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This expansion is particularly useful when considering ionospheric propagation at low
frequencies. The complex problem dealing with two media, viz., a homogeneous earth
and a surrounding stratified atmosphere, leads to intractable expressions. However, as
the influence of the earth may be accounted for by an approximate boundary condition at
the earth’s surface, the problem is then reduced to that of the outer medium only. The
coefficients of the mode expansion for this simplified problem will be derived while taking
into account the earth’s curvature; however, the latter proves to be negligible under very gen-
eral conditions. The expansion to be derived is wanted in particular when studying the
influence of a gradual transition in the electron density with height at the lower edge of the
ionosphere.

1. Introduction

Maxwell’s equations for time-harmonic functions proportional to exp (—iwf) can be put
in the following form (expressed in Gaussian units) provided the dielectric constant ¢ the
permeability u and the conductivity ¢ are independent of time:

= @) = ol
curl e—1—uh=0; curl h+417 - e.e=0,
¢ ¢
) (1)
- -
div (ee)=0;  div (uh)=0;

the complex parameter e=e+i473/w includes both dielectric and conductive properties.

We take p=1 and assume a stratified atmosphere of spherical symmetry, all properties
of which can be considered as functions of the distance » to the center of the earth. We ac-
cordingly substitute e,=k2(r)/k), ko=w/c being the wave number in a vacuum; k() can be
interpreted as the local wave number at a height 7—a (a=earth’s radius) above the surface
of the earth. In the absence of the earth’s magnetic field e(r) constitutes a scalar. The
Maxwell equations (1) can then be satisfied by the field

Z:PET) curl curl {k(f')lf?‘};z=kl0 curl {k(r) II_;‘}; 2)

- -
provided the Hertzian vector H » has a radial direction throughout space (» being a vector of

length 7 in this direction); moreover, the amplitude 7/ has to satisfy the following scalar wave
equation in the outer space r>a:

(A+k3n) H=0, 3)

in which the new parameter k7, is defined as follows [1]':

R () =2 (1) — ke (r) (‘[’% {1?(1,7} W

The solution (2) is of the so-called electric type which includes the case of a vertical electric
dipole to be considered hereafter. Let the dipole be placed in a homogeneous slab extending
in the region a<r<a’ directly above the earth’s surface, the upper boundary r=a’ of which
may be identified with the lower edge of the ionosphere in the case of ionospheric propagation.

* Present address: Philips Research Laboratories, Eindhoven, The Netherlands.
IFigures in brackets indicate the literature references at the end of this paper,
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Assuming a wave number k inside this slab, the primary field of an infinitesimal vertical dipole
can be derived from (2) by substituting for A the function:

1l exp (ik, TP)

HDr(P) =C—b TP

; (5)
T and P here represent the positions of transmitter and receiver, TP their mutual distance, b
the distance from T' to the center of the earth, and 7/ the moment of the transmitter. The

=
correctness of (5) is shown by comparing the associated radial Hertzian vector /. » with the
conventional Hertzian vector for such a dipole. The latter Hertzian vector has a constant
direction (parallel to the dipole axis) throughout space, its amplitude being given by

ﬂ exp (1kTP) )
@ iz

1t can be verified that both Hertzian vectors only differ by a gradient, namely that of the
quantity 211 exp (iko TP)/(bkoc) ; however, such a gradient has no effect whatever on the primary
-

field which can therefore also be derived from the radial Hertzian vector H, according to (5).
2. Form of the Mode Expansion

The homogeneous wave equation (3) does not hold at the transmitter itself. The latter
involves a singularity of the amplitude  at the point T. In view of (5) this singularity is
the same as that of the function Il/(cbTP). We introduce polar coordinates with the origin
at the center of the earth and the axis =0 drawn through the transmitter, the position of
which therefore is given by 7=0, 6=0. The singularity in question can be accounted for by
a right-hand side of (3) which only differs from zero at 7. The complete wave equation in
the outer space 7 >a thus proves to be:

