative to the amplitude of the constant veclor
Ay, from [19].

level distribution, but reduces the range of amplitude
fading relative to A,.

The distribution of phase 1s derived from eq
(3.1.4) by integrating over all values of the ampli-
tude A [20].

da _ 425 A
P(a)da=— ¢ /%" < 14+ /=2 cos a ¢ A cos’ a/2?
2 2 ¢

Ay cos a
Ll+mf< 2e ]} (3.1.8)
a

This distribution is plotted in figure 6 and indicates
that the phase is evenly distributed when the con-
stant vector A, is very small compared with the
rms multipath-scatter vector amplitude y20. When
the constant vector is relatively large, Bremmer [20]
proves that the phase is distributed about zero in a

Gaussian manner,
( )a , (3.1.9)

Norton et al. [21] have also calculated the probability
that the phase exceeds a given angle for various
values of Ag/y/20. The first and second moments of
phase deviations have been evaluated numerically
[22] using the result (3.1.8), and are reproduced in
ficure 7 as functions of 24%/A3.

lim P(a)—
<< Ao

—1 EhgD—
oy & 2

=
13
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a, DEGREES 180
Frcure Distribution of phase variations about the reference

1'0[1(1_(/() 10 for line-of-sight propagation for various ratios of
the steady signal to noise power.

=

~_RMS PHASE J<a®> ——.
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202
-A—Z RATIO OF NOISE TO STEADY SIGNAL POWFR
0

Ficure 7.—Average phase variation and rool mean square
phase variations about constant references vollage Ay as func-
tions of the amplitude ratio of signal-to-noise, from [22].

Bremmer [20] has considered the probability dis-
tribution for time-displaced amplitudes (4,, A,) and
phases (a;, ay) corresponding to figure 4. His de-
velopment is based on special assumptions (see sec.
4.1.) for the time correlation between x(f) and y(¢),
but is quite interesting in that he establishes phase
and phase-rate distributions for the same instant
by manipulation of the probability density for time-
displaced phases.
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3.3. Electromagnetic Scattering by Irregularities

The stochastic dielectric constant (2.1.1) enters
electromagnetic theory through the relation between
the electric vector and displacement vector.

i

D:[emtmé’,t)] E. 3.2.1)

When the magnetic field is eliminated from Max-
well’s equations, the electric vector is found to
satisfy [23],

Vzljj—léi [eé]:'—; 4 l_;] —V)e] (3.2.2)
c? ot? € -

=

Time derivatives here operate principally on £, since

the field oscillates much more rapidly than the
=

medium. The vector components of /£ are mixed
in the right-hand term and give rise to depolarization
effects. 'The magnitude of this term is small for line-
of-sight microwave propagation and is usually
omitted. (See, however, references [24] and [25].)
With a harmonic time dependence (k;=w/c=2m/N),
one finds

[VEk2 (eo+-Ae) | E—0, (3.2.3)

which is the basic propagation equation.
It is not possible to solve (3.2.3) exactly, since

=
Ae(r,t) is an unknown (stochastic) funetion of posi-
tion. The Born approximation is widely used to
describe single scattering by such fluctuations. This
is essentially a three-dimensional iterative solution
of the wave equation, which gives the total field in

> -
terms of the unperturbed wave Ey(r) as

> - - >
E(R)=Ey()— k2f ErG(R, 7) Ae(r, 1) Eo(r) sinx
Vv
(3.2.4)
where V is the volume of irregularities illuminated
by both the transmitter and receiver, X is the angle

-
between £, and the Poynting vector of the reradiated
wave (see fig. 21) and 1s nearly 90 degrees for line-of-

- o
sight propagation. G(R, r) is the free-space spherical
Greens funcuon connecting the scattering point

r and receiver R

-> - eikfl-l;-?l
G(R,rH—=———— (8:2:5)
47| R—r|

The first term in (3.2.4) represents the trans-
mitted wave and the integral expression is the scat-
tered wave. The total field induces voltage com-
ponents in the receiver, as shown in figure 4. The
primary field £, sets the phase reference A,. The

integral term gives rise to the in- and out-of-phase
random signal components x(f) and (f), corre-
sponding to the real and imaginary parts of the
integral term in (3.2.4) respectively. The receiver
measures the total voltage A and its phase a. It is
inherent in the Born approximation that £, must
be small compared with the mean signal Fi, so that
instantaneous fluctuations of the total amplitude
and phase are (consistently) approximated by:

