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The diffraction of electromagnetic waves by a convex cylindri cal surface is considered . 
Attention is confined primarily to the region near the light-shadow boundary. The complex
integral representation for the field is utilized to obtain a correct ion to the Kirchhoff theory. 
Numerical results are presented which illustrate the influ ence of surface cUt'vature and 
polarization on the diffract ion pattern. Good agree me nt wi th the experim ental results of 
Bachynski and Neugebauer is obtai ned . The effec t of finite co ndu ctivity is also considered . 

1. Introduction 

The Kirchhoff thcory of diffraction has been quite successful in the prediction of field 
strength wh en t he transmission path is obstrucLCd by 0 bstacles such as mou n tainolls ridges [1- 8]. 2 
In its llsual form, however , this theory disregards the difference between vertical and horizon tal 
p.olarization. Furthermore, the electrical propcrties of the diffracting obstacle are not co n
sid ered since in effect, the obstacle is regarded as a "black screen" or absorbing knife edge. 
A brief mention of the various cl evelopmen ts, both old and new, will be mad e in order to properly 
orient the reader. 

Schelleng, Burrows, a nd Ferrell [1] in a now class ic paper, applied knife edge Kirchhoff 
theory to the computa tion of the fields behind mountainous obstacles and other pronounced 
terrain featu res. The influ ence of the te rraill in the immediate vicin i ty of the terminals was 
accoun ted for by the in trod uction of grou nd-reflected rays wh icll arc also diffracted by the 
o bstacles.3 A similar approach was mad e by Dickso n, E gli, H erbstreit, and liVi ckizer [5], who 
demon strated t hat t he presence of an obstacle can, in some cases, produce an increase of field 
strength beyond t hat expected in the abse nce of the obstacle. Tbis phenomenon has been 
d escribed rath er aptly as "obstacle gain" and has been used to advantage in the siting of the 
terminal and repeater stations in microwave relay links. 

The Japanese workers [4 ,6] have also been very active in this field . Presumably, the 
mountainous feat ures of their country have motivated mu ch of this work. Matsuo [4] in 
particular, has applied th e Kirchhoff t heory to many geometrical forms including conical shaped 
obstacles. Some fundamental theoretical work has been carri ed out by Furutsu [9] who has 
presented solutions for diffraction by very general forms of obstacles. 

S. O. Rice [11] has given a comprehensive solution for the diffraction of a plane wave by 
a perfectly conducting parabolic cylinder which was considered to be a more r ealis tic model 
of a terrain obstacle. Particular attention was paid to the fields near the horizon plane on the 
boundary region between light and shadow. It was shown that to a first approximation, the 
diffraction pattern behind t he obstacle was very similar to that for a knife edge. The main 
effect of the finite radius of curvature of the crest was to increase the field strength for ver tical 
polarization and to decrease it for horizontal polarization. A similar observation had been 
made by Artmann [12] sometime earlier who employed a circular cylindrical model. 

Still another approach to this problem was adopted by Norton, Rice, and Vogler [1 3]. 
They represented th e diffracting obstacle first by a sphere for the case of a very large radius of 
curvature and then by a knife edge for vanishing small radii of curvature. A curve of diffrac
tion loss as a fun ction of radius of curvature was then drawn by in terpolating between these 
two limiting cases . According to their results, the diminishing of t he radii 04' curvature is ac-

1 A preliminary version or this paper was prest? n ted at tho International Conference on \ Vave Propa~ation , Liege, n elgium on October 8, ]958. 
2 Figures in brackets indicate the li terature refcrrJ1ccs at the end of this paper. 
3 A scheme which will suppress or modi fy t hese groulld·refl ected rays has been suggested by II . R . Bussey (R cllected R ay Supprcss ions, 

Proc. IRE 38, 1453.1950). 
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companied by enormous increases in the field strength even though the separation between 
terminals and the angular distance is unchanged. 

R efin ements of Kirchhoff diffraction theory when applied to the diffraction by smooth 
cylindrical models were macl e by Neugebauer and Bachynski [14, 15]. The basic idea of their 
analysis is that the equivalen t radiating aperture is illuminated no t only by the in cident rays, 
but from rays reflected from the illuminated side of the cylindrical crest. The subsequent 
radiation from this aperture plane, which extends from the apex of the crest upward to infinity, 
is again reflected from the shadow side of the crest. Neugebauer and Bachynslei are qui te 
willing to admit that this is not a rigorous procedure, but nevE'rtheless, it leads to results which 
are in good agreement with experiment. 

It is the purpose of the present paper to present a method for the computation of diffracted 
fields by convex surfaces which is both rigorous and easy to apply. The mathematical basis 
of this method was described in a previous paper [16] . This was an extension of the funda
men tal work of Van del' Pol and Bremmer, and Focle The reader is referred to the above 
quoted paper for an account of the early theoretical work. 

