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Irregularit ies in the ionosphere which are small compared wit h one wavelength may 
modify the constitutive relations, and hence, may affect the refractive indices for electro
magnetic waves . The modifications arc in somc ways similar to t hose which would be 
introduced into the Appleton-Hartree formula by a Lorentz force. The t heory is g iven 
first for the case when the irregula rities exte nd only in one dimension, and it is found that 
even in a loss-free medium t he refractive index now has an imaginary part which might be 
associated with loss of energy from the wave by scattering. The theory for t hree-dimensional 
irregulari ties is then discussed but is more diffi cult, a ll d a method of su ccesRive approxi
mations is used . The results ind icate t hat sma ll irreg ulari t ies may p lay a n important pa r t 
in the propagation of very-low-frequ ency r adio waves in the ionosphere. In particu lar, 
t hey may explain why " whis tlers" a re observed only on comparatively rare occasions. 

1. Introduction 

In one method of denving the formulas of the magneto-ionic theory [1 ),2 the ionized 
medium is assumcd to havc an elcctric polarization P which is relatcd to the elcctric field E 
through a set of equations called the "constitutive relaLions." By using Maxwell's equations 
together with the constitutivc relations, the Appleton-Hartrce formula for the refractive index 
may be dcduced. The vector P is given by: 

P = Ne r (1) 

where N is the number of electrons per unit volume, e is the charge on one electron, and r is 
the average displacement of an electron from its mean position. P is thus defined by taking 
an average over a volume large enough to contain many electrons. When used in Maxwell's 
equations it is assumed to represent a vector field, continuously distributed in space, and 
approximately constant over distances which are small compared to a wavelenth. There 
would be no meaning in speaking of the value of P at a specific point in the free space between 
the electrons. The use of Maxwell 's equations implies a "smoothing out" process over a 
distance which must be large compared with N - I /3. 

There is now much evidence to show that the ionosphere is an irregular medium, so that 
the electron-number density N varies from place to place. The effect of these irregularities on 
the propagation of waves through the medium may be treated by considering the energy scat
tered from them, or by studying their effect on the refraction and diffraction of the waves. In 
the present paper, an alternative method is suggested for studying this problem in the special 
case when the irregularities are very small compared with one wavelength. The electric field E 
and the polarization P depend on the clecLron-number density N and vary from place to place 
because N varies, but it is possible to find their average values, Eo and Po, by a "smoothing out" 
process similar to that already mentioned. It is the average values which must be used in 
Maxwell's equations; and, in order to find the refractive index, it is necessary to know how Po 
depends on Eo. A new set of constitutive rela tions is therefore required giving Po in terms of Eo, 

1 Cavendish Laboratory, Cambridge, England . 'l'bis work was clone at the National Bureau of Standards while the author was on sabbatical 
leave from Cambridge University. 'rhe work was supported hy the U.S. Air Force and the Bureau. 

2 Figures in brackets indicate the literature references at the end of this paper. 
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and this is, in general, different from the more familiar relations which give P in terms of E. 
Hence, the refractive index must also be modified when small irregularities are present. The
purpose of the present paper is to find these modifications in some sp ecial cases. 

2 . Q ualitative Description of the Method 

The ionosphere is an electrically neutral medium, and it is assumed that the number of 
heavy positi ve ions per unit volume is the same as the number of electrons, N. Variations in N 
from place to place, therefore, occur equally for electrons and positive ions. They are assumed 
to be statistically stationary, and the average value of N over a very large region is No. 

Suppose that a uniform electric field, E, is applied to the ionosphere. If E varies harmoni
cally in time, the electron displacements also vary harmonically with the same frequency, and 
at anyone instant all the electrons are displaced the same distance, r , from their mean positIOns 
The positive ions are assumed to be so heavy that they do not move. Let x be distance meas
ured in the directIOn of E, and suppose that N varies with x as shown in figure 1. 'Vhen the 
electrons are displaced, the effect is to introduce some space charge, whICh is negative where N 
is decreasing in the direction of r, and positive where it is increasing. The first effect of the 
space charge is to introduce an additional electric field, LlE, whose average value is zero as long 
as the electrons are all displaced by the same amount. To a first approximation, thorefore, the 
average value, Eo, of the electric field is just the original field E, and the average value of the 
polarization is Po=Noer. In this case, Po and Eo are related by the same constitutive relations 
as for a homogeneous ionosphere. This results from the assumption that the electron displace
ments r arc all the same. 

