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The diffraction of electromagnetic waves by a convex cylindrical surface is considered.
Attention is confined primarily to the region near the light-shadow boundary. The complex-
integral representation for the field is utilized to obtain a correction to the Kirchhoff theory.
Numerical results are presented which illustrate the influence of surface curvature and
polarization on the diffraction pattern. Good agreement with the experimental results of
Bachynski and Neugebauer is obtained. The effect of finite conductivity is also considered.

1. Introduction

The Kirchhoff theory of diffraction has been quite successful in the prediction of field
strength when the transmission path is obstructed by obstaclessuch as mountainous ridges [1-8].2
In its usual form, however, this theory disregards the difference between vertical and horizontal
polarization. Furthermore, the electrical properties of the diffracting obstacle are not con-
sidered since in effect, the obstacle is regarded as a “black screen” or absorbing knife edge.
A brief mention of the various developments, both old and new, will be made in order to properly
orient the reader.

Schelleng, Burrows, and Ferrell [1] in a now classic paper, applied knife edge Kirchhoff
theory to the computation of the fields behind mountainous obstacles and other pronounced
terrain features. The influence of the terrain in the immediate vicinity of the terminals was
accounted for by the introduction of ground-reflected rays which are also diffracted by the
obstacles.® A similar approach was made by Dickson, Egli, Herbstreit, and Wickizer [5], who
demonstrated that the presence of an obstacle can, in some cases, produce an increase of field
strength beyond that expected in the absence of the obstacle. This phenomenon has been
described rather aptly as “obstacle gain” and has been used to advantage in the siting of the
terminal and repeater stations in microwave relay links.

The Japanese workers [4,6] have also been very active in this field. Presumably, the
mountainous features of their country have motivated much of this work. Matsuo [4] in
particular, has applied the Kirchhoff theory to many geometrical forms including conical shaped
obstacles. Some fundamental theoretical work has been carried out by Furutsu [9] who has
presented solutions for diffraction by very general forms of obstacles.

S. O. Rice [11] has given a comprehensive solution for the diffraction of a plane wave by
a perfectly conducting parabolic cylinder which was considered to be a more realistic model
of a terrain obstacle. Particular attention was paid to the fields near the horizon plane on the
boundary region between light and shadow. It was shown that to a first approximation, the
diffraction pattern behind the obstacle was very similar to that for a knife edge. The main
effect of the finite radius of curvature of the crest was to increase the field strength for vertical
polarization and to decrease it for horizontal polarization. A similar observation had been
made by Artmann [12] sometime earlier who employed a circular cylindrical model.

Still another approach to this problem was adopted by Norton, Rice, and Vogler [13].
They represented the diffracting obstacle first by a sphere for the case of a very large radius of
curvature and then by a knife edge for vanishing small radii of curvature. A curve of diffrac-
tion loss as a function of radius of curvature was then drawn by interpolating between these
two limiting cases. According to their results, the diminishing of the radii of curvature is ac-

1 A preliminary version of this paper was presented at the International Conference on Wave Propagation, Liéze, Belgium on October 8, 1958.

2 Figures in brackets indicate the literature references at the end of this paper.

3 A scheme which will suppress or modify these ground-reflected rays has been suggested by I. E. Bussey (Reflected Ray Suppressions,
Proc. IRE 38, 1453, 1950).
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companied by enormous increases in the field strength even though the separation between
terminals and the angular distance is unchanged.

Refinements of Kirchhoff diffraction theory when applied to the diffraction by smooth
cylindrical models were made by Neugebauer and Bachynski [14, 15]. The basic idea of their
analysis is that the equivalent radiating aperture is illuminated not only by the incident rays,
but from rays reflected from the illuminated side of the ecylindrical erest. The subsequent
radiation from this aperture plane, which extends from the apex of the crest upward to infinity,
is again reflected from the shadow side of the crest. Neugebauer and Bachynski are quite
willing to admit that this is not a rigorous procedure, but nevertheless, it leads to results which
are in good agreement with experiment.