Unfortunately, the existing solutions for the diffraction by spheres and cylinders are 
poorly convergent in the line-of-sight region. Consequently, these formal solutions require 
a great deal of numerical work despite the fact that th ey are mathematically elegant. A sig
nificant break-through was made when it was suggested that the complex-integralrepresen ta
t ion of the field was easier to evaluate by numerical means than attempting to sum the residues 
of the poles of the integrand . While this point was probably recognized by Van del' Pol and 
Bremmer [17], in t he 1930's, i t was no t un t il 1946 that Academician V. A. Fock actually demon
strated this in what is now r egarded as a classic paper [18] . Focle's method was applied by the 
present authors to the computation of the radiation pattern of an antenna mounted on 01' near 
a convex lossy surface [16] . The present problem is really an extension of this work . 

2. Formulation 

The problem is to calculate the field at some point P exterior to the cylinder in terms of 
the field on its surface (see fig. la). Since the incident magnetic field Hln e (p, tJ» is taken to 
have only a z component, the resultant field H (p, tJ» also has only a z component. An imme
diate application of Green's theorem yields 

p 
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FIGURE 1. (a) The infinite cylindrical obstacle. (b) Waves 
emanating from th e penumbral regions. (c) Geometry for 
source at A, and observer at A2• 
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[{2(P,</» =H'~.(p ,</» +Of 211" [H2(p' ,</>' ) >."0, Q(p,</>;p' ,</>') - Q(p,</>;p' , </> , ) (Ol-I.~P : '</> '») J d</>', (1) 
o vp p p' = a 

where the Green's function is given by 

Q( .' ') - ~ R (2)(k A
) p,</>,p ,</> - -4 0 p , (2) 

with 

The primed coordinates p' , </>' , with p' = 0, refer to a variable point on the surface of the cylinder 
whereas p, </>, of course, refer to the position of the observer . The above in tegral formula can 
be simplified somewhat when the Leontovich boundary condition can be used [16]. Then 

"OH2 (p' '</>' )J . ZE"T ( ) 
A , =~ EOW :i z a,</> , 
v p p' =a 

(3) 

wh ere Z is the surface impedance of the cylinder and EO is t he permi ttivity of t he surrounding 
space.4 Invoking t his approximation, the extern al field is expressed explicitly in terms of the 
surface fi eld IIzCa,</» which can be regarded as known . The evalu ation of the in tegral, how
ever, is not r eadily carried out unless certain restrictions a re made. For the moment it will be 
assumed t hat the observer is at a la rge d istance from t he cylinder . Consequently , 

i 1 " A Q<::::'. _ _ --= e,[(,../41-k p] 

- 4 "ilcp 

(4) 

where only t he first term in the asymp totic expansion for E]<~) (le p) has been retained. 
I n a previous paper [16], it was shown t hat 

(5) 

for the region 0 ~ 1</> '1 ~ (7r/2) + 6.</>, where (6.</» 3< < 1. Th e function g (X ) occurring in the 
above expression is given by [1 6] 

(6) 

where Wl (t) and w~ (t) are Airy in tegrals defined in the appendi.x, and 

( ka)1 /3 
q=-i 2" Z/T/o, wi th T/o~ 1207r . 

The quanti ty m can be p hysically regarded as the number of t imes a wave has crep t a roun d the 
cylinder. For (lea)1/3 7r > > 1, only the term m = O need be r etained. Furt hermore, if lea » l 
and I</> I less and not near 7r/2 the geometrical op tical approximation for H z(a, </>') is applicable. 
This reads 

(7) 

• Eq uation (3) is s trictly valid only when (Z) « 120,.. but ac tuall y this is more st ringent t han nccessary [161. 
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where R. is a Fresnel reflection coefficient given by 

R = v 
(Z/ Tlo ) - cos </>' 
(Z/TJo) +cos </>' 

3. Evaluation of the Field 

The secondary or scattered fi eld can thus be writte.n in the following form 

where 

The phase in the integral1h has the form 

Q(</>') = ka[(7r/2) + ct>' - cos «f>' - </»]' 

(8) 

(9a) 

(9b) 

(9 c) 

so that the stationary points are at ct>' = </>~ = (4n- 1 ) 7r/2 + ct> for 11 = 0, 1, 2, 3 .... The 
phase function is expanded about </>~ and is of the form 

neglecting terms containing higher power than the third. The integrals over ct>' are now in 
the form of Airy integrals and thus if;1 and 0/2 can be expressed in the form 

0/ = -VY 7r e e-ika<l>~ e-i2~mka G - </>' " r - ;" / 4 00 A [(ka)I /3 ] 
I (ka/2) 2/3 m=O 2 (lOa) 

(lOb) 

where 

G(X) =e_- e- iXt ~ - qv dt, - i1r / 4 J' oo . ' (t) (t) 
-r; '" e- ih /3 WI (t) - qWI (t) 

(11) 

where WI (t) and v (t) are Airy integrals defined in the appendix. The quantity t is a new 
variable of integration. 