The additional electric field LlE exerts a force on the electrons which changes their dis
placements. This in turn changes the space charge dIstribution, which then affects LlE. This 
is a second-order effect since LlE is small, but it will be shown that It causes bo th E and P to 
hlwe new average values, Eo and Po, which are related in a different way from the relation 
between E and P. 

+ 
+ 

NO ELECTRIC FIELD 

(0) EL ECTRONS UNDISPLACED 

(b) EL ECTRONS ALL DISPLAC ED TH E SAME DISTANCE 

x-
(e) EL ECTRONS DISPLAC EME NTS MODIFIED 

FIGU RE l. When electrons are displaced in an irregular 
ionized medium, space charge appears and gives rise to 
electric forces which modify the displacements. 
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3 . Compa rison With the Lorentz Force 

When Lhe magneto-ionic theory was first formulated, it was believed that the electric 
lorcr on an cirril'On in the ionosphere was made up of two parts. One part, eE, arose from t he 
eleeLricficld E impressed on the medium and the other part, 1/3 Pe (raLionalized units), a rose 
-f rom Lhr polarizaLion of the medium itself, a nd i.s called t he LorenL;-; Corce. For many crysLal
line dielectrics, a Lorentz force must certainly be ineluded, but t herr is now evidence thaL in 
t he ionosphere it should b e omitted. The strongest evidence is from the t heory of " whi tIel's" 
which consist of very-low-frequency waves propagaLed in the rxLrns ive ionizcd region Sllr
roundin g the ear th, in directions elose to the lines of Jorce of t he earth's magnelic fi eld [5]. 
The Lorentz force would so modify the co nstitut ive relations for t he iOll o p hr rc, t hat Ulrse 
Jow-frequency waves could not be propagated. 

The modification of the constitutive relations that would be in t roclucrcl b~' small irregulari
ties is similar in some ways to that which would arise from t he Lorentz force. Both effecLs 
occur because there is a force acting on the electro ns which a ri ses fL'Omthe polarization P. 
For the Lorentz force this is simply proporLional to P, but for small irregulari ti.es it depends 
on both P and E. For this reaso n, the effect of small irregularit ies is more compli cated t ha n 
that of a Lorentz force , and it will be shown t hat the additional Jorce on the electron may 
depend upon the state of polarization of the wave. For circularl? polarized waves of very low 
frequency Lraveling in the direcLion of the earth's magnetic field (whistlers), the eHect of 
irregularities may have the same direction as th.e LorenLz force. This affect the dispersion 
law for these waves, a nd if the irregularities are la rge enough in ampli tude, there is a lower 
limit to th e frequencies Lhat can be propagated. 

4 . Definitions of E and D 

For a medium which i not free space, t he elecLrie intensity E is usually defi ned in terms 
of a long thin cavity. The compo nent of E in a given direction is found as follows. A lon g 
thin cavity is imagined to be cut in the medium parallel Lo the given direction. Its lengLh 
must be so small that the electric state of the medium does 1l0L eh.ange appreciably within it. 
For waves in a homogeneous ionosphere this means that the length is small compared to a 
wavelength. An infinitesimal test charge oq is placed at t he center of the cavity and the 
compo nent of of the force acting on iL i nthe direction of the cavity is measured. The com
ponent of E in t his direction is 

lim of/oq. 
oq...,O (1) 

For a medium which contains discrete ions and electrons, this definition can still b e used 
provided that the cross section of the cavity is very large compared with N - J. It is the elect ric 
intensity so defined which is to be used in Maxwell's equations. The cavity definiLion t hus 
effects the "smoothing out" process mentioned in the introduction. A similar argument applies 
to the electric displacement D which is defined in terms of the force normal to the plane of a 
fiat, plate-like cavity on a test charge in the cavity. The longest dimension of the caviLy 
must be small compared to a wavelength, t- and t he thickness must b e large compared with N - i. 

