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Effect of Small Irregularities on the Constitutive
Relations for the Ionosphere
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Irregularities in the ionosphere which are small compared with one wavelength may
modify the constitutive relations, and hence, may affect the refractive indices for electro-
magnetic waves. The modifications are in some ways similar to those which would be
introduced into the Appleton-Hartree formula by a Lorentz force. The theory is given
first for the case when the irregularities extend only in one dimension, and it is found that
even in a loss-free medium the refractive index now has an imaginary part which might be
associated with loss of energy from the wave by scattering. The theory for three-dimensional
irregularities is then discussed but is more difficult, and a method of successive approxi-
mations is used. The results indicate that small irregularities may play an important part
in the propagation of very-low-frequency radio waves in the ionosphere. In particular,
they may explain why “whistlers’” are observed only on comparatively rare occasions.

1. Introduction

In one method of deriving the formulas of the magneto-ionic theory [1],% the ionized
medium is assumed to have an electric polarization P which is related to the electric field E
through a set of equations called the “‘constitutive relations.” By using Maxwell’s equations
together with the constitutive relations, the Appleton-Hartree formula for the refractive index
may be deduced. The vector P is given by:

P :]\‘YCI‘ (1)

where N is the number of electrons per unit volume, ¢ is the charge on one electron, and r is
the average displacement of an electron from its mean position. P is thus defined by taking
an average over a volume large enough to contain many electrons. When used in Maxwell’s
equations it i1s assumed to represent a vector field, continuously distributed in space, and
approximately constant over distances which are small compared to a wavelenth. There
would be no meaning in speaking of the value of P at a specific point in the free space between
the electrons. The use of Maxwell’s equations implies a “smoothing out’ process over a
distance which must be large compared with N=1/3,

There is now much evidence to show that the ionosphere is an irregular medium, so that
the electron-number density N varies from place to place. The effect of these irregularities on
the propagation of waves through the medium may be treated by considering the energy scat-
tered from them, or by studying their effect on the refraction and diffraction of the waves. In
the present paper, an alternative method is suggested for studying this problem in the special
case when the irregularities are very small compared with one wavelength. The electric field E
and the polarization P depend on the electron-number density N and vary from place to place
because N varies, but it is possible to find their average values, E, and Py, by a “smoothing out”
process similar to that already mentioned. It is the average values which must be used in
Maxwell’s equations; and, in order to find the refractive index, it is necessary to know how P,
depends on E;. A new set of constitutive relations is therefore required giving Py in terms of E,,

1 Cavendish Laboratory, Cambridge, England. This work was done at the National Bureau of Standards while the author was on sabbatical
leave from Cambridge University. The work was supported by the U.S. Air Force and the Bureau.

? Figures in brackets indicate the literature references at the end of this paper.
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and this is, in general, different from the more familiar relations which give P in terms of E.
Hence, the refractive index must also be modified when small irregularities are present. The
purpose of the present paper is to find these modifications in some special cases.

2. Qualitative Description of the Method

The ionosphere is an electrically neutral medium, and it is assumed that the number of
heavy positive ions per unit volume is the same as the number of electrons, N. Variations in N
from place to place, therefore, occur equally for electrons and positive ions. They are assumed
to be statistically stationary, and the average value of N over a very large region is N,.

Suppose that a uniform electric field, E. is applied to the ionosphere. If E varies harmoni-
cally in time, the electron displacements also vary harmonically with the same frequency, and
at any one instant all the electrons are displaced the same distance, r, from their mean positions
The positive ions are assumed to be so heavy that they do not move. Let x be distance meas-
ured in the direction of E, and suppose that N varies with z as shown in figure 1. When the
electrons are displaced, the effect is to introduce some space charge, which is negative where N
is decreasing in the direction of r, and positive where it is increasing. The first effect of the
space charge is to introduce an additional electric field, AE, whose average value is zero as long
as the electrons are all displaced by the same amount. To a first approximation, therefore, the
average value, Ey, of the electric field is just the original field E, and the average value of the
polarization is Py=2Nyer. In this case, Py and E, are related by the same constitutive relations
as for a homogeneous ionosphere. This results from the assumption that the electron displace-
ments r are all the same.