The special cases corresponding to q= O and q= oo lead directly to Goriainov [19] who 
assumed at the outset that the cylinder was perfectly conducting. These special cases are 
discussed in the subsequent text. The total field scattered by the cylinder is thus expressed by 

(12) 

where 

(13) 
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and 

hi = +li (~ay /3 {e- ikaq,G[(kaj2)1/3cf>J +eikaq,G[ - (ka/2) 1/3cf>J + e- ika (2dq, )G[(lca/2) 1/3 (2'n-+cf»J 

+e- i ka (211' -q,)G[(ka/2)1 !3(27r- cf»J + JL (14a) 

wh ere 
A e- i ll'/4 

G(X) =G (X)+~. 
2,X,, 7r 

(l4b) 

The preceding results will now be generalized to include the case of a spherical wave 
incidence. The source is now imagined to be a magnetic dipole, located at (Po, 7r, 0), thus Lhe 
radius of curvature of the inciden t wave at the origin is Po. EquaLion (12) for the scattered 
field in the transverse plane z= O is now simply generalized to spherical wave incidence by 
multiplying it by :.j Po/ (P+ Po). This is valid for any form of cylindrical obstacle subject to 
p and Po bo th large compared to the maximum transverse dimension of the efI'ective scattering 
region.5 Th us 

(15) 

where lIo is the value of the incident field reckoned at the center of t he cylinder and 11,0 and hi 
are as defin ed above. 

Th e portion of t he scattered field proportional to ho corresponds to Kirchhoff diffraction 
since it can be readily predicted by phys ical optics. I t is independen t of t he elecLrical properties 
of the obstacle (and thus independent of the surface impedance Z) and is proportional to the 
cross-sectional dim ension of t he obstacle for small defl ection a ngles. The remaining part of 
the scattered field , proportional to hi, can be regarded as a cOl'l'ection Lo Kirchhoff theory. 
Wh en lea -'>CD, the ra tio hl/ho asympLotically approaches zero, For finite but large values of 
lea an d small values of cf> only the first Lwo terms containing G[(lea/2)1/3 cf>J a nd G[- (lea /2)1/3 r/>J are 
significant. These can be in terp reted as waves emana ting from t he penumbral regions on t he 
cylind er as indicated in Lhe sketch shown in figu re lb. [n this case, th e distances p and Po are 
both assumed very large comparcd to t he transverse dimensio n of t he obstacle (i. e., 2a) . To 
relax this condition, it is necessary to return to the or iginal integral for t he field and use the 
followin g far-field approximation for t he Green's fUl1 cLioll : 

Q i I , A 

~ - - ---= e' ( lI'f.1 - kp) 

- 4 :.jleP , 
(16) 

where P is not assum ed to be large compared to 2a buL is still large compared Lo Lhe wavelength 
illustrated in figure 1c. Carrying through the analysis leads to 

e- ik R 

Hz=H~+H~ ~-R [F(X, u ) + F(X', u')), (17) 

with 

(18) 

where 

and 
x = (ka/2) 1/3 e. 

Equation (18) is only valid when u is somewhat greater Lhan u ni tv. A more accurate form is 

obtained when G(X ) is r eplaced by G(X) - 4~2 02~C;). 
' See J. R. Wait, Appl. Sc i. Hcscarch n.'. 464 (1955) for cxa:nple. 
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The function F(X', u /) is the same form as F(X, u) , and u' and X' are defined by 

I _~_(2k8;8;)1 /2 (2/ka) ' /3 

u - X'- '+' ?' 81 82 ~ 

and 
X' = (ka/2) 1/3 fJ' . 

The quant,ities 8, and 82 are the linear distances from the source A, and the receiver A2 measured 
to the intersection of tangent planes of the surface of the cylinder as sketched in figure l c. 
Similar rem arks apply to the primed quantities. 6 The quantity R is the linear distance separat
ing Al and A 2• 

It should be noted that wh en AI and A2 recede to infinity, the earlier (Fraunhofel') solut ion 
is r etrieved as a special case. To effect this transition, it is convenient to use the asymptotic 
relation 

[uF(X, u)]-;;;;,e- i ,,2 ---G(X) [
e - ilr / 4 ] 

'2.,f;rx 
for large positive a and (19) 

-;;;;,e - i ,,2 u+---G(X) [ 
e -i lr / 4 ] 

zj;x 
for large negative a. 