BA(t)zx(t):k}f Erae(r, t) Re {G(R, NEy") ],
(3.2.6)

at)~HD k?:f Frdert) Tm {G(R7) Folr) ) -
¢ Ey(R)YY
(3.2.7)

The variances of phase and amplitude fluctuations
thus depend upon six-fold integrals of the space
correlation function (2.1.3)

It is common practice to use the geometrical
optics approximaticn to describe line-of-sight propa-
gation. This is equivalent to a one-dimensional
(WKB) solution of the wave eq (3.2.3), which recog-
nizes only the random speeding-up and slowing-
down of the wave as it propagates along the ray
path (s). The phase of the vector voltage diagram
in figure 4 is given directly by this method,

T L
o f Jehelct) (3.2.8)
o

and is to be computed along the nominal (recti-
linear) ray path s. This expression is always a good
approximation to the volume integral (3.2.7), and
it 1s generally used to study phase variations because
of its simplicity. Geometrical optics also predicts
amplitude variations of the received signal. These
are due physically to bunching and diverging of the
energy-bearing rays by random refractive bending;

0A A
A, 2_7rf 012+ :I

where a 1s given by expression (3.2.8). This expres-
sion is usually not a good approximation to the more
precise wave theory result (3.2.6).

The geometrical optics approximation is a special
case of the single scattering wave theory of eq (3.2.4)
(4, 5, 26]. To understand this correspondence, note
that the scale length of the irregularities [, is ordin-
arily much larger than the wavelength of the radia-
tion. The blobs act like very shallow lenses and
project almost all of the scattered radiation in a
cone of angular opening N/, about the line-of-sight.
The effective scattering volume over a path length
L, therefore, has a maximum width L\//, as shown in
figure 8. If this width is much less than the average
blob size, the scattering volume consists of eylindrical
plugs “cored” from successive blobs as in figure 8a.
The propagation is then substantially one dimensional

(3.2.9)
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Ficure 8. Pictorial representation of the effective scatter volume
for line-of-sight radio star problem: (a) Fresnel scaltering,
and (b) Fraunhofer scattering.

and random variation of the phase speed of the wave
is the measured effect. This corresponds to Fresnel
scattering and is correctly treated by geometrical or
ray optics. The opposite extreme occurs when
L\/xly > >1y; the receiver sees many whole blobs as
in {igure 8b. 'The problem is then necessarily three
dimensional and requires the wave solution (3.2.4),
corresponding to Fraunhofer scattering. The scatter-
ing parameter

=222 (3.2.10)

is evidently the important variable in these dis-
criminations. One finds that the wave theory expres-
sions (3.2.6) and (3.2.7) reduce exactly to the geomet-
rical optical results (3.2.9) and (3.2.8) if v is less than
unity. If v is greater than (or near) unity, how-
ever, one must use the full-wave theory to compute
amplitude scintillations.

The single-scattering approximation (3.2.4) breaks
down at large distances L and/or high frequencies,
since the convergence of the Born series is related
to the smallness of the mean square phase expres-
sion [5],

L,
XZ

<> =rllAé> (3.2.11)

As the wave progresses deeper into the turbulence,
scattering out of the main beam gradually dissipates
the primary signal 4, in figure 4 and one is left only
with the correspondingly increased random field
E,. The method of Rytov [27] has been used to
describe this “phase creep” zone, where the amplitude
and phase fluctuations are not small.

= > k.fgﬂ ' > = = . =
E(R)=Eo(R)exp—| —12. J{l“/’(}(lu’,l‘)Ae(r,t)EO(r)
Ey(R)
(3.2.12)

This expression reduces to (3.2.4) in the limit of
small signal variations, but it is not clear how this
method accounts for multiple scatterings. It is

significant that the integral term in the exponent of
Rytov’s expression is identical to the first Born term
in eq (3.2.4). Diflicult propagation calculations of
the real and imaginary parts of this integral term
computed for single scattering theory can thus be
used in calculations based on (3.2.12), once the
appropriate signal-statistical description is estab-
lished.

Feinstein [28] used the Kirchhoff-Huygens approxi-
mation to study propagation of scalar waves through
a succession of uncorrelated random slabs. His use
of the second order phase approximation is equivalent
to tracing the phase front along various ray paths,
or neglecting diffraction over the slab thickness.
The result can be expressed as a power series in
< Ae > the first term of which is the geometrical-
optics approximation.