The additional electric field AE exerts a force on the electrons which changes their dis-
placements. This in turn changes the space charge distribution, which then affects AE. This
is a second-order effect since AE is small, but it will be shown that 1t causes both E and P to
have new average values, E, and Py, which are related in a different way from the relation
between E and P.

NO ELECTRIC FIELD

(0) ELECTRONS UNDISPLACED

ELECTRONS

ELECTRIC FIELD

x
(c) ELECTRONS DISPLACEMENTS MODIFIED
Frcure 1. When electrons are displaced in an irregular

ionized medium, space charge appears and gives rise to
electric forces which modify the displacements.
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3. Comparison With the Lorentz Force

When the magneto-ionic theory was first formulated, it was believed that the electric
force on an electron in the ionosphere was made up of two parts. One part, ¢E, arose from the
electrie field E impressed on the medium and the other part, 1/3 Pe (rationalized units), arose
from the polarization of the medium itself, and is called the Lorentz force. For many erystal-
line dielectries, a Lorentz force must certainly be included, but there is now evidence that in
the ionosphere it should be omitted. The strongest evidence is from the theory of “whistlers”
which consist of very-low-frequency waves propagated in the extensive ionized region sur-
rounding the earth, in directions close to the lines of force of the earth’s magnetic field [5].
The Lorentz force would so modify the constitutive relations for the ionosphere, that these
low-frequency waves could not be propagated.

The modification of the constitutive relations that would be introduced by small irregulari-
ties is similar in some ways to that which would arise from the Lorentz force. Both effects
occur because there is a force acting on the electrons which arises from the polarization P.
For the Lorentz force this is simply proportional to P, but for small irregularities 1t depends
on both P and E. For this reason, the effect of small irregularities is more complicated than
that of a Lorentz force, and it will be shown that the additional force on the electron may
depend upon the state of polarization of the wave. For circularly polarized waves of very low
frequency traveling in the direction of the earth’s magnetic field (whistlers), the effect of
irregularities may have the same direction as the Lorentz force. This affects the dispersion
law for these waves, and if the irregularities are large enough in amplitude, there is a lower
limit to the frequencies that can be propagated.

4. Definitions of E and D

For a medium which is not free space, the electric intensity E is usually defined in terms
of a long thin cavity. The component of E in a given direction is found as follows. A long
thin cavity is imagined to be cut in the medium parallel to the given direction. Its length
must be so small that the electric state of the medium does not change appreciably within it.
For waves in a homogeneous ionosphere this means that the length is small compared to a
wavelength. An infinitesimal test charge 6¢ is placed at the center of the cavity and the
component 6F of the force acting on it in the direction of the cavity is measured. The com-
ponent of E in this direction is

lim 6F/sq. 1)

80

For a medium which contains discrete ions and electrons, this definition can still be used
provided that the cross section of the cavity is very large compared with N=*. It is the electric
intensity so defined which is to be used in Maxwell’s equations. The cavity definition thus
effects the “smoothing out” process mentioned in the introduction. A similar argument applies
to the electric displacement D which is defined in terms of the force normal to the plane of a
flat, plate-like cavity on a test charge in the cavity. The longest dimension of the cavity
must be small compared to a wavelength, N and the thickness must be large compared with N~

Now consider an ionized medium in which there are irregularities small in size compared
to one wavelength. Suppose that the size of the irregularities is given by a length, /, which
may be thought of as the average distance between one point of maximum electron density
and its nearest neighbor. Then (< <_X. The electric intensity can now be defined in two ways.

The “local” electric intensity E is defined in terms of a long thin cavity whose length is
very small compared with /, and whose cross section is large compared with N='. Its value
depends on where the cavity is placed in relation to the maximums of N, and is affected by the
local configuration of the space charge. 1t is this value of E which determines the force on an
electron.
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The average electric intensity E, is defined in terms of a long thin cavity whose length
is very small compared with X, and whose cross section is large compared with /. In this case
the distance of the test charge from the walls of the cavity is very large compared with /, so
that the value of E; is unaffected by local configuration of the irregularities. It is E, which
must be used in Maxwell’s equations. The cavity definition here effects the “smoothing out”
process over a distance small compared to a wavelength but large compared with /.