N ow consider an ionized medium in which t here are irregularities small in size compared 
to one wavelength. Suppose that the size of the irregularities is given by a length, t, which 
may be thought of as ("he average di.s tance between one point of maximum electron density 
and its nearest neighbor. Thenl< < t- . The electric intensity can now be defined in two ways. 

The " local" electric intensity E is defined in terms of a long thin cavity whose length is 
very small compared with l , and whose cross section is large compared with N -i. Its valu e 
depends on where the cavity is placed in relation to the maximums of N, and is affected by the 
local configuration of the space charge. It is this value of E which determines the force on an 
electron. 
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The average electric intensity Eo is defined in terms of a long thin cavity whose length 
is very small compared with A, and whose cross section is large compared with l. In this case 
the distance of the test charge from the walls of the cavity is very large compared with l , so 
that the value of Eo is unaffected by local configuration of the irregularities. It is Eo which 
must be used in Maxwell's equations. The cavity definition here effects the "smoothing out" 
process over a distance small compared to a wavelength but large compared with l. 

In a similar way, flat plate-like cavities may be used to define the local value D and the 
average value Do of the electric displacement. The local electric polarization P is given by (1). 
Its average value is denoted by Po, and is not, in general , equal to No e ro where ro is the average 
value of r. The following relations may be derived by the standard methods of electromagnetic 
theory (rationalized units) : 

D= EoE + P, (2) 

(3) 

P and E are related by the same constitutive relations as for a homogeneous medium, but 
this is not true for Po and Eo. 

Before attempting the general theory for three-dimensional space, the theory will be 
illustrated by discussing a simpler problem in one dimension. 

5. Irregularities in One Dimension 

Suppose that the electron density N is a function only of x, and consider the effect of 
an electric fi eld parallel to the x direction. The effect of the earth's magnetic field is neglected. 
Our problem is to calculate the effective dielectric constant of the medium. The reader may 
find it helpful to imagine that a large sample of the medium is placed between two conducting 
plates in planes ;1:= constant, forming a parallel plate condenser whose capacity is to be found. 
D and E are both parallel to the x direction and may be written simply as D and E. The 
electron number density N is given by 

N = No+ t:.N, (4) 

where t:.N is small compared with No . Similarly the displacement r of an electron in the 
x direction from its mean position is given by 

(5) 
Further 

(6) 

Each of t:.N, t:.1', and t:.E is a function of x, and has an average value of zero. 
Now div D= O so that in this case dD jdx = O and 

D= Do= constant (7) 

for all values of x. This equation automatically takes care of the effect of space charge. The 
space charge density is p=-dPjdx. It gives rise to an additional electric field which must 
be such that div D= O. It would clearly be incorrect to write div D= p, for this would include 
the space charge twice. 

The electron displacement r is related to E thus. 

r = 'YE, (8) 

where 'Y is a constant which is, in general , complex. If the effect of collisions is neglected, 
'Y=-ejmw2 where m is the mass of an electron and w is the angular wave frequency. If the 
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average number of collisions pel' unit time for an electron IS v, then 'Y =e/(imvw - mw2) . 

Now P = N el' = N e'YE and hence 

(9) 

This gives 

(10) 

whose average value must be zero. 
It is now necessary to make some further assumptions about the irregularities t::,.N. Let 

t::,.N= ~ . It is assumed that ~ has a Gaussian distribution about zero, which means that the 
probability, p (~) d~ , that ~ lies in the range ~ to ~+d~ is given by 

(11) 

where 

(A quantity with a bar over it denotes the average value of that Q1Jantity.) Then the average 
value of t::,. E is 

which must be zero. The integral is evaluated in appendix: A. Let 

Then the Tesult of equating (13) to zero is: 

where 

Eo_ 1 { . 1/ 2 _ Q2 2F(('») } - - - - ~7r e - ; " , 
Do .\ 

2 ( a 2 
F(n )=e-a Jo eU duo 

(14) 

(15) 

(16) 

If electron collisions are neglected, '1 is real and the integrand in (13) is then real at all points 
on the real ~ axis , but has a pole on this path. The princi1 al value of the integral is then 
purely real. If '1 has a small imaginary part, however , the integral has an imaginary part 
which does not tend to zero as 1 ('Y )---?0 . Thus the limiting value of the integral is not the same 
as the principal value. Now it is impossible for the collision frequency to be exactly zero so 
that clearly the limiting value is the correct one to use when collisions are neglected. 