Up to this point the analysis has been developed explicitly for the incident magnetic 
fi eld vector directed along the axis of the cylinder . The res ults can be transformed to the case 
for the incident electric field vector directed along the axis of the cylinder by making the 
following transformation 

H~nc(p , ¢) -7E~nc(p , ¢) 

H~ (p, ¢) -7E~ (p, ¢) 

For metallic surfaces, q-;;;;,O for H parallel polarization and q-;;;;,ro for E parallel polarization, 
and these limiting cases are referred to in the following section as vertical and horizontal polar
izations, r espectively. 

4. Numerical Results 

Basic to the present work is the fun ction G (X). In the region near X = O, the relevant 
integrals cannot apparently be evaluated in closed form. The integrands are quite well 
behaved however, and it is not too difficult to evaluate them by numerical means. In figures 
2a and 2b the real and imaginary parts of G (X) are plotted as a function of X for q= O and 
q= ro , respectively. 

Before discussing the diffraction patteI'll, it is of in terest to consider the behavior of the 
field along the horizon plane. Clearly, this corresponds to fJ = O, X = O, and a= O. The func
t ion F (a) then becomes 

where 

(2/ka) t , as before. 
2 

(20) 

N umerical integration y ields the following values: for q= O, G (0) = - 0.295 + i 0.0811 ; and 

• e and 0' are the angles subtended by the tangent planes as indicated in figure Ie. They are referred to sometimes as angular distances 
and expressed in milliradians. 
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for q= oo, G (0) = 0.344-i 0.0918. This indicates that for vertical polarization (corresponding 
to q= O) with a metallic convex surface, the field along the shadow boundary is increased 
above that for a knife edge. The converse is true for horizontal polarization (corresponding 
to q= 00 ). The increase or reduction from X is approximately the real part of the function 
[-G (O) /u]. Therefore for q= O, JF (0) 1 ~0.500 + (0.295/u) and for q= oo, JF (0) 1 ~0.500-
(0.344 /u). It is of interest to compare this departure from ); with Rice's prediction using a 
parabolic cylinder model. The agreement is good if we equate the curvature of the apex of his 
parabolic cylinder with our a. It is also noted that his assumed plane-wave incidence is 
equivalent to moving our source to infinity (i.e., d1 = oo). Then on identifying Rice's h with 
ka/2 and his A with [(SI +S2)/(27rks\sz)H, we find according to Rice for q= O, JF(0) 1 ~0.500+ 
(0.296 /u) and for q=oo, JF(O) I ~0.500-(0.342/u), being in close agreement with our values 
quoted above. On the other hand, Altmann, using a circular cylindrical model, gives for 
q= O, JF(0) 1 ~0.500+ (0.165/u) and for q= oo, JF(0) 1 ~0.500-(0.33/u). The disagreement in 
the case for q= O with our result should be noted. It is suggested that the asymptotic approxi
mation for the Hankel functions used by Artmann is not fully justified. 

Neugebauer and Bachyinski have also computed a value on the shadow boundary using 
a semiempirical modification to Kirchhoff theory. Again transferring to our notation they 
would give 7 

for q= O, 

for q= CD, 

IF(O) I ~0.500+ 0.271, and 
u 

0282 
IF(O) I ~O.500--· - . 

u 

The agreement of these values with ours (and those of Rice) is reasonable in view of the entirely 
different theoretical approaches employed. It is probable that at least part of the discrepancies 
can be attributed to the nonvalidity of some of the geometrical-opti cal arguments used by 
Neugebauer and Bachynski. 

5 . Diffraction Patterns 

The diffraction pattern behind the obstacle is specified by the behavior of the function 
F(X, u) as a or uX varies. The amplitude JF (X, u) I itself and the resulting diffraction loss Ld. 
are plotted in figure 3a for various values of u with q= O and 00. As u tends to infinity, the 
patterns approach the Kirchoff form described by the function Fo(a ). Since the function 
Fo(a) occurs frequently in what follows, its real and imaginary parts are plotted in figure 3b. 

The diffraction pattern behind a metallic cylindrical model of a mountain crest has been 
measured by Neugebauer and Bachynski in the K-band frequency range. For purposes of 
comparison, they also duplicated the experiment using a thin metallic sheet which was essen
tially equivalent to a knife edge. Their results for ka= 239 are shown in figure 4a and 4b for 
vertical polarization (q = O) and horizontal polarization (q=oo), respectively. The ordinates 
are relative power and the abscissa are distance d2 measured from the crest to the observer. 
The quantity h is the vertical displacement of the receiver above or below the horizon plane. 
In both figures 4a and 4b the source which is a transmitting horn is at a fixed location, being a 
distance ell (= 150},) from the crest. Values calculated from eq (18) are also shown on the 
curves. The agreement is reasonably good. 