In a similar way, flat plate-like cavities may be used to define the local value D and the
average value D of the electric displacement. The local electric polarization P is given by (1).
Its average value is denoted by Py, and is not, in general, equal to N, e ry where 1, is the average
value of r. The following relations may be derived by the standard methods of electromagnetic
theory (rationalized units):

D=E+P, @)
D(): €0E0+ Po. (3)

P and E are related by the same constitutive relations as for a homogeneous medium, but
this is not true for P, and E,.

Before attempting the general theory for three-dimensional space, the theory will be
illustrated by discussing a simpler problem in one dimension.

5. Irreqgularities in One Dimension

Suppose that the electron density N is a function only of z, and consider the effect of
an electric field parallel to the 2 direction. The effect of the earth’s magnetic field is neglected.
Our problem is to calculate the effective dielectric constant of the medium. The reader may
find it helpful to imagine that a large sample of the medium is placed between two conducting
plates in planes z=constant, forming a parallel plate condenser whose capacity is to be found.
D and E are both parallel to the 2 direction and may be written simply as D and E. The
electron namber density N is given by

N=N,+AN, 4)

where AN is small compared with N,. Similarly the displacement » of an electron in the
z direction from its mean position is given by

r=ro+Ar. (5)
Further

E=FE,+AE. (6)

Each of AN, Ar, and AE is a function of z, and has an average value of zero.
Now div D=0 so that in this case dD/dz=0 and

D=D,=constant ()

for all values of z. This equation automatically takes care of the effect of space charge. The
space charge density is p=—dP/dz. Tt gives rise to an additional electric field which must
be such that div D=0. It would clearly be incorrect to write div D=p, for this would include
the space charge twice.

The electron displacement 7 is related to [ thus.

r=~E, (8)

where v is a constant which is, in general, complex. If the effect of collisions is neglected,
v=—e/me® where m is the mass of an electron and w is the angular wave frequency. If the
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average number of collisions per unit time for an electron is », then y=¢/@mvo—me?).
Now P=Ner=NeyE and hence

D=(e&+ Nev) E=Dy={ e+ (No+AN)ey} (E,+AE). )
This gives
D,

=e0+ eyNo—i—eyAN—E”’ ()

whose average value must be zero.

It is now necessary to make some further assumptions about the irregularities AN. Let
AN=E. It is assumed that ¢ has a Gaussian distribution about zero, which means that the
probability, p(&) d&, that & lies in the range & to £-+d¢ is given by

()= et (11)

a2
where
= /AN, (12)

(A quantity with a bar over it denotes the average value of that quantity.) Then the average
value of AK is

— 1 te ]) 2 03
AE= J b I ) (13)
(L\‘/‘27r - @ FTevNotevE @t ! )

which must be zero. The integral is evaluated in appendix A. Let

. T
V2aey={; e”tpi—'r’zﬂ. (14)
2aey
Then the result of equating (13) to zero is:
Eo 1 f . 150t op =
N ,~ 21 (Q il
D f{ wr'Ce (@) ¢ (15)
where
2 « 2
F(Q):a‘”f edu. (16)
0

If electron collisions are neglected, v is real and the integrand in (13) is then real at all points
on the real ¢ axis, but has a pole on this path. The principal value of the integral is then
purely real. If v has a small imaginary part, however, the integral has an imaginary part
which does not tend to zero as /(y)—0. Thus the limiting value of the integral is not the same
as the principal value. Now it is impossible for the collision frequency to be exactly zero so
that clearly the limiting value is the correct one to use when collisions are neglected.
Now
1+ Noey/eo=¢’, (17)

where € is the dielectric constant of a homogeneous medium with the electron number density
Ny. The true dielectric constant is e=Dg/el2y.  Liet

AN 2
(Nt) L\a’ el (18)

§=(28)"eo(e' —1); Q=(28)""¢'[('—1), (19)

Then (14) gives

which may be substituted in (15).