3.4. Propagation Calculations Based on Geometri-
cal Optics

The foregoing discussion presented general expres-
sions for the phase and amplitude scintillations of
waves which are propagated through random media.
To compare theory and experiment, it is neces-
sary to combine these propagation expressions with
the descriptions of turbulent media given in part
[I. The results depend both on the propagation
geometry and the model chosen to represent the
irregularities.

The calculation of phase variations is usually based
on the geometrical optics approximation. The
rariance of phase fluctuations < a?> about the
constant reference vector A, can be computed by
simply squaring and averaging the integral expres-
sion (3.2.8). Using any of the correlation models
described in section 2.2 gives the following simple
result,

Lot >=qrr<lAe> =Y (3.3.1)

where L is the line-of-sight path length and X\ the
wavelength of the radiation employed. ¢ is a con-
stant of order unity which has been evaluated for
each of the four correlation models. References to
such detailed calculations are summarized in table 2,
together with references to other phase and angle-of-
arrival quantities. The reader should consult these
references for specific results.

The wavelength dependence of expression (3. 3. 1)
has been confirmed experimentally by simultaneous
measurements [33, 34] of phase shifts on three fre-
quencies, 100, 1,000, and 10,000 Mec, on line-of-sight
paths to mountain tops. The path length (L) de-
pendence is difficult to check experimentally, since
paths of different lengths are apt to go through
regions of the troposphere which do not have the
same level of turbulent activity. Attempts to corre-
late phase variations with airborne and ground-based
refractometer measurements of < Ae? > and /, in the
propagation paths have been moderately successful
3, 30].

Such results are conveniently summarized with the
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TABLE 2. References for line-of-sight calculations of phase and
amplitude fluctuations using geometrical optics for four space
correlation models of the irreqularities

Space
correlation | Bessel #K;(¢) | Exponential | Gaussian Cauchy

Calculated \, model e r er? [14-+2]2
quantity
Mean square phase_____ 30 29, 30 29, 30 29, 30
Finite path corrections

to<a?>. . _____ 30 30 30 30
Aperature smoothing

corrections to <a?>_. 31 31 F23 1 D,
Finite data sample cor-

TOCLIONEION T a:l P> | NN I | NS | SN
Parallel path space cor-

TRl L O e | S e 29 29 29
Rotated path space

correlation___________ 30 29 29 29
Time correlation of

phase..______________ 30 29, 30 29, 30 29, 30
Power spectrum  of

phase._______________ 30 29, 30 29, 30 29, 30
Phase fading rate_______ 30 Diverges 32 32
Number of phase max-

ima__________________ Diverges Diverges |-e-oceooooo|ocoooaooo
Mean square angle-of-

arrhy o] SN S Diverges 29 29
Time correlation of an-

gle-of-arrival . _____ | _______________ 29 29 29
Spectrum of angle-of-

ArrivAl NS SRR AR 29 29 29
Mean square ampli-

tude variance_ . ______ Diverges Diverges |-cccoococooo|ocmccaeees

spectrum method, suggested in section 2.3, where a
model choice is delayed until after the propagation
calculations have been performed. In terms of the
blob-size spectrum S(k), the mean square phase
fluctuation becomes [4]:

<at>=TL fo " dkkS(R), (3.3.2)

which exhibits directly the dependence of the meas-
ured (<a?>) on the controlled variables L and .
The spectrum method is particularly advantageous
when computing corrections to this expression due to
aperature smoothing, finite data sample lengths (7
and finite propagation path lengths (ZL). These
effects can be analyzed exactly within the framework
of geometrical optics, and produce appropriate fac-
tors in the wavenumber integration which filter the
spectrum S(k) preferentially. Analyzing the indi-
vidual effects separately and multiplying them
serially one finds [4].

<a>=TE fo " dkkS (k) [Q—J}C@T

2 . 1—cos (kL)

o [T J U T)
X[l.—m ECRAORS: _/WT—:I (3.3.3)

This composite spectrum filtering is illustrated in
figure 9. The first factor accounts for the masking
of small blob (large wavenumber) contributions to
<a?> due to smoothing by a receiving aerial of

S(k)

—S(k)

—Filter Factors

Ficure 9. Typical spectrum showing preferential fillering
factors: (1) finite path length, (2) finite data sample length, and
(8) aperture smoothing corrections.

radius @. The second factor describes finite path
length correlations, and indicates that blobs larger
than the total path length Z cannot contribute
effectively to signal fluctuations. The last factor
describes the effect of a finite data sample length 7’
in suppressing very low-frequency scintillations,
assuming that they are due only to a convective
speed U. This predicts that the rms phase variation
should increase with sample length 7', which is
observed experimentally [3]; although nonstationary
trends could give the same result. References to
explicit calculations of the individual effects for
various spectral models (i.e., correlation functions)
are given in table 2.