Now 
(17) 

where e' is the dielectric constant of a homogeneous medium with the electron number density 
No. The true dielecLri c constant is e= Do/eoEo. Let 

(18) 

Then (14) gives 
(19) 

which may be substituted in (15) . 

139 



If electron collisions are neglected: 

and (15) gives 

N, Z 
€' = I - X , vI/-here X=~, 

€omw 
(20) 

(21 ) 

This is the formula for the square of the refractive index in the one-dimensional case when 
small irregularities are present. It replaces the formula /L2= I - X which would be true for a 
homogeneous medium. The quantity Xis the same as Appleton's [1] x and is proportional to the 
electron density. In figure 2 curves are plotted showing how the real and imaginary parts of J.L 

depend upon X for various values of (3 . 
Equation (21 ) shows that J.L2 has an imaginary part even when electron collisions are 

neglected. Hence, some energy would be lost from an electromagnetic wave although there 
is no physical mechanism for converting electric energy into heat. It is known that irregu
larities cause scattering of energy from the original wave, and this must account for the imagi
nary part of /L2• 

When X» 1, Q is large since ,6 IS small . The term, e-n2 may then be neglected, and 
F(Q) may be replaced by the first two terms of its asymptotic expansion (eq A7, app . A). 
If powers of (3 higher than the first are neglected, the expression (21 ) becomes 

X 
J.LZ"", 1-1+ (3X/(X _ 1) ' (22) 

which may be comparcd with the expression for /L 2 in a homogeneous medium when the Lorentz 
term is included, namely: 

1.0 
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t 3- 0.6 
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t 0.6 
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z· 0.115 

.!.- --
0 

? 1 X 
w= -1 + (1 /3)X· 
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x-
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/ 

FIGURE 2. The effect of small i rregu larities on the variation 
of R (J-L) and - 1 (J-L ) with X. 

fJ is a measure of the strength of the il'l'cgularitics. For the full curves electron 
collisions are neglected. For the dashed cnrves, Z =p/w= O.1l5, and fJ = O. 
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The fac tol' (31(X- 1) in (22) is analogous to the Loren tz faetor, 1/3, in (23). The effect of the 
irregulanti e ha Lhe same sign as a Lorentz force ( mce X» 1), but ge ts progressively smaller 
a X in creases. 

6. Irregularities in Three Dime nsions, General Theory 

There appears to be no direct way of extending the method of the last section to deal 
wi th irregularitlCs in three dImensions. In one dimension the equation, div D = O, has tbe 
simple integral D = constant, bu t there is no correspondingly simple rcsult for three d imensions. 
In this and the following sections, therefore , a solution by successive approximatio ll s will be 
attemp ted. 

Cartesian coordinates x, y , z, are used. L et i, j , k denote unit vectors p arallel to the 
x, y , and z axes respectively . Then the position of a point (x, y , z) is given by the vector 
s= ix+ jy+ k z. The elec tron number density N is given by (4) where fl N is now an irregular 
fun ction of x, y , z. flN may be expressed as the sum of m any Fourier terms thus : 

(24) 

(25) 
where 

K= ui+ vj+ wk . (26 ) 

The summation is really a triple sum over all values of u, v, w . AK and ¢K are the ampli t ude 
and phase, r espectively, of the Fourier term. 

7. First Approximation 

s a first approximation it is assumed tha t the electric field E in the medium is the samo 
at all points and equ al to E[. Then each electron is displaced from i ts mean position by the 
same amoun t 1'[ given by 

(27) 

whem T is a tenso r which can be fo und fronl. the equation of motion of an electron . Because 
of the irregulari t ies flN, the displacement 1'1 r esul ts in the appearance of space ch arge which in 
turn gives an addi Li onal electric field flE j • The contribu tion b.E j (K ) to b.E[ from one F ouri er 
componen t in (24) will now be found . 