139



If electron collisions are neglected:

e’=1—X, where X= ]\Oe (20)
€ome?
and (15) gives
pi=e=+2X B2 {ix' 2~ —2F(Q) } ! (21)

This is the formula for the square of the refractive index in the one-dimensional case when
small irregularities are present. It replaces the formula p’=1—X which would be true for a
homogeneous medium. The quantity Xis the same as Appleton’s 1]z and is proportional to the
electron density. In figure 2 curves are plotted showing how the real and imaginary parts of u
depend upon X for various values of 3.

Equation (21) shows that w* has an imaginary part even when electron collisions are
neglected. Hence, some energy would be lost from an electromagnetic wave although there
is no physical mechanism for converting electric energy into heat. It is known that irregu-
larities cause scattering of energy from the original wave, and this must account for the imagi-
nary part of u’.

When X>>1, @ is large since 8 1s small. The term, ¢ % may then be neglected, and
F(Q) may be replaced by the first two terms of its asymptotic expansion (eq A7, app. A).
If powers of 8 higher than the first are neglected, the expression (21) becomes

- X
M ~l—mml (22)

which may be compared with the expression for u? in a homogeneous medium when the Lorentz
term is included, namely:

2= X «
& _1_1+(1/3)X' @3)

Z=0.115

0.8 |-

0 0.5 1.0 1.5

Fraure 2. The effect of small irregularities on the variation
of R(n) and —I (u) with X.

B is a measure of the strength of the irregularities. For the full curves electron
collisions are neglected. For the dashed curves, Z=»/w=0.115, and B=0
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The factor g/(XN—1) in (22) is analogous to the Lorentz factor, 1/3, in (23). The effect of the
irregularities has the same sign as a Lorentz force (smce X>>1), but gets progressively smaller
as X increases.

6. Irregularities in Three Dimensions, General Theory

There appears to be no direct way of extending the method of the last section to deal
with irregularities in three dimensions. In one dimension the equation, div D=0, has the
simple integral D= constant, but there is no correspondingly simple result for three dimensions.
In this and the following sections, therefore, a solution by successive approximations will be
attempted.

Cartesian coordinates x, ¥, z, are used. Let i, j, k denote unit vectors parallel to the
z, ¥, and z axes respectively. Then the position of a point (z, 7, z) is given by the vector
s=ir-+jy+kz. The electron number density N is given by (4) where AN is now an irregular
function of z, ¥, z. AN may be expressed as the sum of many Fourier terms thus:

AN=>(AN)x, (24)
K
(AN)x=Ag cos (Ks—ox), (25)
where
K=ui-}+oj+wk. (26)

The summation is really a triple sum over all values of u, », w.  Ax and ¢, are the amplitude
and phase, respectively, of the Fourier term.

7. First Approximation

As a first approximation it is assumed that the electric field E in the medium is the same
at all points and equal to E;. Then each electron is displaced from its mean position by the
same amount r; given by

rn=T-E, 27

where T is a tensor which can be found from the equation of motion of an electron. Because
of the irregularities AN, the displacement r, results in the appearance of space charge which in
turn gives an additional electric field AE;. The contribution AE,® to AE, from one Fourier
component in (24) will now be found.

A single Fourier component (AN) g is a one-dimensional variation of AN and may be treated
as in section 5. The additional electric field AE;® must be normal to the planes of constant
AN for this component and so is parallel to the vector K. At this stage r; is taken as a constant,
so that the average value of E, must remain unaffected by the irregularities. Hence, AE, " =0.
For components parallel to K we have ¢ £+ FP=[D=constant, so that ¢, AL+AP=0. Now
AP=¢(AN)xr;® where % is the component of r; parallel to K. Hence

(rI‘{I:‘) K. (28)

AE1 &) — _eﬁ Ax cos (Ks—aoy)
0

Here the factor (r,K)/|K| is 7, and the factor K/|K| is a unit vector in the direction of K.
The total additional field AE, from the first approximation is given by:

AEIZ;AEl &), (29)