The space correlation between phase variations
measured on adjacent propagation paths has been
calculated for a variety of turbulence models (see
table 2) for both the rotated line-of-sight and
parallel path configurations indicated in figure 10.

a b

Frcure 10. Geomelry for space correlation of phase experiments:
(a) Rotated paths with common transmilter and (b) parallel
rays from sowrce of infinity.
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The spectrum method summarizes these results in
succinet form [4].
Parallel rays:

<la(z)a(z+D) >=
- Rotated rays:

La(p)a(o+0)>

z 4 fwdkkS(k)Jo(kD), (3.3.4)
o

-k f ARES (k) -2 f S,
(3.3.5)

These filter factors essentially eliminate the con-
tribution of small blobs (large wavenumbers), which
are not large enough to affect both paths simul-
taneously.

It is found that the Bessel model gives good
agreement with spaced receiver experiments [33,30]
for small baseline distances. At very large separa-
tions, however, the experimental correlation falls
more slowly than the theory predicts. This is
tentatively ascribed to lack of spatial homogeneity
and/or temporal stationarity. Since the correlation
at great distances is due to the joint influence of very
large blobs on the two propagation paths, the phase
correlation should depend on the large R behavior
of C(R), which is not tied to physical theories, as
noted in section 2.4.

The random variation of single path phase records
with time is due to the action of drifting convection
and turbulent self motion. The space-time correla-
tion of dielectric fluctuations (2.5.3) permits one
to calculate the time correlation of phase records
quite generally for an arbitrary spectrum. If the
convective wind blows normal to the propagation
path [4],

<la(t)alt+7)>

:’%L AkeS (B Jo kU xlnlle, ). (3.3.6)
The effect of self-motion is usually discarded (i.e.,
n=1), since the turbulent speed (V;) is much less
than the drift speed U.

The experimental data on phase scintillations is
usually expressed in terms of frequency spectra of
the phase records. For drift motion alone [5],

_ dkksS (k)
WD =g Joet 77— Gmpy 17
U

(3.3.7)

The mixing-in-gradient model (2.4.6) predicts that
the frequency spectrum W(f) should vary as f™
while the Obukhov model (2.4.4) predicts an
f727 variation. The most recent data [3] indicates
a frequency variation of f72-% from 1 cycle per hour
to 10 cps for very low-level paths. This data argues
strongly for the Obukhov Mixing Theory, unless
self-motion effects play a dominant role.

The average number of mean (zero) crossings and
maxima can be expressed in terms of ratios of mo-

ments of the frequency spectrum W(f), which in
turn can be related to moments of the turbulent
spectrum S(k)[4]. Filter factors at the high-wave-
number end, such as that provided by aperture
smoothing, are especially important if such results
are to be compared with experimental data.
Tracking devices which measure bearing angles
ordinarily measure the normal to the instantaneous
phase front by interferometric means. Angle-of-
arrival errors are thus related to the space coherence
(correlation) of phase scintillations along this phase
front. The mean square angle of arrival is given by

4]

<502>=1£’ " kPSR, (3.3.8)

and has been evaluated explicitly in the references
of table 2. The autocorrelation of 66(¢f) and the
corresponding frequency spectrum have also been
discussed in general [4] and specific terms [29].

Amplitude fluctuations have not received as much
attention as phase (see however, ref [36] and [37])
since 6A4/A; must be small compared with (&)ems
for the geometrical optics expression (3.2.9) to
be valid. In terms of the spectrum, the percentile
amplitude fluctuation is given by

4 ]M\ dere J: AkISS (), (3.3.9)

which depends critically on the behavior of the cor-
relation model near the origin (i. e., k= ). Only
the Gaussian and Cauchy ‘correlation models pre-
dict finite results, viz,

/’_
\|4

(3.3.10)

3
=g(A¢) ]—;
3

where ¢ is a constant of order unity. This distance
variation and absence of a frequency dependence
does not agree with most experiments [33, 38], so
one must seek a more satisfactory solution in the
wave theories.

3.5. Propagation Calculations Based on Wave
Theory

When the scattering process is necessarily three-
dimensional in the sense of figure 8, one must use
the Born expressions (3.2.6) and (3.2.7) for line-of-
sicht amplitude and phase. The variance of phase
and amplitude depend upon six-fold integrals of the
space correlation function (2.1.3). Such calcula-
tions have been performed primarily with the
Gaussian function, which has important analytical-
simplification properties, although even then one
must exploit approximations.