A single F ourier component (b.N)K is a one-dimensional variation of b.N and ma:v be trea Led 
as in seeLion 5. The addi tional electric field b.E[ (K) must be normal to Lhe planes of co nstan t 
b.N for this component and so is parallel to the vector K. At this stage 1'[ is tak en as a constant, 
so that the average value of E[ must remain unaffec t ed by the irregulari ties. H ence, b.E[ (K ) = 0. 
For componen ts parallel to K we have eo E + P = D =constant, so that eo b.E + b.P= O. Now 
b.P= c(b.N)Kr j (K ) wh er e r/K ) is the component of 1' j parallel to K. H ence 

b. E[ (K) = -!!..AK cos (KS - ¢K) ( 1'Kj~) ·K. 
eo 

(28) 

H ere the factor (1'[K) IIK I is r[ (K ) , and the facLm' K /IK I is a unit vector in the direction of K. 
The total addi tional fi eld b.E[ from the first approximation is given by: 

(29) 

8. Second Approximation 

'I.'he effect of the appearance of the additional elec tric field b.E j is to give th e elec trons an 
additional displacemen t , 
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(30) 

Both Ml and .6.E1 are fu,nctions of position. M j gives rise to further space charge which in 
turn results in a further contribution .6.E2 to the electric field. The average value of .6.Ej is 
zero, but the average value .6.E2 of .6.E2 is not in general zero, and its value must now be found. 

The resultant electron displacement is r1 + .6.rj, which must be substituted for rj in eq (28). 
This gives: 

(31) 

and .6.E2 is given by 
(32) 

.6.r1, and therefore .6.E2 (K), contain a summation over all values of K, and so (32) contains a 
double summation. Now take the average of (32). Clearly cos (KjS-¢Kl) cos (K2s-¢K2) 

has the average value zero when Kl ~ K2 and the average value 1/2 when Kl = K2• The value 
of rl may be inserted from (27). Hence : 

(33) 

The average electric field is now given by 

N ext it is necessary to find the average value Po of the polarization P. From eq (1): 

and hence 

PO=eNOr1+e .6.NM j • (36) 

From (28), (29), and (30): 

.6.N.6.r1=-!:... 2:: AK cos (KS - ¢K) (r lK·~) TK 2:: AK cos (KS - ¢K), 
~ K K 

(37) 

and on taking the average: 

(38) 

Hence from (36) and (27) 

P = N TE _£ ~ A2 {TE1·K }TK. oeo j2 L...iK K2 
EO K 

(39) 

In eq (33), (34), and (39), Po and Eo are expressed in terms of E1. 
constitutive relations between Po and Eo. 

Elimination of El gives the 

9 . Discussion When T Is a Scalar 

If the effect of the earth's magnetic field is neglected, the tensor T reduces to the scalar 'Y 

used in sec. 5. Then eq (33) becomes 

(40) 

The factor [(EI . K) jK 2] . K is simply the component of El in the direction of K. 
It is now assumed that the irregularities are isotropic. This means that for a given value 

of IKI the directions of the vectors,~K, are uniformly distributed in any hemisphere and the 
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probability of a given value of AK is independent of the direction of K. Select first those 
value of K for which [K [ is in a specified range, cl [K [, and AK is in a specified range, clAK , and 
perform the summation for these values first. Then the last factor in (36) is simply 1/2 E 1• 

Hence (40) becomes : 

(41 ) 

But 

-21 ~ AJc= (LlN) 2. 
J( 

(42) 

H ence (34), (41), and (42) give: 

E - E { 1+~ e2"(2N5 (LlN\2} . 
0 - 1 2 f5 No ) (43) 

Equation (39) becomes: 

(44) 

which reduces in a similar way to 

(45) 

The dielectric constant e is given by 

It is convenient to use Lhe expression (17) for e' , and the abbreviation (18) . Then: 

If electron collisions are neglected and (20) is used, eq (47) becomes: 

(48) 

which should be compared with the expressions (21 ) and (22) ob tained for t he one-dimensional 
case. The difference is not surprising since the plane sheets of space charge formed in the one
dimensional problem would be expected to have a larger and different effect from an irregular 
three-dimensional distribution of charge. It is probable that (48) is unreliable when X is neal' 
unity, for then the wave frequency is neal' the plasma frequency, and it is possible for the elec
trons to make oscillations of large amplitude. The approximations made in the derivation 
would then be invalid. This may also explain why the expression (48) is purely real. In a more 
accurate t reatment it should have an imaginary part which is associated with loss of energy 
from the wave by scattering. 