8. Second Approximation

The effect of the appearance of the additional electric field AE, is to give the electrons an
additional displacement,
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Ar,=T- AE,. (30)

Both Ar; and AE; are functions of position. Ar, gives rise to further space charge which in
turn results in a further cor_lilibution AE, to the electric field. The average value of AE, is
zero, but the average value AE, of AE, is not in general zero, and its value must now be found.
The resultant electron displacement is r;+ Ar;, which must be substituted for r;, in eq (28).
This gives:
AB,®=—% Ay cos (K s—4x) {—("i%& K, 31)
0

and AE, is given by

AE2=ZAE2(K). (32)
E

Ar;, and therefore AE,®, contain a summation over all values of K, and so (32) contains a
double summation. Now take the average of (32). Clearly cos (Kis—¢x,) cos (Kis—dox,)
has the average value zero when K;#K, and the average value 1/2 when K;=K,. The value
of r, may be inserted from (27). Hence:

2ZAK{TK I§}4{TE1 K} ‘K. (33)

The average electric field is now given by
E=E,+AE,. (34)

Next it 1s necessary to find the average value P, of the polarization P. From eq (1):

=e(No+AN) (r,+Ary), (35)
and hence
P026N0r1+6ANAr1. (36)
From (28), (29), and (30):
ANArI——-— Z Ag cos (Ks—¢x) (rl K) TK Z Ag cos (Ks—o¢x), (37)

and on taking the average:

.__i_ 2 (rl' K) .
ANAr,= e ; A% K2 TK. (38)
Hence from (36) and (27)
P=eNoT E,—;— 2 Az %}T—K (39)

In eq (33), (34), and (39), Py and E, are expressed in terms of E;. Elimination of E, gives the
constitutive relations between P, and E,.

9. Discussion When T Is a Scalar

If the effect of the earth’s magnetic field is neglected, the tensor T reduces to the scalar v
used in sec. 5. Then eq (33) becomes
(E; - K)
o4 { L K}. (40)

The factor [(E, - K)/K?] - Kis simply the component of E; in the direction of K.
It is now assumed that the irregularities are isotropic. This means that for a given value
of |K| the directions of the vectors,'K, are uniformly distributed in any hemisphere and the
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probability of a given value of Ax is independent of the direction of K. Select first those
values of K for which is in a specified range, d|K|, and Ag is in a specified range, dAx, and
perform the summation for these values first. Then the last factor in (36) is simply 1/2 E;.
Hence (40) becomes:

—_ 1 22
AE,—; 76—5 E, 32 A (41)
But
1 .
5 > Ak=TaN)" (42)

Hence (34), (41), and (42) give:

1 2m/2 2
EO:EI{ ”év AZ,V>} (43)

P,=1eNiEs— 5 ZAZ{(E‘ } (44
€0

Equation (39) becomes:

which reduces in a similar way to

] 9
P():EJ {’Y(’Nn ’Y 660 ¢ M)) } (45)

The dielectric constant e is given by

co€ Eg=¢€¢ E;+P,. (46)

It is convenient to use the expression (17) for ¢’, and the abbreviation (18). Then:

e=¢'[{1+3 6 (¢ —1)}. (47)
If electron collisions are neglected and (20) is used, eq (47) becomes:
1—X
:u ﬁé_]_{» BYZ (48)

which should be compared with the expressions (21) and (22) obtained for the one-dimensional
case. The difference is not surprising since the plane sheets of space charge formed in the one-
dimensional problem would be expected to have a larger and different effect from an irregular
three-dimensional distribution of charge. It is probable that (48) is unreliable when X is near
unity, for then the wave frequency is near the plasma frequency, and it is possible for the elec-
trons to make oscillations of large amplitude. The approximations made in the derivation
would then be invalid. This may also explain why the expression (48) is purely real. In a more
accurate treatment it should have an imaginary part which is associated with loss of energy
from the wave by scattering.