Neugebauer and Bachynski also measured the fields behind the crest for various values 
of the curvature parameter ka. This is shown in figure 5 where the ordinate is relative power 
and the abscissa is the deflection angle e. The corresponding calculated curves are also shown 
in figure 5, taking d1= 150}' and d2= 113},. The agreement is still fairly good and probably is 
within experimental error. These curves illustrate in a striking way the influence of curvature 
on the diffraction fields. In the case of horizontal polarization and deep in the shadow, the 

1 Their quantity 'A'= -8".1/2 ~- 1 /3 times the real part of our G (0). 
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finite radius of curvature greatly redu ces the fields below the Kirchhoff or knife-edge valu e. 
This is in accord wi th the results of Nor ton, Rice, and Vogler [13]. 

6 . Further Numerical Results 

To obtain results for finite co ndu ctivity , it is necessary to evaluate the relevant in tegrals 
for finite values of q. For the case of H-parallel or vertical polarization 

( ka)1 /3 
q= - i '2 ZIT/o, 
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where Z is the surface impedance. N ow if the surface is a good conductor 

subject to u> >~W . That is, displacement currents in the conductor are neglected . The 
consequence of this approximation was discussed in some detail in a previous paper devoted 
to this subj ect [16] . Following the earlier no tation 

where 

( )
1/2 

A = (ka)I /3 ~; , 

IS the "loss factor" for the surface. It is seen that for infinite conductivity, A is zero. On 
the other hand, for very poor conductivity and large values of ka, the " loss factor", A, may 
approach infinity. These two limiting cases correspond to q= O and q= oo, respectively, and 
were discussed in the previous section. More usually A takes some intermediate value. 

For the general case 

A A 

G(X) = G1(X) + G3(X) , 
where 

G (X)=e- i .-/4 ( '" - iXt v' (t)-qv(t) dt 
1 ..J; Jo e w;(t)-qW1(t) ' 

G (X) = e__ e(-Xt/2)(~3-i) v - qe v dt A i.- / 12 i '" [ I (t ') -hi/3 (t) ] 
3 ..J; 0 w; (t) - qe 21ri /3W2 (t) . 

(21) 

(22) 

(23) 

(24) 

(25) 

The above relations follow immediately from eq (ll) and (14b). The real and imaginary parts 
A A 

of the integrals G1(X) and G3(X) were evaluated numerically using tabulated values of the 
Airy integral functions. For the present purpose only the real and imaginary parts of the 
function G(X) are required. 

As mentioned above, the field along the horizon pla,u p , i.s of special interest. Expressed as a 
ratio to t he free-space field, this can be written 
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The real a nd imaginary par ts of G (0) ar e plo tted in figure 6 in the form of an Argand diagram . 
Var ious values of A are shown on the curve. The left-hand portion of the curve (i.e. , smaller 
A values) corresponds to an increase over the knife edge value. On the other hand the right
ha nd portion (i.e., larger A ) corresponds to a decrease below the knife-edge field . It is of 
interes t to no te that for an A value of about 0.4 the magni tude of the diffraction field is almost 
the same as that of the knife-edge field. Associated with these in termediate values of A , how
ever , are appreciable phase shifts which correspond to a lag rela tive to the phase of the knife
edge field . The end points of the curve corresponding to q= O and q= 00 were discussed in the 
earlier section. 

F I G UR I" 6. I nt e gral G(O) 
plolted in the complex plane 
for van:ous val1.es oj the con
ducltv',:ly paramelel' A, 

Appli cable to vertical po larizat ion. 
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The real a nd imaginary parts of G (X) are shown plotted in figures 7a and 7b, respectively , 
as a fun ction of X for various valu es of A . 

The diffraction pattern defin ed by IF (X, u) 1 can t hus be readily compu ted for any valu(' 
of A, Examples of th ese are shown in figures 8a, 8b, and 8c for u equal to 2, 5, and 10, respec
t ively, 

The preceding resul ts indicate that the influence of fini te conductivity can be marked for 
H -parallel or vertical polariza tion. For purposes of illustra tion, the displ acement currents 
were neglected so that q has a phase angle of - 45 deg. For poorer conductivi ties this restric
t ion may be violated and the numerical results are not s trictly applicable although they can 
be used for approximate es timates as long as the conduction current~ are at leas t greater than 
the displacement currents . (i. e., <T>e w). In this case, the equation for A should be replaced 
by 

The influence of fini te conductivity for E -parallel or horizon tal polarization is negligible 
for most cases since Iql is always very large compared to unity. 

7 . Concluding Remarks 

A theory for diffraction of electromagnetic waves by a smoo th and convex lossy obstacle 
has been presen ted . The model employed for computation is a circular cylinder of fi ni te 
conductivi ty. 
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rameter A . 