It is the purpose of the present paper to present a method for the computation of diffracted
fields by convex surfaces which is both rigorous and easy to apply. The mathematical basis
of this method was described in a previous paper [16]. This was an extension of the funda-
mental work of Van der Pol and Bremmer, and Fock. The reader is referred to the above
quoted paper for an account of the early theoretical work.

Unfortunately, the existing solutions for the diffraction by spheres and cylinders are
poorly convergent in the line-of-sigcht region. Consequently, these formal solutions require
a great deal of numerical work despite the fact that they are mathematically elegant. A sig-
nificant break-through was made when it was suggested that the complex-integral representa-
tion of the field was easier to evaluate by numerical means than attempting to sum the residues
of the poles of the integrand. While this point was probably recognized by Van der Pol and
Bremmer [17], in the 1930’s, it was not until 1946 that Academician V. A. Fock actually demon-
strated this in what is now regarded as a classic paper [18]. Fock’s method was applied by the
present authors to the computation of the radiation pattern of an antenna mounted on or near
a convex lossy surface [16]. The present problem is really an extension of this work.

2. Formulation

The problem is to calculate the field at some point P exterior to the cylinder in terms of
the field on its surface (see fig. 1a). Since the incident magnetic field H™° (p, ¢) is taken to
have only a z component, the resultant field / (p, ¢) also has only a z component. An imme-
diate application of Green’s theorem yields

Inc. Plane Wave

(a)
R=A/A, :T: (c)
Ficure 1.  (a) The infinite cylindrical obstacle. (b) Waves
emanating from the penumbral regions. (¢) Geomelry for
source at A, and observer at A,.
(b)
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H.(p,) = H(,6) +a J [Hz<p',¢'>a%Q(p,¢;p',¢'>—QW;M’)(M)] &', (1)

p'=a

where the Green’s function is given by

Qostio’ ") =—7 HP (kp), 2)
with
b=lo+(o")*—2pp" cos (p—¢")]'"

The primed coordinates p’, ¢’, with p’=a, refer to a variable point on the surface of the cylinder
whereas p, ¢, of course, refer to the position of the observer. The above integral formula can
be simplified somewhat when the Leontovich boundary condition can be used [16]. Then

H.,(p" ¢’ ;
a_%] , :lerZHz(a;¢)) (3)

where Z is the surface impedance of the cylinder and ¢ is the permittivity of the surrounding
space.* Invoking this approximation, the external field is expressed explicitly in terms of the
surface field 71.(a,¢) which can be regarded as known. The evaluation of the integral, how-
ever, is not readily carried out unless certain restrictions are made. For the moment it will be
assumed that the observer is at a large distance from the cylinder. Consequently,

Q;_l L: PUCZYR P!
4 \kp
ﬂ—ir/4 . )
277/: e—lkpelkp' cos (¢~¢’)’ (4)
4y kp

where only the first term in the asymptotic expansion for G (kp) has been retained.
In a previous paper [16], it was shown that

He)=H, 3¢ [Gmer)soen] g I:;g—¢’+27rm (,’?{;&)”“}

m=0

+H, i 6—ika [(¢’+§> +2m] . |:¢’+g+21rm @)1/3]’ %)
m=0 &

for the region 0= |¢’| < (7/2) +A¢, where (A¢)*<< 1. The function ¢ (XX) occurring in the
above expression is given by [16]

0 =—— f PP SR . (6)

Ur Joeams wiH—quyt) “0

where w; (£) and wy (t) are Airy integrals defined in the appendix, and
1/3
g=—1 (%&> Zno, with n,=~120mr.