10. Discussion When T is a Tensor

The constitutive relations will now be derived for the special case of a plane wave with its
wave normal in the direction of the earth’s magnetic field, which is taken as the z axis. The
tensor T is then given by:

U’ YU 0

e 1 S i

" mlEUO=Y?) — v v 0 7 9)
0 0 U*—Y?
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(see for example, Banerjea [2]) where U=1—1iZ, Z=v/w, v is the average number of collisions
made per unit time by an electron, Y=wy/w, and wy/27 is the magnetic gyrofrequency for
electrons. This case is of interest in the study of the propagation of whistlers [5].

In a homogeneous medium, a wave whose normal is parallel to the magnetic field is circu-
larly polarized, and the electric field has no component in the direction of the wave normal.
Now E, is the first approximation to the electric field of the wave and is, therefore, the field of
a wave in a homogeneous medium. Hence, it has no component parallel to the z axis, and (27)
and (49) show that r; similarly has no z component. Hence we may write:

r1:i1'1+j Y- (50)

There is strong evidence that irregularities in the ionosphere are elongated in the direction of
the earth’s magnetic field [4]. To allow for this, eq (26) is replaced by

K=uitvj+fwk, (51)

where fis a number less than unity. It will be assumed that the irregularities of AN are isotropic
with respect to the variables u, v, w. The effect of the factor f is as though a region of truly
isotropic irregularities had been stretched in the z direction by a factor 1/f, and f will therefore
be called the “‘clongation factor”.

The expression (33) for AE, must now be written down for this special case. The notation
T (i, 7=, y, z) will be used for elements of T. Equation (49) shows that 7,,=7,,=1.,=
T.,=0, T,,=—1T,.. Hence the factor (T K) - K in (33) becomes

(T K) ‘K= Tzru2+vaz+ Tzzfsz- (52)
Equations (27) and (50) show that the factor { (T E,) - K}- K in (33) is given by
(xyu+y,0) witovj+fwk). (53)

Now when the summation in (33) is completed, terms involving the products up, vw, wu will
give zero, because AN is isotropic with respect to u, », w. Hence (53) becomes:

(TE, - K} K=2u2i Ly (54)

Equation (49) shows further that 7%,,=7,,. Hence eq (33) can now be written in full using
(52) and (54). It gives

T 62 44}(

AE2:2_€(2) %:4 WZ [{ Tzz(u4+u22)2) +Tzzf2u2w2}ixl+ { sz(v4+u202) +Tzzf2?/‘2w2}jyl]~ (55)

It 1s shown in app. B that

2 ut _ 2 vt _ 2 u*’ :§ 2 (K

% e R R ey R R w4 T AN G0
2 2 ——/LLZLUQ =f2 2 -——U2u)2 = . z 5

ADTEL S Cvctweaw o ER MR crorweam v R S (57)

where L(f), M(f) are known functions of f, and g is given by (18). Hence (55) becomes:

R 2

AE2=Q‘1—% BNE{ T, L(f)+ T.M(f)}r,, (58)
and (34) (27) give:

E,— E+—’; BN2{ To,L+ T, .M} TE,. (59)
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Next, eq (39) must be written down for this special case. By methods similar to the above
it can be shown that

> Az Bl TR N0 (T Tog) i (Tostr t o)) (60)

K
where
2

2 v? . 2 o
2 Ak e P ; AKW—QU)-ﬂNo (61)

(see app B)
Equation (60) is now substituted in (39) and (27), (50) are used. This gives

2 2
Py—eN,T El-?T]jO Q8T* E, 62)
0

which may now be combined with (59) to give the constitutive relation.
The relations (59) and (62) are equivalent to:

Eo:{ 1+‘) 5 BNG(THL -T..M) }T E, (63)
r eV, X
P():(‘,’J ‘o (1— 26(’:‘) (26 T)T E]! (64)

from which the vector T E; is to be eliminated. This then gives
E,=R P, (65)

where R 1s to be found. Now g is a small quantity and its square and higher powers will be
neglected. Then it can be shown that

M -
er )eo{ (1 —pit Q} 66)

and it follows from the expression (49) for T that

Ry=Reo= Ii)yz: [l)zy:O 1
. (67)
ety WV =— = O

The standard methods of magneto-ionic theory may now be used to find the polarization and
refractive indices of the waves which can be propagated. The two polarizations are given
by p= -1, so that the two waves are circularly polarized with opposite senses, and the two
refractive indices are given by