Both (a) and (b) , applicable to vert ical polarizatio n. 
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Probably the most important co nclusio n is that t he influence of fini te curvature of the 
diffracting metallic obstacle is to add a posit ive correctio n to t be Kirchhoff compuLed field for 
a vertically polarized in cident field, whereas t he correct ion is negative for horizontally polarized 
incident field , The in crease or decrease of ampli t ude from the Kirchhoff result is accompanied 
by a corresponding cbange of phase which may be importan t in certain applications, 

The influence of finite conductivity is appreciable for ver t ical polarization a nd the curves 
presented in the paper may be used to compute this effect, In general , the ohmic loss tends 
to reduce the resultant diffracted field . In the case of a horizontal polarization , the finite con
ductivity has a negligible effect and the curves presented in the present paper for q= 0) may be 
used directly. 

While the presen t results are formally restricted to a diffracting surface of constant curva
ture, it can be expected that the results can be used for generally convex surfaces if the CUl'va
t ure is slowly changing. For example, it may be no ted that the diffraction pattern has the 
same approximate analytical form for a circular cylinder, a sphere and a parabolic cylinder. 
At least this is true if the radius of curvature is large compared to the wavelength and the 
deflection angles are smalL D eep in the shadow zone, this similarity principle breaks down 
and the field depends on the rate of change of the curvature. This aspect of the problem has 
been discussed recently by vVu [24] who has generalized some of the quasi-geometrical concepts 
of K eller [25]. As Wu points out, however, for small deflection angles (i,e., reasonably 
nearline-of-sight) tbe diffraction field is not critically dependent on the analytical form of the 
surface provided it is sufficiently smooth. It can be expected that this will also be true for 
lossy obstacles. 
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8. Appendixes 

8 .1. Definition of Airy Integrals 

The Airy integrals used in the above analysis can be represented by the following contour 
integrals 

(26) 

(27) 

(28) 

(29) 

where a=st-s3 j3. 

The fun ct ions u(t), vet), u ' (t ), a nd v' (t ) have been tabulated by F oek [20] for real values 
of t. 

8 .2. Comparison With Results for a Spherical Model 

The previous d iscussion has been based on a cylindrical model. It is of in teres t to com
pare these results wi th those of Fock [21] who employed a spherical model. To facili tate this 
discussion, i t is desirable to review briefly Fock 's work as it per tains to this particular problem . 
The no tation will be cha nged to be consisten t wi th the rest of the presen t paper. 

The source is represen ted as a ver tical electric dipole located a t r= a+ h l with respect to 
a sphere at r= a. (1', Ii, </> are the usual spherical coordina tes with origin at the center of the 
sphere and the ax is in the d irection of the dipole.) The great circle distance between the 
source and the receiver is denoted by s which , of course, is equal to a8. The receiver is located 
at r=a+ h2. In F ock 's theory the following parameter is consistently employed 

M = (ka/2)1 /3, X = l1!f (s /a) = M 8, 

YI = kh j /1VJ and Y2 = kh2/M .. 

rrhe fields for this geometry can b e derived from a single scalar fu nction U which has the 
following form 

where R is the distance from the source to the observer. The first term is a spherical wave 
and represents the primary influence whereas the quantity Us is the secondary influence 
resul t ing from the presence of the spherical body. rrhe rigoro us analytical expression for Us 
is well known , being given fi rst by G. N. 'Watson in a form of a very slowly converging series. 
The transformation of this series into a complex integral had also been accomplished by 'Watson 
who suggested that a new seri es could be evolved if the contour was deformed round a set of 
complex poles. This resul ts in the now well-known residue se]'ieswliich has been studied 
extensively. Rather than deforming the contoUl' Fock decided that the complex integral 
co uld be employed directly. He approximated the spherical Bessel fun ctions by an Airy 
integral approximatio n. This is equivalen t to Van del' Pol 's and Bremmer's "Hankel approxi
mation" which involved Hankel fun ctions of order one-third . This representation is valid 
wh en the argument and the order of the spherical Bessel functions arc very large, but nearly 
the same magnitude. T his means that the heigh ts hI and h2 are small compared to the radius 
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a which it elf mu t be very large compared to the wavelength. FocIe is then able to write 
U in th e followin g form 

e- iks 

U V 
·.,isa sinO 

where r is an attenuation function which is expr essed conveniently as the sum of two parts, 
such th at F = 1', + 1'2, where V, does not depend on the electri cal properties of the spher e and 
l '2 is dependent. 011 these properties. The explicit represen tation for these integrals are 

and 

+ r -ixt v' (t)- qv(t) ( ) ( )d ] .J C2 e w;(t)- qw,(t) W I t - y , WI t - Y2 t , (31) 

where w,(t) , W2(t) , and vet) arc Airy in tegrals defined in appendix 8. 1 and q is as defin ed previ
ously. The contour 0 , is the straigh t lin e !Oegm en t in th e t plane from en exp (-i27r/3) to 0, 
and O2 is the segm ent along the r eal axis from ° to en. By som e ingenious manipula tions, the 
above integral r epresentation 1-, is hown by Focle to correspond to Kirchhoff d iffraction and 
consequ en tly, 1-2 can be r egarded as the corr ection to the K irchhoff theory. Mor e explicitly 