The quantity m can be physically regarded as the number of times a wave has crept around the
cylinder. For (ka)'” #>>>>1, only the term m=0 need be retained. Furthermore, if ka>>">1
and |¢| less and not near /2 the geometrical optical approximation for F7,(a, ¢) is applicable.
This reads

H,(a,¢’) >~ Hy(1+ R,e~*acoss’) (7)

4 Equation (3) is strictly valid only when (Z) < <120x but actually this is more stringent than necessary [16].
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where R, is a Fresnel reflection coefficient given by

__ (ZJno)—cos ¢
Bo=— (Z/no) +cos ¢’ ®)

3. Evaluation of the Field

The secondary or scattered field can thus be written in the following form

—1(kp-—7r/4)
H;(p,9)= m(‘l’ﬁ*%) (9a)
A
where
¢1:f_ [cos (¢'—o) —kaZ[no|e~*elir/DTo'—cos W=l g( X)) d¢’ (9b)
b= [ o5 (6'—8) —kaZjni e etr=e e 6o (X,) g (99)

The phase in the integral ¢, has the form
Qe") =kal(n/2) +¢'—cos (¢'—9¢)],

so that the stationary points are at ¢’=¢,=4n—1) =/2-+¢ for n=0, 1, 2, 3 . . . . The
phase function is expanded about ¢, and is of the form

Q¢") =ka[2mn+¢-+ 16 (0" —o,)°],

neglecting terms containing higher power than the third. The integrals over ¢’ are now in
the form of Airy integrals and thus ¢, and ¥, can be expressed in the form

—2\[;?'17/4 o~ ika S —i2xrmka ka “
=gz« e[ (5) "] How
— %fre—ir/4 A 1/3
¢2: (kg;26)2/3 et kao 2 e—l?wmka G [___(k_2a> ¢], (10b)
where
A :g_“'/" @ _ixt U (t) qv(t) 11
CO=" [ = e "

where w; (t) and » (t) are Airy integrals defined in the appendix. The quantity ¢ is a new
variable of integration.

The special cases corresponding to ¢=0 and g= lead directly to Goriainov [19] who
assumed at the outset that the cylinder was perfectly conducting. These special cases are
discussed in the subsequent text. The total field scattered by the cylinder is thus expressed by

— ik
H=—H, 67%7: (o), (12)
Y
where
- gi, sin ka¢
ho—\/vre " ¢ ’ (13)
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and
h1—+\2 IL2(1> {g‘ik‘“’G[(ka‘/Z)l/Sqﬁ]—!—eika"’G[—(k(l/2)1/3¢]—}-(?_ika(”+¢)G[(ka/2)”3(27I'+¢)]
+em -0 Q[(ka/2) R (2r—¢)]+ . . . ]}, (14a)

where

G(X)—G(X>+%3 (14b)

1\7!'

The preceding results will now be generalized to include the case of a spherical wave
incidence. The source is now imagined to be a magnetic dipole, located at (p,, =, 0), thus the
radius of curvature of the incident wave at the origin 1s p,. Equation (12) for the scattered
field in the transverse plane z=0 is now simply generalized to spherical wave incidence by
multiplying it by +/po/(p+po). This is valid for any form of cylindrical obstacle subject to
p and p, both large compared to the maximum transverse dimension of the effective scattering
region.” Thus

—lp

1/2
Hie (lrp)'“ <p ?;) (hot-ho), (15)

where I, is the value of the incident field reckoned at the center of the cylinder and Ay and A,
are as defined above.

The portion of the scattered field proportional to 4, corresponds to Kirchhofl diffraction
since it can be readily predicted by physical optics. It is independent of the electrical properties
of the obstacle (and thus independent of the surface impedance Z) and is proportional to the
cross-sectional dimension of the obstacle for small deflection angles. The remaining part of
the scattered field, proportional to 4, can be regarded as a correction to Kirchhoff theory.
When ka—o , the ratio hy/h, asymptotically approaches zero. For finite but large values of
ka and small values of ¢ only the first two terms containing G[(ka/2)'?¢] and G|— (ka/2)'?¢] are
significant. These can be interpreted as waves emanating from the penumbral regions on the
cylinder as indicated in the sketch shown in figure 1bh. In this case, the distances p and p, are
both assumed very large compared to the transverse dimension of the obstacle (i.e., 2a). To
relax this condition, it is necessary to return to the original integral for the field and use the
following far-field approximation for the Green’s function:

7',

4 \kp

(,1' (r/.l—kﬁ)

Q

2

; (16)

where p is not assumed to be large compared to 2a but is still large compared to the wavelength
llustrated in figure le. Carrying through the analysis leads to

—ikR
H=H+H~"o [FX,0)+FX ), (17)
with
l1r/4 A
F(X, u)= f ""’Qda——@ et (18)
\7!' a u
where
(o) 2k
17‘\'_("1‘1‘*2
and

X=(ka/2)'?0.