1
eo(Bux iRy’

pl=1— (+‘,6{ ((“J/Y’ ) QX}iY (69)

11. Application to Whistlers

w=1+ (68)

which leads to

Whistlers are naturally occurring radio signals propagated in the extensive ionized region
surrounding the earth, with the wave normals in directions close to the lines of force of the earth’s
magnetic field [5]. The frequency is very low (often in the audible range) so that X and Y
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are very large compared to unity. The waves are not heavily attenuated so that the effect
of electron collisions must be small. Hence in (69) we take U=1, X>1, Y>1. More-
over X/Y is inversely proportional to frequency and is very large at low frequencies, so that
X/Y>1[5]. One of the values of u given by (69) is almost purely imaginary; the other value,
with — Y in the denominator, refers to the wave which is believed to explam whistlers, and it
is given by

p RS (70)

5 AN
Y-8 x (M—ﬁ>+§ 80X

If the elongation factor fis not near zero, then M(f) and L(f) are both non-zero, but L/Y*<M
since Y is large. X may be neglected in comparison with X? so that (70) becomes:

X
WS Y T4RMX” (e

The additional term %4gMX?in the denominator has an effect similar to that which the Lorentz
force would have. Waves could not be propagated 1if

g MX>>Y, (72)

for then the refractive index would be purely imaginary. Hence, irregularities could modify
the propagation of whistlers. Equation (72) shows that there is a lower limit to the frequencies
which could be propagated, given by

(Y2 BM fx[fu)'"? (73)

where fy is the plasma frequency and fy is the gyrofrequency.

If, however, the irregularities are very elongated in the direction of the earth’s magnetic
field, so that the elongation factor fis very small, then M(f) is small (see app. B), and its effect
could be opposed by the term L/}Y? in the denominator of (70). If fis so small that L~MY?
then the effect of irregularities on the propagation of whistlers would be small.

It is well known that whistlers are not observed regularly, but only during comparatively
short periods of time. They are believed to start from lightning flashes, so that sources of
whistlers are always plentiful. The absence of whistlers for long periods must therefore be
explained by some feature of the propagation. It is now tentatively suggested that whistlers
cannot be observed when the path they would travel contains irregularities which are not
greatly elongated. On the occasions when whistlers can be observed, the irregularities are
either absent or greatly elongated in the direction of the earth’s magnetic field.

12. Conclusion

It has been shown that irregularities in the ionosphere, which are small compared with
one wavelength, may modify the constitutive relations and hence may affect the refractive
indices for electromagnetic waves. The modifications are in some ways similar to those which
would be introduced into the Appleton-Hartree formula by a Lorentz force. When the irregu-
larities extend only in one dimension the theory can be handled by the statistical method of
section 5, and it was found that even in a loss-free medium the refractive index now has an
imaginary part which might be associated with loss of energy from the wave by scattering.
For the general three-dimensional case, the theory is more difficult and has only been handled
by a method of successive approximations. A theory similar to that of section 5 is needed for
this case but has not so far been found. The method of section 6 onwards is less satisfactory
because of the numerous approximations. The results, however, do indicate that small irregu-
larities may play an important part in the propagation of very-low-frequency radio waves in
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the ionosphere. In particular, they may explain why whistlers are observed only on compar-
atively rare occasions.

The author is greatly indebted to the University of Colorado, and to the Directors and
Staffs of the High Altitude Observatory and NBS for providing him with the opportunity to
work in Boulder.