The spectrum method has simplified the evalua-
tion of these wave theory expressions enormously.
Using the method described previously [4], one
can establish the following general expressions for
the radio-star problem:
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where the fundamental scattering filter functions are
defined by

>, (3.4.1)

g 1 ;

The corresponding filter factors in the spectral inte-
grals of (3.4.1) are plotted together in figure 11.

(3.4.3)

I
0.8 \
1-®(x)
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d(x)
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SCATTERING PARAMETER, x= >

Fireure 11. Fundamental scallering filter factors for wave
theory treatments of line-of-sight propagation.

These functions depend upon the scattering param-
eter y=k2L\ for each blob-size group in the dis-
tribution described by S(k). Those blobs in S(k)
which scatter in the Fraunhofer zone (y>>1)
produce equal phase and amplitude variations, each
one-half as great as the ray theory result (3 D)
The Fresnel regime (y<1) gives the geometrical
optics phase result (3.3.2) directly. Using the

2
small argument behavior <I>(x)~——; the geometrical

optics result for amplitude ﬂuctuatlons (3.3.9) 1s
regained.

Explicit expressions for the phase and amplitude
correlations can be established by introducing a
particular spectrum model from table 1 into (3.4.1)
and performing the single remaining wavenumber
integration. Barrows [35] has evaluated these in-
tegrals for the Exponential, Gaussian, and Bessel
models, and finds

()= 27r2<A62>110 (

(&7

oA Ly
< A/ G(

2mwl?

2\ _2r*<A€> Lo [l—F( N ):I

o 2wl

o 12> (3.4.4)

where the scattering parameter-dependent functions
have approximately the same form as the filtering
functions ®(x) and ®(z). The results obtained in
this way are substantially the same as those ob-
tained by Fannin [42], Mintzer [6], Obukhov [39],
and Chernov [40] by the more laborious direct
calculation of six-fold “volume integrals. Since their
results differ in details of propagation geometry,
space correlation models, and scattering theory,
we have constructed table 3 to summarize the
essential assumptions and results of each paper.
The derivation of expressions (3.4.1) given in
reference [4] does not lend itself to calculating space
and time correlation effects. A new method was
devised which combines the integral expressions

(3.2.6) and (3.2.7) with the original representation

TaBLE 3. Ezxplicit calculations of phase and amplitude fluctuation quantities using three dimensional wave theory
Ampli- Phase- Space Time
Author Refer: Scattering theory | Propagation model | Space correlation Phase tude ampli- | correla- | correla- | Others
ence mode. variation | variance | tude cor- tion tion
relation
Obukhov_____________..____ 39 | Rytov__________ -| Radio star_ v v
Chernov. _ 40 |- [+ S I do_ ... v v v v
Tatarski-__ A1 A _do_ v
Mintzer.. - 6 | Born.___ Relay link v v v
Fannin____ 42 | Ao | do v v v v
Ellison_.._ 26 |----- do._ Radio star_ v v
Wheelon _ - 28 |----- do__ do_ v v v
Barrows______._____________ 35 |--—-- (0N | S dosSuREiia o v v v
Wheelon___________________ ) . do____________ L S v v




(2.3.1) of the space correlation function, rather than
the specialized form of eq (2.3.2). For example,

(o) =k J'dem[a(ff,}’) By fvdﬁlr'lm[GJf,?')Eo(?')]
1 o
o f S )

—_é% f kS (k) l f Frer Im [GR. Ey)] |
(3.4.5)

Barrows [35] has found that the volume integral
can be evaluated rigorously for either the radio star
or relay link problem. In principle one can include
the influence of ground reflections indicated in figure
12, by simply redefining the Green’s function G(R,r)
and incident field £y(r) in eq (3.4.5) to satisfy the
boundary conditions at the earth’s surface. This
can be accomplished analytically for a perfectly
conducting earth by simply adding image sources
and image scattering blobs to represent the ground-
bounce paths.

YIE SN IE I WS Z U 2 EWZNEINE W= (112 4 ZpZ 0= 20 Ve EELEA

b a

Ficure 12. Typical ray paths for line-of-sight propagation
including ground reflected effects: (a) Relay link & (b) radio
star problems.