1l 6(0

(AR H=—4 2k 5p—r) 20 (©)
cb? . 6

This equation can be verified by integrating both sides over an infinitesimal sphere around T,

while applying Gauss’s integral theorem to the left-hand side, and the following properties of

the impulse function to the right-hand side:

*bte
f % é@sm 0d0=f9° a(o)dozl; j s(b—r)dr=1.
0 0 1] 2 €

We next assume that the influence of the earth may be accounted for by the boundary
condition

% CH)=1rH, (r—a) @

which is the equivalent of the corresponding condition 0/7/dz=+IH for a plane boundary. The
quantity —ivy/{kee.(a)} can be interpreted as a surface admittance (ratio at grazing incidence
of the electric field and the magnetic field, both at infinitesimal distances above and below
the earth’s surface). For e(a)=1 the parameter v is given, for a vertical dipole, by

T
'Y:_"rk_% (k3—k)%,

ky being the complex wave number inside the earth. The special case of a perfectly conducting
earth corresponds to y=0. The value of v can also be chosen such as to account for a strati-
fication in the ground [2].
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The approximative boundary condition (7) has two advantages in the present problem,
viz., (a) it reduces the original two-media problem to that of the outer medium only, (b) it
guarantees the existence of a complete set of discrete orthogonal modes in the outer space
a<r< o. These modes are characterized as solutions of the wave equation (3) that satisfy
both the boundary condition (7) at r=a and a proper radiation condition at r= o,

The general form of the modes is obtained by determining solutions of (3) with the aid
of a separation of variables. Owing to the axial symmetry of the present problem around
the axis #=0 (containing the transmitter) we only have to concern the polar coordinates
7 and 0. The expansion of the scalar /7 in terms of the modes in question then becomes of
the type:

H=3 e (1) cos (1—8)}; ©)

the height-gain functions f,(r) occurring here are solutions vanishing at infinity of the differ-
ential equation

5%<rf,l>+{ %) WH) (rfa)=0; @

finally the discrete eigenvalues n; (constituting the order of a Legendre function) are to be
determined from the boundary condition

L epy=vrt,  r=a) (10)

3. A First Evaluation of the Coefficients of the Mcde Expansion

The condition (10) guarantees the required boundary condition (7) for the complete solution
(8). All Legendre functions in (8) become infinite along the whole axis §=0, n; being not an
integer; however, the proper choice of the coefficients ¢; will reduce this singularity to the
required singularity at the transmitter 7" only. In view of properties of Legendre functions
the singularity of each term of (8) appears from the approximation

¢

. 2 .
P,{cos (—0)} ~—sin (nm) log ;o* sin (nm) log p? (6—0 or p—0) (11)

p being the distance from the point (r, 6) to the axis §=0. The approximation (11) can be
proved by applying Tauber’s theorem [3]

Liron{pf(m }zrfim he)

to the operational relation A(t)==f(p) for which [3, p. 243, eq (35)]

() =P,2e~*—1)U({); f(p)= p(pligfl()przl)) n’

while substituting t=-—2 log sin (6/2). In its turn the approximation (11) involves the three-
dimensional equation:

(84 o 0P, {c0s (—0) J1=— sim (rm) 122 260, (12)

This equation can be proved along the same lines as (6), but by integrating over an infinitesimal
cylinder around 6=0 instead of an infinitesimal sphere around 7’; the proof is facilitated by
replacing 6(6)/(°0) by the equivalent quantity &(p)/p.
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A summation of (12) over all eigenvalues, after an initial multiplication by ¢,, yields, in

view of (8):
) 415
(A+k¢ff) H::r o2

72

<T ; ¢ sin (on)f, (1)

The introduction of both negative and positive modes avoids the occurrence of a deviation
of ¢, from the general expression for ¢; valid for [520. In fact, it is well known from the special
case of a perfectly conducting earth and ionosphere that the addition of the [ and —/ mode to
a single one involves an exceptional value of ¢, (Neumann factor). Obviously, the right-hand
side of the latter relation has to be identical with that of (6), so as to have:

S5 e sin (om) o, () == 5(b—1).