Equation (18) is only valid when u is somewhat greater than unity. A more accurate form is
. 2o g - . O*G(X
obtained when G(X) is replaced by G(‘\)~ﬁ(? - ng ),

5 See J. R. Wait, Appl. Sci. Research B.4, 464 (1955) for exa nple.
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The function F(X’, u’) is the same form as F(X, u), and »’ and X’ are defined by

u,_a_’_ 2ksis;>”2 (2/ka)'’?
T X \si+s 3

and
X' =(ka/2)'? 0.

The quantities s, and s, are the linear distances from the source 4, and the receiver A, measured
to the intersection of tangent planes of the surface of the cylinder as sketched in figure 1c.
Similar remarks apply to the primed quantities.® The quantity R is the linear distance separat-
ing A; and A,.

It should be noted that when A, and A, recede to infinity, the earlier (Fraunhofer) solution
is retrieved as a special case. To effect this transition, it is convenient to use the asymptotic

relation
—ir/4
[Wl(X, u)] x2e =2 [e = -—G(X)] for large positive a and (19)
2\r‘ 7I’X

I

; e~ /4 .
el ut+———G(X for large negative «.
[ rX ) L
Up to this point the analysis has been developed explicitly for the incident magnetic
field vector directed along the axis of the cylinder. The results can be transformed to the case
for the incident electric field vector directed along the axis of the cylinder by making the
following transformation

He<(p, ) —>E7(p, ¢)
H: (p,¢)—=E: (p,9)

LG Gl (R) G

For metallic surfaces, ¢=~0 for /{ parallel polarization and ¢~ for I parallel polarization,
and these limiting cases are referred to in the following section as vertical and horizontal polar-
izations, respectively.

4. Numerical Results

Basic to the present work is the function ¢ (X). In the region near X=0, the relevant
integrals cannot apparently be evaluated in closed form. The integrands are quite well
behaved however, and it is not too difficult to evaluate them by numerical means. In figures
2a and 2b the real and imaginary parts of G (X) are plotted as a function of X for ¢=0 and
g=, respectively.

Before discussing the diffraction pattern, it is of interest to consider the behavior of the
field along the horizon plane. Clearly, this corresponds to §=0, X=0, and a=0. The func-
tion /' () then becomes
G(0)

u

1
F(0) = y (20)
where

, as before.

Y <2k8182>% (2/ka) ¥
~\s s, 2

Numerical integration yields the following values: for ¢=0, @ (0)=—0.295-+% 0.0811; and

69 and 0" are the angles subtended by the tangent planes as indicated in figure le. They are referred to sometimes as angular distances
and expressed in milliradians.
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for g==, G (0)=0.344—1 0.0918. This indicates that for vertical polarization (corresponding
to ¢=0) with a metallic convex surface, the field along the shadow boundary is increased
above that for a knife edge. The converse is true for horizontal polarization (corresponding
to g==). The increase or reduction from % is approximately the real part of the function
[—@G (0)/u]. Therefore for ¢=0, [F' (0)|=20.500+ (0.295/u) and for ¢=, [F (0)|20.500—
(0.344/u). 1t 1s of interest to compare this departure from % with Rice’s prediction using a
parabolic cylinder model. The agreement is good if we equate the curvature of the apex of his
parabolic cylinder with our a. It is also noted that his assumed plane-wave incidence is
equivalent to moving our source to infinity (i.e., d;=o). Then on identifying Rice’s & with
ka/2 and his A with [(s;+s)/(27ks;s2)]3, we find according to Rice for ¢=0, |F(0)|=20.500-
(0.296/u) and for g=o, |F(0)/=~0.500—(0.342/u), being in close agreement with our values
quoted above. On the other hand, Artmann, using a circular cylindrical model, gives for
¢=0, |£F(0)|220.500+ (0.165/u) and for g=o, [F(0)|=0.500— (0.33/u). The disagreement in
the case for =0 with our result should be noted. It is suggested that the asymptotic approxi-
mation for the Hankel functions used by Artmann is not fully justified.