The new representation (3.4.5) is well adapted to
describing time autocorrelations of the phase. Using
the space-time correlation spectral representation
(2.5.2), we find

<a<t>a<t+r>>:f¢ J'dSkS(k)n(k,T)e-?k-E’f

x‘ f &revt Tm [G(R.) Ey(r)] ]2 (3.4.6)

which uses precisely the same geometrical propaga-
tion integrals required for the phase variance calcula-
tion in (3.4.5). Space correlations follow directly

=
if one replaces the drift displacement Ur with the

=
receiver separation ), providing the appropriate dis-
placed coordinate system indicated by figure 13 is
employed. If the wavenumber integration is per-
formed in polar coordinates, it is found that the
geometrical integrals do mnot depend on the (k)
azimuth angle, and therefore,
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Fiaure 13. Coordinates for calculation of phase correlation
between adjacent receivers.
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x‘ J &re* Im [G(R, r)[L’O(r)]} . (3.4.7)
Vv

The effect of aperture smoothing with a circular
parabolic dish of radius @ can be evaluated by the
same integration technique used with the less ac-
curate geometrical opties solution [4, 31].

=[5 ﬂdm(a) )

4 po oy ’ < )
ik, |, awkes ) [ dosin o[ 2L
0

167 ),  kasin 6

X‘ J dre* Tm [G(R, 1) Eo(r)]| (3.4.8)
|4 |

Even the difficult question of polarization dependence
can be discussed conveniently in this framework, if
a tensor Green’s function is used in the Born ap-
proximation [24, 25]. In this way one can build up
theoretical estimates of considerable interest to
measurement programs. The method keeps the
geometrical and turbulence problems separated until
the last possible step, so as to allow each to develop
as fully as possible.

3.6. Physical Interpretation of Scattering

It is valuable to pause briefly to re-examine the
mathematical expressions (3.2.4) introduced by the
Born approximation. Figure 14a indicates a typical
singly-scattered ray trajectory for the radio-star
problem. The scattered ray path concept may be
identified with terms in the integrand of (3.2.4).

- >
The incident plane wave Fy(r) propagates recti-
linearly to the scattering volume element d*». The

e
dielectric fluctuations Ae(r,t) scatters a small fraction



a
SINGLE SCATTERING

b
DOUBLE SCATTERING

Ficure 14. Ray paths for single and double scattering of
plane wave by a semi-infinite region.

- >

of the wave Fy(r) in all directions. (This reradiation
is strongly concentrated in the forward direction,
since the refractive variations act like very weak,
overlapping lenses with radii of curvature /, much
larger than the radiation wave length \). A portion
of the scattered energy is propogated along the line

-

e
connecting the receiver R and scatterer r. The
propagation of this component is described by the
Green’s function (3.2.5), which characterizes the
spherical expansion of the (unit) scattered wave.
The total scattered field is simply the summation
of all such multipath contributions, as given by the
integration (3.2.4). These scattered waves are out

i
of phase with respect to the primary signal £ pro-
pagated along the line-of-sight, in virtue of their longer
path lengths. Random fluctuations of the strength
of these scattered components (i.e., Ae) give rise to
the characteristic fading suggested by figure 4.

The typical ray path for double scattering pro-
cesses indicated in figure 14b can be compared with
the second Born approximation

E(B)=Ey(R)—k f BrG(R, P Ae(r ) Bo(r)
|4
Y f &r f & G(R, DA, )G, )
174 v

Ae(r ,£) Ey(r") (3.5.1)

The double integral term has the following meaning:
-

an incident wave f£,(r) falling on the first scattering
-
element %’ is scattered by Ae(r’,t), and reradiated
-

- - -
to 7 by G(r,r’). The second element Ae(r,?) scatters
the wave again and reradiates the result to the

- -
receiver via G(£,r). The double integration simply
sums the contributions over all possible pairs of
scattering elements.

This tracing of rays between scattering events is
similar to Feynman’s diagramatic technique for
describing the space-time history of particles in
Quantum Electrodynamics [43]. In treating the di-
electric fluctuations Ae as a sequence of scattering
events, however, one must give up the concept of a
continuously refracting medium. Phase fluctuations
are no longer regarded as the result of random
changes in the velocity of propagation along the
line-of-sight path. Rather, phase instability is looked
upon as the random composition of many multipath
components with the primary signal (see ref [44]).

Our description has been something less than
accurate thus far in that expansions like (3.5.1)

>

imply more power at the observation point R than
would have appeared in the absence of refractive
fluctuations |Fy>. We have evidently overlooked
scattering out of the primary beam on the line-of-
sicht ray path to the receiver. A scattering event
robs the beam of some energy at each point along
this path. Such losses are just compensated by
energy which is projected back into the receiver by
off-axis blobs. Inspection of figure 15 shows that
for each point to which the line point scatters energy
out of the beam, there is a corresponding point on
the wave normal which projects an equal amount of
energy back into the receiver at the same angle.
If the receiver is isotropie, the two effects just cancel.