10. Discussion When T is a Tensor 

The constitutive relations will now be derived for the special case of a plane wave with its 
wave normal in the direction of the earth's magnetic fi eld, which is t aken as the z axis. The 
tensor T is then given by: 

T~ -":'U(U,'-Y') [ YU 
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(sec for example, Banerjea [2]) where U=l - iZ , Z = vlw, v is the average number of collisions 
made per unit time by an electron, Y = 0JH!W, and wH!27r is the magnetic gyrofrequency for 
electrons. This case is of interest in the study of the propagation of whistlers [5]. 

In a homogeneous medium, a wave whose normal is parallel to the magnetic field is circu
larly polarized, and the electric field has no component in the direction of the wave normal. 
Now E/ is the first approximation to t he electric field of the wave and is, therefore, the field of 
a wave in a homogeneous medium. Hence, it has no component parallel to the z axis, and (27) 
and (49) show that r/ similarly has no z component. Hence ,\Te may write: 

(50) 

There is strong evidence that irregularities in the ionosphere are elongated in the direction of 
the earth's magnetic field [4]. To allow for this, eq (26) is replaced by 

K=ui+ vj + fw k , (51) 

wheref is a number less than unity. It will be assumed that the irregularities of !::"N are isotropic 
with respect to the variables 11, v, w. The effect of the factor f is as though a region of truly 
isotropic irregularities had been stretched in the z direction by a factor I lf, andf will therefore 
be called t he "elongation factor". 

The expression (33) for !::"Ez must now be written down for this special case. The notation 
Tij (i, j =x, y, z) will be used for clements of T. Equation (49) shows that Txz= Tyz= Tzx= 
Tzy= O, Txy= - T yx. Hence the factor (T K) . Kin (33) becomes 

(52) 

Equations (27) and (50) show that the factor {(T E/) . K }. Kin (33) is given by 

(53) 

N ow when the summation in (33) is completed, terms involving the products uv, VW, wu will 
give zero, because t:..N is isotropic with respect to u, v, w. Hence (53) becomes: 

(54) 

Equation (49) shows further that Txz= Tyy. Hence eq (33) can now be written in full using 
(52) and (54). It gives 

It is shown in app . B that 

(57) 

where L(j), 111(j) are known functions of f, and {3 is given by (18). H ence (55) becomes: 

(58) 

and (34) (27) give: 

(59) 
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Next, eq (3 9) must be wri tten down for this special case. By methods similar to the above 
it can be shown that 

(60) 

wh ere 

(61) 

(see app B) 
Equation (60) is now substitu ted in (3 9) and (27), (50) are used . This gives 

which may now be combined with (59) to give the constitu tive r elation . 
The relations (59) and (62) are equivalent to: 

Eo= { T-l +;:~ (3N~ (TxxL+TzzM) }T E I , (63) 

Po=eN o (1- ;~o Q(3 T)T EI , (64) 

:from which Lhe vector T EJ is to be eliminated . This then gives 

(65) 

where R IS to be :found. No w {3 is a small quantiLy and its square a nd higher powers will be 
neglected. Then j t can be shown that 

(66) 

and it follows from the expression (49) for T that 

(67) 

The standard methods of magneto-ionic theory may now be used to find the polarization and 
Tefractive indices of the waves wInch can be propagated. The two polarizations are g iven 
by p= ± i, so that the two waves are CIrcularly polarized with opposite senses, and the two 
Tefractive indices are given by 

2 + 1 
J1. = 1 (R 'R )' EO xx± ~ xy 

(68) 

which leads to 
x 

(69) 

11 . Application to Whistlers 

Whistlers are naturally OCCUlTing radio signals propagated in the extensive ionized region 
surrounding the earth , with the wave normals in directions close to the lines of force of the earth 's 
magnetic field [5]. The frequency is very low (often III the audible range) so that X and Y 
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are very large compared to unity. The waves are not heavily attenuated so that the effect 
of electron collisions must be small. Hence in (69) we take U=l, X»l, Y»l. More
over X jY is inversely proportional to frequency and is very large at low frequencies, so that 
X jY»l [5]. One of the values of J.L given by (69) is almost purely imaginary; the other value, 
with - Y in the denominator, refers to the wave which is believed to explam whistlers, and it 
is given by 