Neugebauer and Bachyinski have also computed a value on the shadow boundary using
a semiempirical modification to Kirchhoff theory. Again transferring to our notation they
would give?

for =0, [F(0)|=0.500+"", and

for ¢= o, F(0)|~=0.500—

0.282

==
The agreement of these values with ours (and those of Rice) is reasonable in view of the entirely
different theoretical approaches employed. It is probable that at least part of the discrepancies
can be attributed to the nonvalidity of some of the geometrical-optical arguments used by
Neugebauer and Bachynski.

5. Diffraction Patterns

The diffraction pattern behind the obstacle is specified by the behavior of the function
F(X, u) as aor uX varies. The amplitude |F' (X, u)]| itself and the resulting diffraction loss L,
are plotted in figure 3a for various values of  with ¢=0 and . As u tends to infinity, the
patterns approach the Kirchoff form described by the function Fy(a). Since the function
Iy(a) oceurs frequently in what follows, its real and imaginary parts are plotted in figure 3b.

The diffraction pattern behind a metallic cylindrical model of a mountain crest has been
measured by Neugebauer and Bachynski in the K-band frequency range. For purposes of
comparison, they also duplicated the experiment using a thin metallic sheet which was essen-
tially equivalent to a knife edge. Their results for ka=239 are shown in figure 4a and 4b for
vertical polarization (¢=0) and horizontal polarization (¢=), respectively. The ordinates
are relative power and the abscissa are distance d, measured from the crest to the observer.
The quantity & is the vertical displacement of the receiver above or below the horizon plane.
In both figures 4a and 4b the source which is a transmitting horn is at a fixed location, being a
distance d; (=150\) from the crest. Values calculated from eq (18) are also shown on the
curves. The agreement is reasonably good.

Neugebauer and Bachynski also measured the fields behind the crest for various values
of the curvature parameter kz. 'This is shown in figure 5 where the ordinate is relative power
and the abscissa is the deflection angle . The corresponding calculated curves are also shown
in figure 5, taking d;=150\ and d;=113\. The agreement is still fairly good and probably is
within experimental error. These curves illustrate in a striking way the influence of curvature
on the diffraction fields. In the case of horizontal polarization and deep in the shadow, the

7 Their quantity ‘A’= —8x1/2 2=1/3 times the real part of our G (0).

188



1.4 T T T T
THE FUNCTION
2 |5 A I) PP 2 2
(ST six —ala®_ =
Fola)=S4 | € dx=e'* -Fy(-a)
o - 5 -
0.8 |- ~
3
1F| [ ©
06 |- &
Vertical Polarization é
. &, =
<
0.4 |- ) 3
Horizontal Polarization” qu L
- =5 H
(f=C2 Use = rezsstzens
02 I - ues ‘ Re Fy (@)
L a Shadow — U=2
—rE=—{Lf1=
o \ I ! ! !
-1.5  -1.0 -0.5 0 0.5 1.0 1.5
Q
Ficure 3.  (a) Diffraction pattern for a conducting
conver surface. (b) Real and imaginary parts
of Fresnel integral ¥o(a) as a function of a.
56
60
Calculated =
) ———— Measured (Bochynski | 64§
. and Neugebauer) -
o %)
& S
o4 z
o
w (2]
> 4]
ke 3
j Calculated =
E =00 I Measured (Bachynski ;
P T o and Neugebauer) . | L
= 8 b _ =
Vertical Polarization 7% = '
R q=0
-24 |- - Horizontal Polarization
(a) ka =239 i q:=o s
— - 28 .
50X 100X 150x 2001 50\ 100X 150 X 200\
DISTANCE FROM OBSTACLE, d,
Ficure 4. (a) Power distribution behind a cylindrical obstacle. (b) Power distribution behind a cylindrical

obstacle.

finite radius of curvature greatly reduces the fields below the Kirchhoff or knife-edge value.