13. Appendix A: Evaluation of the Integral in Equation (13)

With the notation (14), the integral in (13) becomes

DO fw _ 1 “52/2a?.
aiy2m J - Q+Ea 2 € dt. (A1)

Let &y/2a=w. Then (A1) gives

Do J 1wt g, (A2)
Vr§J-o Wt
Now
1 > == —ir(w+Q) [ ¢
&;—P@E: IJU (2 ar, (Av{)

where the top limit is 4 when 7 (2) is negative, and —e when 7 (2) is positive. Here 7 (Q)
is always positive. Hence

° » e o
—— ¢ Ydw=1 ead e T dw | dr
f_m w+Q Jo J=c

. ] Q. ]
. —1/4 72 —3! . 9 02 —nd
:‘:z\‘#J VAT dr_9ili2g QJ e Udv
0 iQ

= —7'2[ix' 2P —2F(Q)] (A4)
where

Q
F@)=¢ f ¢ du, (A5)
0

When (A5) 1s subsitituted in (A2) it leads to the result (15).

The function F (Q) has been studied by Mitchell and Zemansky [3] who give the following
formulas:
when Q is small;

202 (2092 (29)°,

1—2QF(Q):1—-1——|— 13 155 (A6)

and when @ is large;
: 1 1 eSS )
F @ ~ag | 1+ gyt amt @yt il

14. Appendix B: Evaluation of Coetficents in Equations (55) and (60)

According to eq (51) the vector K=iu-+iv-+kfw. Its direction cosines are therefore

- U - v n— fw | B1)
"(u2+vz+fzw2)1/z’ _“(u2+vz_§_f2w2)1/z’ “(uz+vz+f2w2)1/z
These may be written in spherical polar coordinates:
[=sin 6 cos ¢, m=sin 6 sin ¢, n=cos 6. (B2)
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In equation (55) the coefficient w'/(u*-+v*-+/*u?)? is I'=sin'd cos'¢. It is assumed that
the distribution of the directions of K is the same for all values of Ax, which means that

> A¥lt=sin*0 cos* ¢ >, A%. (B3)

K K

Since all values of ¢ are equally probable this is equal to
> Aimi=sin*@ sin‘¢ > AZ. (B4)

g K

It can be shown that sin*¢p=-cos'¢=3/8; cos’¢ sin¢=1/8; cos’p=sin’¢p=1/2. Hence:

DAL A=W AL 7 =3/SISInEORR AL (B5)
> AE*m?=1/8 sin* 6 > A%, (B6)
DAZIME =2  Akmn*=1/2 cos® sinZf > A%, (B7)
AL =3 Aim2—1/2 st g5 AL, (B8)
> Akn? =cos> Ak (B9)

Now let
= (B10)

so that

K=ui-+tvj+wk’, (B11)

where i, j, K/ are unit vectors parallel to the axes of the coordinate system (z, v, 2’). Let
the spherical polar angles in this system be 6, ¢. Then

f tan 6=tan 6. (B12)

Now the irregularities are isotropic with respect of u, », w, which means that all directions
of the vector K in the system x, y, 2" are equally probable. Hence, the probability p(0’, ¢)d0’d¢
that 6/, ¢, lie in given ranges d6’d¢ is given by

p(0’, ¢)=(1/4m) sin 6. (B13)

The corresponding probability that 6,¢ lie in ranges do,d¢ is p(6,¢) dbd¢p where

sy do’ f*sing
p69)=p(¥, ¢) d6  4r(cos®9f* sin?)*/? (B14)
The average values in eq (B5) to (B9) can now be found. For example
- i f? sin®) ks
49 . 1
sin‘d fo Ir(cos01 J? sin%)* d BJO dg. (B15)

This reduces to
sin'9=L(f) = (1+ 1612 (1—F2) 2 —2f2(1— Y1) (1 —F2) ~5Aog[ {1+ (1 — )2} /f] (B16)

Similarly it can be shown that

cos? 0 sin20-=M(f) :—g—fz (1—1?) _2+f2(1 +%f2>(1 —fH=sloz[{ 1 (1—F3'2}/f] (BI17)

cos =P (f) =1—L(f) — M(1) (B18)
sme9=Q(f) = L(f) +M({) (B19)
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In particular:” L(0)=1; L(1)=8/15; M(0)=0; M(1)=2/15.
Figure 3 gives curves showing how L(f), M(f) depend upon f.
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Fraure 3. Curves showing how the functions L(f) and M(f)
depend on the elongation factor f.
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