1r7‘2

A further multiplication by 7? yields:
I £ . I b 1
- l;@ ¢; sin <7ml)fnz(r)*'—c—5 6(b—r). (13)

The right-hand side of (13) can also be expanded in terms of the functions £, (r). 1In fact,

the complete orthogonality of the latter over the interval a<r< e« involves the following
expansion for an arbitrary function ¢(r):

i f ol
o=

S WY

An application to ¢(r)=68(b—r) results in:

AGR

Fu,8) @)

l__w f fadr

Hence, by equating the coefficient of f, (r) in both sides of (13), we can evaluate ¢;, The
substitution of the value thus found into (8) yields the final form of the mode expansion, viz.,

- Jl Zm) fn,(b)fnl(r) Pnl{COS (T—B)}
dD o=k fwfﬁl(r)dr (sinmn)

8(b—r)

e

(14)

4. Another Representation of the Mode Expansion
The coefficients of (14) only depend on the eigen functions f,, at the transmitter and receiver,
apart from the integral in the denominator. Fortunately, the latter can be reduced as follows

to a quantity referring to the earth’s surface; hence, the behavior of f, elsewhere needs not
to be known explicitly. We apply the operator

o} o)
AR s
to (9). The resulting expression can be represented in the form:
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in which d/dr denotes a differentiation with respect to » at constant n. An integration of
this equation over the interval a<r<_ «, taking into account the vanishing at infinity of the
expression between braces, yields a relation which can be put in the form:

o« (l p
@n-t1) f 72 ) dr=—| 123 2Lt T

rfﬂ T=a

We bear in mind that (d/dr) (rf,)/(rf,) at r=a does in general depend on 7, though this
quantity assumes the value v independent of n; at the eigenvalues n; of n [see (10)]. The
integral in (14) can thus be evaluated; it leads to the following alternative form of the mode
expansion for /:

T 2 2n n b i P,, ‘ T
R { 700 | .
on \ rf" J r=a; n=n;

We now pass to the vertical component 7, of the electric field, the most important field
component for the vertical dipole under consideration. The field representation (2), com-
bined with the wave equation (3), implies the formula:

14' Z k2 02
“=T ’4‘/f+w> (rH).

The operator kig1-0%/0r* only affects the height-gain factors Ju () of (15). The resulting
quantity reads, i view of (9),

2 2 \ 1 ’, 1
<k;ﬂ+aa}.§> (rfnl):’j‘ <I’11~tﬁ)’ fn-

R
We thus obtain from (15) the following further mode expansion:
t]

wll = (1) @n 1) ,fn,(b)fn,(/‘) P, {cos (r—6)}

E,=

fecatbr = D (d f) l @  osin (mn) (16)

—< dr
on (
ni Tfn J r=a;n=mn;

5. Connection of the Mode Amplitude With the Atmospheric Reflection
Coefficient

The dependence of the mode coeflicients in (16) on the height-gain functions f, () can be
replaced by that on a properly defined reflection coefficient. 1In order to discuss this coefficient
we assume a homogeneous layer a<r< a’ with wave number k=Fk, above the earth’s surface.
In the case of ionospheric propagation this layer may be identified with the space between
the earth and the ionosphere, its upper boundary r=a’ then representing the lower edge of
the ionosphere (at a height h=a’—a above the earth’s surface). In the case of the troposphere
the thickness & might finally approach zero; the wave number in the homogeneous slab then
had better be taken equal to k¢ #Zk, in order to account for the small difference of the refractive
index at the earth’s surface from its vacuum value of unity. We shall restrict ourselves to
the ionospheric case; it then is sufliciently accurate to identify the wave number in the inter-
space between the earth and the ionosphere with its vacuum value k.