This is in accord with the results of Norton, Rice, and Vogler [13].

6. Further Numerical Results

To obtain results for finite conductivity, it is necessary to evaluate the relevant integrals

for finite values of g¢.
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For the case of H-parallel or vertical polarization
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where Z is the surface impedance. Now if the surface is a good conductor
Z =~ (ipw/o)'?,

subject to ¢ > >ew. That is, displacement currents in the conductor are neglected. The
consequence of this approximation was discussed in some detail in a previous paper devoted
to this subject [16]. Following the earlier notation

g2 |gle=TA=21/8A ¢ 17/

where

- M 1/2
A_(ka)m(za) ,

1s the “loss factor’ for the surface. It is seen that for infinite conductivity, A is zero. On
the other hand, for very poor conductivity and large values of ka, the “loss factor”, A, may
approach infinity. These two limiting cases correspond to ¢=0 and ¢=, respectively, and
were discussed in the previous section. More usually A takes some intermediate value.

For the general case

G(X)=G\(X)+ Gy(X) (21)
G(X)=G\(X)+ Gx(X), (22)
where
R R L ORI
= | e =
A 37 /4 A
G2<X>:;(—J;+G3 (X), (24)
A _eir/12 © o ( __i ?)/(t)_qe~27ri/3v(t)
b= fo (XU (43 >[w;(t)_qe_m/3w2 (t):l dt. (25)

The above relations follow immediately from eq (11) and (14b). The real and imaginary parts
of the integrals é’l(X) and @(X) were evaluated numerically using tabulated values of the
Airy integral functions. For the present purpose only the real and imaginary parts of the
function G(X) are required.

As mentioned above, the field along the horizon plane is of special interest. Expressed as a
ratio to the free-space field, this can be written
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The real and imaginary parts of G (0) are plotted in figure 6 in the form of an Argand diagram.
Various values of A are shown on the curve. The left-hand portion of the curve (i.e., smaller
A values) corresponds to an increase over the knife edge value. On the other hand the right-
hand portion (i.e., larger A) corresponds to a decrease below the knife-edge field. It is of
interest to note that for an A value of about 0.4 the magnitude of the diffraction field is almost
the same as that of the knife-edge field. Associated with these intermediate values of A4, how-
ever, are appreciable phase shifts which correspond to a lag relative to the phase of the knife-
edge field. The end points of the curve corresponding to ¢=0 and ¢== were discussed in the
earlier section.

0.1
© |= =
Frcure 6. Integral G(O) B_O'l B B
plotted in the complexr plane 5
for various values of the con- €
ductwity parameter A. T
—(0)f2 | = =
Applicable to vertical polarization.
-0.3 |- -
1/3 , €qW 1/2 /6 -iTr/a
A=(ka) " (=5) q=2"%nae"’ /
-0.4 | J | | | | 1
=04 -0.3 =R SO 0 0.1 (0) 0.3 0.4

The real and imaginary parts of G (X) are shown plotted in figures 7a and 7b, respectively,
as a function of X for various values of A.

The diffraction pattern defined by [/ (X, u)| can thus be readily computed for any value
of A. Examples of these are shown in figures 8a, 8b, and 8c for w equal to 2, 5, and 10, respec-
tively.

The preceding results indicate that the influence of finite conductivity can be marked for
H-parallel or vertical polarization. For purposes of illustration, the displacement currents
were neglected so that ¢ has a phase angle of —45 deg. For poorer conductivities this restric-
tion may be violated and the numerical results are not strictly applicable although they can
be used for approximate estimates as long as the conduction currents are at least greater than
the displacement currents. (i.e., ¢ >e w). In this case, the equation for A should be replaced

by
6w 12 |
A=ka)" (=== 7
Vo' €w 72

The influence of finite conductivity for F-parallel or horizontal polarization is negligible
for most cases since |¢| is always very large compared to unity.