Fraure 15.  Singly-scattered ray paths for radio star problem
indicating power balance between scallering losses out of the
beam and projection of energy into the receiwver by off-axis
blobs.

Energy can re-enter the primary ray only by a
double scattering process, which changes its direction
back to the original line-of-sight. This means that
the power balance must be maintained at each level
of iteration, and is related to the unitary relation-
ships which must hold between the various terms in
the Born series. It is important to observe that
such conservation cannot be demanded of the fluctuat-
ing field strength, but only of the averaged power.
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4. Scatter Propagation

The transmission of telephonic and even television
signals well beyond the optical horizon at UHF fre-
quencies is such an important component of world-
wide communications today that it requires no
historical introduction. Suffice it to say that weak
but dependable communication signals are received
out to distances of 1,000 km if sufficient transmitter
power and receiver sensitivity are employed. The
signal envelope is observed to fade in an irregular
manner. This suggested that the propagation might
be due to radiowave scattering by the refractive ir-
regularities (turbulence) which were known to exist
in the troposphere. The mathematical theory of
this scattering was developed by Pekeris [45] and
Booker and Gordon [46], using the single scattering
approximation.

The refractive scattering explanation of micro-
wave propagation beyond the horizon is illustrated
by figure 16. Turbulent blobs in the common volume
of the receiver and transmitter are imagined to scat-
ter minute fractions of the line-of-sight fields into
the receiver. The case of omnidirectional aerials is
shown in figure 16a, and indicates that the common
volume is defined by the tangent planes to the trans-
mitter and receiver. The incoherent addition of
signal contributions throughout this volume gives
rise to random orthogonal voltage components in the
receiver, as suggested by the drawing. The narrow-
beam case, shown in figure 16b, indicates that the
corresponding scattering volume is controlled by the
antenna patterns.

Figure 16. Geomelry for scatter propagation beyond the
horizon: (a) Broad beam aerials, and (b) narrow beam aerials.

A substantial amount of reliable experimental data
was first published in 1955 [47]. The overall experi-
mental situation at that time was ably summarized
by Bullington’s review paper [48]. Additional results
have been published sporadically in succeeding years,
and it is somewhat difficult to establish the precise
state of affairs at this time. An up-to-date summary
of theoretical research on the subject in the United
States was presented to URSI in 1957 by Staras and
the author [49]. The following section extends that
report by describing a considerable amount of un-
published work. We also attempt to correlate the
theoretical predictions with experimental results
where possible.

4.1. Signal Statistics and Vector Voltage Diagram

The electromagnetic field received beyond the
horizon via the scatter mode induces a complex
voltage

z(t) iy @t)=R(t) ¢'*® (4.1.1)
in the receiver, as shown in figure 16. The orthog-
onal signal components z and » result from the in
and out-of-phase incoherent addition of waves
scattered from many independent blobs in the com-
mon volume. Application of the Central Limit
Theorem to this scattering process by many blobs
ensures that z(f) and y(f) are distributed in a Gaus-
sian manner. The components change randomly
with time because of the changing phase relationships
of the scattering contributions from randomly mov-
ing blobs. The processes z(t) and y(t) are probably
stationary over brief observation periods, but do
exhibit diurnal and seasonal variations which are
quite predictable.

The probability distribution for amplitude £(%)
and phase ¢(t) at a fixed time ¢ can be computed
directly from the Gaussian distribution for z(f) and
y(t) suggested above. It is usually assumed that
both these components have equal variances ¢ in
the far field scattering range of heyond-the-horizon
propagation.

daxdy

x: 412 —2pxy
(2,y)dady Srat 15 {

202 (1—p%) S’
where

(@)= (y7)—a*

(xy)=0"p.

Transformation to the polar coordinates of (4.1.1)
yields the joint amplitude-phase distribution.

RdRdé¢ 0\'1)—{1l);[12ap si.l);%]}
2¢*(1—p*

PR 2.1 —
P(R) RiRlp=—% 7= e
(4.1.2)

Previous discussions of random signals have taken
the cross-correlation (p) between the in and out-of-

219



phase components to be zero. This is justified for
electrical shot noise which is a randomly phase-
modulated signal. It is not justified for scatter
signals, which are essentially amplitude-modulated.
This cross correlation has been computed explicitly
for line-of-sight propagation geometries [40], and is
definitely not zero in that case. Although a similar
calculation needs to be performed for scatter propa-
gation geometries, it is quite possible that p has a
finite value.