(32) 

and 

(33) 

where wo~k(R-), U= (Y,Y2)' /4/C-lilt + lYz)' /2 and a= u(x- .fi;, - .fi;z). The function involves 
th e Fresnel in Lcgr al which is defi ned by 

It is now possible to cxprcss F 2 in terms of the integr al G(X) encoun tered in th e previous sec
tion. In fact, 

(35) 

where X =a/u= x-,ry;-..,!yz. Equations (33) and (35) given above for 1-, and 1-2, respec
tively, are valid if x, y" and Y2 ar e all large compared to unity, but in such a way that X or 
x-,ry; -~ is fini teo It is also important to remember that these particular r esul ts are only 
valid for h, and h2 small compared to a. This fact appears to have been overlooked in a r ecent 
paper by Kalinin [22]. In many physical situations one is interested in computing d ifJraetion 
by a spherical surface when h, and h2 arc comparable or even large compared to a. It is qu ite 
easy, however, to relax Lhis rest ri ction if the propel' asymptotic form of the spherical Hankel 
fun ctions Ih-l/2 (P) is employed and p is eithe r a+ h" or a+ h2 in Fock's work. First it should 
b e noted that 

(36) 
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where H ;2 ) (p) is the Hankel function of the second kind of order v and argument p. The Debye 
second order representation for the Hankel function H~2) (kb) is now employed and leads to the 
approximation 

where ~= (p2- v2)l /Z-v cos- 1 (vi p), being valid when (p2_V2» > p3/2. With this change, it is 
now possible to write the solu tion in the form 

e- ikR 

U =---yr- F , (38) 

where 

F1=-G(X)lu, 

and 

(39) 

(40) 

(41 ) 

(42) 

8 is the angular distance as usually defined, 8 and 8 1 and 82 are the linear distances measured 
from the source and the observer to the intersection of their tangent planes as in the previous 
section. 

The r esearch r eported herein was sponsored in part by the U.S. Air Force Cambridge 
R esearch Center , Air R esearch and D evelopment Command. 

9. References 

[1] J . C. Schelleng, C. R. Burrows and E. B. F errell , Ultra shortwa ve propagation, Proc. IRE 21, 427 (March 
1933). 

[2] H . Selvidge, Diffraction measurements at ultra-high frequ encies, Proc. IRE 29, 10 (January 1941). 
[3] K. A. Norton, M. Schulkin , and R. S. Kirby, Ground wave propagation over irregular terra in at frequencies 

above 50 Mc, R eference C to t h e report of the Ad Hoc Committee of t he F ed eral Communications 
Commission for the evaluation of the radio propagation factors concerning the television and frequ ency 
modulation broadcasting services in t he frequency range between 50 and 250 Mc (Jun e 6, 1949) . 

[4] S. Matsuo, The m ethod of calculating vhf field intensity and research on its variations, Report of the E lec
trical Communications Laboratory 621.30.001.6 (047.3), Ministry of T elecom munications, Tokyo, 
Japan, (August 1950). 

[5] F . H. Dickson, J . J . Egli , J . W . H erbstreit, and G. S. Wickizer , Large reductions of vhf transmission loss 
and fading by the presence of a mounta in obstacle in beyond line-of-sight paths, Proc . IRE 41, 967, 
(1953) . See comments on t his paper by J . H . Crysdale Proc. IRE 43, 627 (1955). 

[6] T . Kono, Y . Uesugi, M. Hirai, S. Niwa, and H . !rie, M easurement of fi eld intensity of vhf radio waves 
b ehind Mt. Fugi, J. R adio R esearch Labs. (Tokyo) 1, 1 (1954), Ministry of Postal Services, T okyo, 
Japan . 

[7] K . Bullington , R adio propagation at frequencies above 30 megacycles, Proc. IRE 35, 1122 (1947). 
[8] R. S. Kirby, H . T . Dougher ty, and P . L. McQuate, Obstacle gain measurements over Pike's Peak at 60 

to 1,046 Mc, Proc . IRE 43, 1467 (1955). 
[9] K. Furutsu, On the multiple diffraction by spherical mountains, J . Radio R esearch I"abs. (Tokyo) 3, 331 

(1956) . 
[10] J . H . Crysdale, J . W. B. Day, VY. S. Cook, M. E. Psutka, a nd P . E. Robilla rd, An experimental investiga

t ion of the diffraction of electromagnetic waves by a dominating ridge, IRE Trans. AP- 5, 203 (1957) . 
[11] S. O. Rice, Diffraction of plane radio waves b y a parabolic cylinder, Bell System Tech . J . 33, 417 (1954). 
[12] K . Artmann, Beugung polarisierten lichtes an blender endlicher dicke in gebiet del' schattengrenze, Z. 