7. Concluding Remarks

A theory for diffraction of electromagnetic waves by a smooth and convex lossy obstacle
has been presented. The model employed for computation is a circular cylinder of finite
conductivity.
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Ficure 8. (a) Diffraction pattern for a lossy
conver surface u=2. (b) Diffraction pattern
Jor a lossy conver surface u=5. (¢) Diffrac-
tion patlern for a lossy conver surface u=10

(a), (b), and (¢), applicable to vertical polarization.

Probably the most important conclusion is that the influence of finite curvature of the
diffracting metallic obstacle is to add a positive correction to the Kirchhoff computed field for
a vertically polarized incident field, whereas the correction is negative for horizontally polarized
incident field. The increase or decrease of amplitude from the Kirchhoff result is accompanied
by a corresponding change of phase which may be important in certain applications.

The influence of finite conductivity is appreciable for vertical polarization and the curves
presented in the paper may be used to compute this effect. In general, the ohmic loss tends
to reduce the resultant diffracted field. In the case of a horizontal polarization, the finite con-
ductivity has a negligible effect and the curves presented in the present paper for ¢= o may be
used directly.

While the present results are formally restricted to a diffracting surface of constant curva-
ture, it can be expected that the results can be used for generally convex surfaces if the curva-
ture is slowly changing. For example, it may be noted that the diffraction pattern has the
same approximate analytical form for a circular cylinder, a sphere and a parabolic cylinder.
At least this is true if the radius of curvature is large compared to the wavelength and the
deflection angles are small. Deep in the shadow zone, this similarity principle breaks down
and the field depends on the rate of change of the curvature. This aspect of the problem has
been discussed recently by Wu [24] who has generalized some of the quasi-geometrical concepts
of Keller [25]. As Wu points out, however, for small deflection angles (i.e., reasonably
near line-of-sight) the diffraction field is not critically dependent on the analytical form of the
surface provided it is sufficiently smooth. It can be expected that this will also be true for
lossy obstacles.
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8. Appendixes
8.1. Definition of Airy Integrals

The Airy integrals used in the above analysis can be represented by the following contour
integrals

wl(t)zw/i"_r [ ends=utty ot (26)
w;(t)z;}; [ serds— i) =i’ () @7)
D= [, ds=u(t) tint) (28)
w;(t)zv%r f;_m seds=u’ (£)+iv’ () (29)

where a=st—s*/3.

The functions w(t), »(t), v’ (t), and »’(t) have been tabulated by Fock [20] for real values
of t.

8.2. Comparison With Results for a Spherical Model

The previous discussion has been based on a cylindrical model. It is of interest to com-
pare these results with those of Fock [21] who employed a spherical model. To facilitate this
discussion, it is desirable to review briefly Fock’s work as it pertains to this particular problem.
The notation will be changed to be consistent with the rest of the present paper.

The source is represented as a vertical electric dipole located at r=a-h, with respect to
a sphere at 7=a. (r, 6, ¢ are the usual spherical coordinates with origin at the center of the
sphere and the axis in the direction of the dipole.) The great circle distance between the
source and the receiver is denoted by s which, of course, is equal to af. The receiver is located
at r=a-+h,. In Fock’s theory the following parameter is consistently employed

M= (ka/2)"?, x=M(s/a)=MS§,
yi=kh,/M and y,=kh,/M.