The distribution of signal amplitudes is established
by integrating (4.1.2) over all values of the phase,
(—m to ).

IRR_ TR p] R ]
o I—p? ' [2021—p? P 52 (1—p?)
(4.1.3)

P[RIRdR=

If the cross correlation p were zero, this would reduce
Yo the Rayleigh distribution for R [50, 51]. The
oot mean square amplitude is independent of p,

Rom=v(B=0v2 (4.1.4)
and forms a convenient amplitude reference.

The probability that the amplitude exceeds a given
level 7 is obtained by integrating (4.1.3) from r to
infinity, and is plotted in figure 17. The theoretical
curves for different p are plotted on Rayleigh paper,
so as to exhibit departures from the straight line plot
of a simple Rayleigh distribution (p=0). This
curve indicates that finite values for the cross
correlation enhance large values of R relative to those
of the Rayleigh distribution. The probability of
observing very small signal values is correspondingly
smaller than for the Rayleigch case. It is quite

NORMALIZED SIGNAL AMPLITUDE r/Rgys
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PROBABILITY THAT SIGNAL EXCEEDS ORDINATE VALUE

Freure 17.  Probability that instantaneous signal amplitude

exceeds a given level measured in terms of the RMS signal
level for various cross correlations p.

significant that this very departure has been ob-
served experimentally on many scatter links [47, 52].
It should also be noted, however, that a signallevel
trend superimposed on the random amplitude process
would produce the same general behavior for finite
data samples.

The possibility of a steady signal being admixed
with the random scatter signal cannot be ignored,
especially on short paths where the ground wave
or reflecting layers may be important. The cor-
responding statistical problem of a constant vector
plus a random process was summarized in section
3.1. It is apparent that the entire signal level distri-
bution is raised by such an addition, which offers a
third possible explanation for the non-Rayleigh
character of the signal level distributions.

The average signal level can be computed from
(4.1.3).

<R>—aﬁ[/ﬂ_gﬁ:(@)] (4.1.5)
BTN ™ Al o

where [(z) is the complete elliptic function of the
second kind. The correlation-dependent factor in
square brackets varies by only ten percent over the
entire range of p, so the Rayleigh form is an adequate
expression.

The distribution of signal phases can be estab-
lisl(ied by averaging (4.1.2) over all possible ampli-
tudes.

do  1—p*

This is plotted in figure 18 for 0<¢<= (since it is
symmetric about the origin) and various p, indi-
cating the departure from a uniform phase distri-
bution which is usually associated with a Rayleigh
distribution of amplitudes.

The foregoing description applies to the signal
fluctuations observed during an interval ranging
from several minutes to several hours. A sub-
stantial amount of experimental data is presented
in terms of distributions of hourly medians, which
are found to be “log-normally” distributed [53].
MecCrossen [54] used this experimental result to sug-
gest a phenomenological theory of nonstationary sig-
nal distributions for all time spans. The essential
idea is to treat the signal variance in eq (4.1.3) asa
long-term random variable. It is assumed that ¢ is
sufficiently constant over intervals required for the
averaging of short-term fluctuations. The quantity
which is observed to be log-normally distributed is
the hourly median of received power,

Z=P, ;=d*log 4=(R?) log 2, (4.1.7)

The

where p is taken to be zero for convenience.
distribution for Z is thus

sl AT (e Gz
Pyit= e e [ -

(4.1.8)
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Distribution of scatter signal phase angle ¢ for
various cross correlations p.

Ficure 18.

The corresponding short-term amplitude fluctuation
must now be considered as a conditional probability
density; that is, given ¢ or Z, the distribution of R is,

P(R|Z)="2 1og 4 exp— {’;122} (4.1.9)

McCrossen [54] has evaluated the probability that R
exceeds a fixed level 7, at any instant, by integrating
this expression over all possible values of Z, as well

as R >r,.
4.2. Electromagnetic Scattering

The basic field eq (3.2.3) for propagation through

a turbulent medium also generates the solutions

which describe propagation beyond the optical hori-

zon. The single scattering (Born) approximation

(3.2.4) 1s consistently used to describe scatter propa-

gation [7, 45, 46]. [ is the field which would be
-

received at R if there were no refractive irregulari-
ties, and is therefore the spherical earth diffraction
field at points beyond the horizon. It has been
established experimentally [47] that the scatter field<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>