2 X 
J.L ~ {3 ( L) 1 . 

Y - 2 X 2 M - p +2{3QX 
(70) 

If the elongation factor f is not near zero, then 1\.1(f) and L(f) are both non-zero, but L jP«M 
since Y is large. X may be neglected in comparison with X2, so that (70) becomes: 

2 X 
J.L ~Y - Yz{3MX2' (71 ) 

The additional term ~6{3MX2 in the denominator has an effect similar to tha t which the Lorentz 
force would have. Waves could not be propagated If 

~MX2>Y 
2 ' 

(72) 

for then the refract.ive index would be purely imaginary. Hence, irregularities could modify 
the propagation of whistlers. Equation (72) shows that there is a lower limit to the frequencies 
which could be propagated, given by 

(73) 

where fN is the plasma frequency and fff is the gyrofrequency. 
If, however, the irregularities are very elongated in the direction of the earth's magnetic 

field, so that the elongation factor f is very small , then M (f) is small (see app. B), and its effect 
could be opposed by the term L j P in the denominator of (70). If f is so small that L ~MP, 

then the effect of irregularities on the propagation of whistlers would be small. 
It is well known that whistlers are not obse['ved regularly, but only during comparatively 

short periods of time. They are believed to start from lightning flashes , so that sources of 
whistlers are always plentiful. The absence of whistlers for long periods must therefore be 
explained by some feature of the propagation. It is now tentatively suggested that whistlers 
cannot be observed when the path they would travel contains irregularities which are not 
greatly elongated. On the occasions when whistlers can be observed, the irregularities are 
either absent or greatly elongated in the direction of the earth's magnetic field . 

12. Conclusion 

It has been shown that irregularities in the ionosphere, which are small compared with 
one wavelength, may modify the constitutive relations and hence may affect the refractive 
indices for electromagnetic waves. The modifications are in some ways similar to those which 
would be introduced into the Appleton-Hartree formula by a Lorentz force. When the irregu
lari ties extend only in one dimension the theory can be handled by the statistical method of 
section 5, and it was found that even in a loss-free medium the refractive index now has an 
imaginary part which might be associated with loss of energy from the wave by scattering. 
For the general three-dimensional case, the theory is more difficult and has only been handled 
by a method of successive approximations. A theory similar to that of section 5 is needed for 
this case but has not so far been found. The method of section 6 onwards is less satisfactory 
because of the numerous approximations. The results, however, do indicate that small irregu
larities may play an important part in the propagation of very-low-frequency radio waves in 
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the ionosphere. In particular, they may explain why whistlers are observed only on compar
atively rare occasions. 

The author is greatly indebted to the University of Colorado, and to the Directors and 
taffs of tbe High Altitude Observatory and NBS for providing him wi th the opportunity to 

work in Boulder. 

13. Appendix A: Evaluation of the Integral in Equation (13) 

With the notation (14), the integral in (13) becomes 

(AI) 

Let Ul2a= w. Tben (AI ) gives 

(A2) 

Now 

_ l _ = i { ±OO e-ir(w+m(iT 
w+ Q Jo ' (A3) 

where the top limit is + ro when I (Q) is negative, and - ro when I (Q) is positive. H ere I (Q) 
is always po itive. Hence 

. i -'" (- l /h 2- iIl,) l 2' li2 _ f!2J, -'" - v2d = ~ 7r e . G T = ~7r e e v 
o i f! 

(A4) 
where 

(A5) 

When (A5) is subsitituted in (A2) it leads to the result (15). 
The function F (Q) has been studied by Mitchell and Zemansky [3] who give the following 

formulas: 
~ wben Q is small; 

~ 

\ 

and when Q is large; 

, 1 [ 1 1·3 1·3·5 ] 
B (Q)"'2Q 1+(2Q2) + (2Q2)2+(2Q2) 3+'" . 