Physik 127, 468 (1950). 

8 See fi gure 1c, for example. 0 should not be confused with tbe spherical angle coord inate ii. 

196 



[13] K . A. No rto n, P . L . Ri cc, a nd L . E. Vogler, The use of a ngul a r distance in estima ting t ransmission loss a nd 
fa ding ra nge for propaga tion t hrough a turbulent at mosphere over irregular t errain , Proc. IRE 43, 1480 
(1 955) . 

[14] I-I . E. J . Neugebauer a nd M . P . Bachy nsk i, Diffraction by smooth cylindrical moun tains, Proc. IRE 4G, 
1619 (1958) . 

[1 5] 1. P . Shkarofsky, H . E. J. Neugebauer, and M . P . Ba chyns ki , IRE Tra n . AP- G, 3'11 (1958) . 
[16] J . R. Wait and A. M . Conda, Pattern of a n an tenn a on cu rved los. y urface, IRE Tra ns. AP- G, 348 (1958) . 
[17] I-I . Bremmer, T errestrial radio waves, (Else vier Publishi ng Co., Amsterda m, 1949). A comprehcnsive 

review of t he early work of ·Watson, Van der Pol, ancl Bremm er is g iven . 
[18] V. A. Fock, The field of a plane wave near the surface of a co nducting body, J . Phys. U.S.S .R . 10, 399 

(1946) . 
[19] A. S. Goria inov, Diffra ction of pl a ne electromagnetic waves on a co nd ucting cy linder, R adiotekh. i E lek

t ron. 3, 603 (1958). The paper , restricted to pla ne-wave in cid ence a nd perfect conductivity, is a limi ting 
case of the present analysis. 

[20] V. A . Fock, Diffraction of radio waves around t he ear th 's surface (Academy of SCiences, U.S.S. R. , 1946). 
[21] V. A. Fock , Fres nel diffraction from convex bodies, Uspekhi Fiz. Nau k 43, 587 (195 1) . A sphere model is 

used in a study rest ricted t o a ntenn a heights small compared to t he radiu s of cu rvat ure. 
[22] A. 1. K alinin , Approximate methods of compu t ing fi eld strength of ul t ra short wa ves, Radi otekhnika 12, 

(1957). The qu a ntity iJ. as used in his eq (28) is only valid if t he a ntenn a heights, hi a nd h2, above 
th e eq ui valent sphere a rc small compa red to the radius. Clearly t his is violated in K alini n's application . 

[23] K. Furu tsu, Field strength in t he vi cini ty of line of sight in diffraction, J . Radio Research Labs. (Tokyo) 
3, 55 (1 956). (His fun ctions XI (3) , X2 (3) etc. whi ch a re related to Airy in tegrals a re usually approximated 
I)y t he first te rm of th eir' asy mptot ic expansions. It is diffi cul t to see how t his is justifi e::i near line of 
sigh t sin ce the important valu es of z a re not la rge in t h e "co rrection" te rms. For example, in his eC] 
(3.6) t h e leading te rm would va ry as p3/2 rather t ha n p1l2, if higher order te rms of XI(Z) a nd X2(Z) a re 
retained) . 

[24J T . T. Wu, The electromag netic t heory of li ght, P t. I , Sci. Rept . No.9, and T . T . Wu a nd S. R . Seshadri , 
Pt. II, Sci. R ept. No. 22, Cruf t La b., (H ar vard U niv., 1958). 

[25] J . B . K eJl er, Diffraction by a co nvex cylinder, IRE Trans. AP- 4, 312 (195 6). 
[26] N. A. Logan, Fres nel diffract ion by co nvex s urfaces . P aper p resen ted at Washin gton meetin g of In ter

national Scient ific R adio U ni on , M ay 4- 7, 1959 (extens ive num erical res ults for th e care q= O a nd co 

an d certain ge nera li zat ions of t he t heory arc reported in t his paper). 

BO U LD ER, C OLO . (P aper 63D2- 17). 

197 


	jresv63Dn2p_181
	jresv63Dn2p_182
	jresv63Dn2p_183
	jresv63Dn2p_184
	jresv63Dn2p_185
	jresv63Dn2p_186
	jresv63Dn2p_187
	jresv63Dn2p_188
	jresv63Dn2p_189
	jresv63Dn2p_190
	jresv63Dn2p_191
	jresv63Dn2p_192
	jresv63Dn2p_193
	jresv63Dn2p_194
	jresv63Dn2p_195
	jresv63Dn2p_196
	jresv63Dn2p_197
	jresv63Dn2p_198