The fields for this geometry can be derived from a single scalar function 7 which has the

following form
(li=a 225 2= {0,

where R is the distance from the source to the observer. The first term is a spherical wave
and represents the primary influence whereas the quantity U is the secondary influence
resulting from the presence of the spherical body. The rigorous analytical expression for (/¢
is well known, being given first by G. N. Watson in a form of a very slowly converging series.
The transformation of this series into a complex integral had also been accomplished by Watson
who suggested that a new series could be evolved if the contour was deformed round a set of
complex poles. This results in the now well-known residue series which has been studied
extensively. Rather than deforming the contour Fock decided that the complex integral
could be employed directly. He approximated the spherical Bessel functions by an Airy
integral approximation. This is equivalent to Van der Pol’s and Bremmer’s “Hankel approxi-
mation”’ which involved Hankel functions of order one-third. This representation is valid
when the argument and the order of the spherical Bessel functions are very large, but nearly
the same magnitude. This means that the heights A; and A, are small compared to the radius
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@ which itself must be very large compared to the wavelength. Fock is then able to write
[J in the following form

N

\/sasmﬁ

where V7 is an attenuation function which is expressed conveniently as the sum of two parts,
such that V=V,41% where V, does not depend on the electrical properties of the sphere and
V, is dependent on these properties. The explicit representation for these integrals are

5 1/2
Vi=(2)" | 5o, et —met—ydit [ e w—gynt—ypdt | Go)
T 1) ¢ c

and

iz U (D) —qo(t) .
+‘ ¢, wl(z‘)—éill;(ti) l(t_yl)wl(t_y:?)dt]’ (3D

where w, (t), wy(t), and »(t) are Airy integrals defined in appendix 8.1 and ¢ is as defined previ-
ously. The contour () is the straight line segment in the ¢ plane from « exp (—i27/3) to 0,
and (), is the segment along the real axis from 0 to «. By some ingenious manipulations, the
above integral representation 17, is shown by Fock to correspond to Kirchhofl diffraction and
17, can be regarded as the correction to the Kirchhoff theory. More explicitly

consequently,

Vi (’/ o )”4 e—iooul’y(a) for a >0 (32)

and B
V,2e—ie I:pi'ﬂ———(—?/'—};;m ul’},(—a)] for a<0 (33)

\J1J2

where wy~k(R—s), 71:(3/11/2)‘/"/(\in}1 +'\"772)1/2 and a=u(x— 171—'\“52). The function involves
the Fresnel integral which is defined by
,,2+1f>
(,,‘< s

Fola)=—F— J e—irdx. o)

VT

It is now possible to express V7, in terms of the integral G(.X) encountered in the previous sec-
tion. In fact,
T .I'

s Yy

e—iwG(X), (35)

where X =a/u=1—+y1—1.. Equations {33) and (35) given above for 17, and 17, respec-
tively, are valid if z, y;, and y, are all large compared to unity, but in such a way that X" or
Z—/y1—/s is finite. It is also important to remember that these particular results are only
valid for A; and A, small compared to a. This fact appears to have been overlooked in a recent
paper by Kalinin [22]. In many physical situations one is interested in computing diffraction
by a spherical surface when £, and &, are comparable or even large compared to a. It is quite
easy, however, to relax this restriction if the proper asymptotic form of the spherical Hankel
functions h,_y»(p) is employed and p is either a-+h,, or a+h, in Fock’s work. First it should
be noted that

o) =™ (), (36)

\
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where H{?” (p) is the Hankel function of the second kind of order » and argument p. The Debye
second order representation for the Hankel function H® (kb) is now employed and leads to the
approximation

g iE—T/0

hy—172(p) gmﬁ’ (37)

where £= (p*—»*)""*—» cos™' (v/p), being valid when (p*—»°) >">p¥?. With this change, it is
now possible to write the solution in the form

Cr g—ikﬁ F
J=—pF, (38)
where
F~[Fy(a)+Fe (39)
Fi=—G(X)/u, (40)
_a_ (2ksisp\'? (2/ka)'”
X 81~{—82> 2 (41)
and
X=(ka/2)'/. (42)

# is the angular distance as usually defined, ® and s, and s, are the linear distances measured
from the source and the observer to the intersection of their tangent planes as in the previous
section.

The research reported herein was sponsored in part by the U.S. Air Force Cambridge
Research Center, Air Research and Development Command.
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