14. Appendix B: Evaluation of Coefficents in Equations (55) and (60) 

According to eq (51) the vector K= iu+ iv+ kfw. Its diJ:ection cosines are therefore 

u 
l (U2+ V2 + PW2)1 /2' 

v 
m 

These may be written in spherical polar coordinates: 

l= sin 8 cos 4>, m= sin 8 sin 4>, n =cos 8. 
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(B1) 

(B2) 



In equation (55) the coefficient U4/ (U2+V2+PW2)2 is l4= sin48 cos4</> . It is assumed that 
th e distribution of the directions of K is the same for all values of A K , which means that 

Since all valucs of </> are equally probable this is equal to 

It can be shown that s in4 </> = cos4 </> = 3/S; cos2</> sin2 </> = 1/8; cos2¢ = sin2 </> = 1/2. 

:8Akl4 = :8Akm4= 3/S sin4 8 :8At 

:8Akl2m2= 1/8 sin" 8 :8Ak, 

Now let 
} z=z' 

so that 
K = ui+ vj + wk' , 

where i, j, k' are unit vectors parallel to the axes of the coordinate system 
the spherical polar angles in this system b e 8' , </>. Then 

} tan 8= tan e' . 

(B3) 

(B4) 

H ence: 

(B5) 

(B6) 

(B7) 

(BS) 

(B9) 

(BIO) 

(Bll ) 

(x, y, z' ) . Let 

(B12) 

N ow the irregularities are isotropic with respect of u , v, w, which means that all directions 
of the vector K in the systcm x, y, z' are equally probable. Hence, the probability p ee' , ¢)d8' d</> 
that e', </>, lie in given ranges de'd¢ is given by 

p (8' , ¢)= (J/ 47r-) sin 8'. (BI3) 

The corresponding probability that e,</> lie in ranges de,d</> is p (8,</» d8d¢ where 

,de' J2 sine 
p (8,</» = p (8 , ¢) d8 47r (cos28+ J2 sin2e)3/2' (B14) 

The average val ues in eq (B5) to (B9) can now be found. For exampl e 

-'-4 -S'" .f2 sin58 12
'-sm e- 4 ( 28 + r . 28 3/2 de d</>. o 7r cos . - sm ) 0 

(B15) 

This reduces to 

(B16) 

Similarly it can be shown that 

cos2 8 sin2 e:=M(j) =-~f2 (l - P )-2+p (l +~p}I-f2) -5/2 10g [{ 1+ (l-P)1 /2}/fl (B17) 

COS"e = p(j) = l - L(j) -M(f ) (BlS) 

S111"O = o (f) = L(j) + M(j) (B19) 
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In particular:- L (O) = 1; L (l ) = /15 ; M (O) = 0; M(l) = 2/ 15. 
Figure 3 gives curves howing how L(j) , M(j) depend upon j. 
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ELO NGATIO N FACTOR f-

FI GURE 3. Ourves showing how the junctions L (f) and M (f) 
depend on the elongation jactor f. 

15. References 

[ I HE. V. App leto n, Wircless stud ies of th e ionospherc, J . InsL. Elee. Engrs. (London) 71 , 
6-l2 (1932). 

[2J B. J\: . Banerjea, On th e propagation of electromagnetic waves t hro ugh the aLmosphere, 
Proc. R oy . Soc. (L ondon) [A] 190, 67 (1947). 

[:)] A. C. G. Mi tchell a nd M . 'vV. Zema nsky, llesona nce radiation and excited atoms, Cam
bridge Un iv . Press (1934). 

[4] 1\1 . Spe nce' I', The sha pe of irregu lari Lics in the upper atmosphere, Proc. Phys. Soc. (Lon
don) [B] 68, '19:) (1955). 

[5] L. R , C. Storey, An in vestigation of whistling atmospherics, Phi l. Trans. lloy. Soc. 
L ondon Se r, [A] 246, 11;) (1953). 

B OULDER, COLO. (Paper 63D 2- 14) 

508098- 59--3 149 


	jresv63Dn2p_135
	jresv63Dn2p_136
	jresv63Dn2p_137
	jresv63Dn2p_138
	jresv63Dn2p_139
	jresv63Dn2p_140
	jresv63Dn2p_141
	jresv63Dn2p_142
	jresv63Dn2p_143
	jresv63Dn2p_144
	jresv63Dn2p_145
	jresv63Dn2p_146
	jresv63Dn2p_147
	jresv63Dn2p_148
	jresv63Dn2p_149
	jresv63Dn2p_150