In the homogeneous slab the general solution of (9) is well known, viz., a combination
of two spherical Hankel functions:

(L r \¥% ()
1B —(57) Hiths ).
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(1)
The corresponding complete wave functions hy (kg)P,{cos (r—8)} represent a rising and a
descending wave, respectively. A special mode will in general contain both these waves.
Hence the height-gain function has the form:

Ju®) =as® (kor) +Babi? (kor) — (@<r<a’). (17)

Near the earth’s surface the logarithmic derivative in the denominator of (16) therefore can
be represented as follows:

l i g l
o () o (7R (kor) } B 7 (R (o)}

o 7 {hl) (ko) +Bah (ko) ) i

This quantity depends, amongst others, on the ratio «,/B8, which can be connected with
a reflection coefficient. 1In fact, the second term of (17) constitutes the reflected wave that
corresponds to the rising wave represented by the first term; hence we can interpret the ratio
of both terms at r=a’ as an atmospheric reflection coefficient 7'(n). We then obtain:

Buhi? (koa”)

with the aid of which (18) can be transformed as follows at r=a:
d dle vy i (ka’) d 2)
dr (7fn) :d {rhn (kor) }r=a+T( ) h(2>(k (L') dr{ rhy, (ko’)} (20)
e o 10 G+ 0 S 1 }
C r=a

For a stratification degenerating to a homogeneous medium in the domain 7 >a’ the coefficient
T(n) proves to reduce to the Fresnel reflection coefficient for an elevation angle (compare next
section) r=are sin (n/kya) if, moreover, the earth’s curvature is neglected.

The rigorous expression (20) has to be differentiated with respect to n in order to obtain
the denominator of (16). We shall derive a suitable approximation of this complicated quan-
tity in the next section; it is then convenient to convert (20) into the alternative form:

B (koa”) d%;{rhff)(kor)}
4 . d IH+TM 35t | @
T (rfa) —={rhi (kor) } S —{rha? (ko) }
dr * | dr dr re. @1)
i | A (ko) 1+T(m) hy (ko) hi? (ko)
a . h$? (koa’) ALY (hoa)

6. An Approximation of the Mode Expansion (16)

The approximations for the function 4,(z) have a different analytical form according to
the position in the complex plane of the parameter z/n. We restrict ourselves to those values
of z/n that correspond (for real z~Fk.a) to eigenvalues n; of n of type I, using Rydbeck’s no-
menclature [4]. These eigenvalues can be characterized by the unequalities:

Re n<kga— (kya)*?, Tm n>0,|n|>1.

Such eigenvalues prove to play the dominating role in long-wave propagation. The approxi-
mations valid for the corresponding range of z/n read [5]:
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(‘XP{ ('1+§)J z/n( u?)'/? (lu} exp{— (n+%)J zm( u2)12 ‘[“}
hiV (2) ~- Y2 P~ &

(nz)1/2 (1 ) ’ (nz)'2 1___: i
n? P

in which the square roots are assumed as having a positive real part.
In view of the quantities occurring in (21) we are particularly interested in the two
following further approximations which can be derived at once from (22):

(1) z/n
ZZZ’EZ; ~ —1 exp {Q(n—}—%)ﬁ (1—u?'/? (ZL}; (23)
d (;)
(TZ zh >(2) }_ N 1 . > (,”2_22> lfz (24)
ZhE};(Z) ' 2(n*—2?) z

We next substitute 'n:k(,a sin 7 or n=Fkwa’ sin 7. The asymptotic approximations of

the complete wave functions h‘Z) (kgr) P,{cos (x—6)} then show that 7 and 7/ can be in-
terpreted as the (in general complex) angles between the ray trajectories associated with the
mode in question, and the verticals at r=a and r=a’ respectively. Moreover, we substitute
for z ko or ke'. 'The corresponding transformations of (23) and (24) lead, amongst others,
to the following approximations:

Iy (koa”)
hi[‘) (/L()L ) ?/ exp QIL() a’cos 1/ = sin 7 <_-—‘T
Z:ll) (/Cn(g 7 exXp I: 24k.a {(,()\ T—sIn 7-< 71-) }:I
n ()
d { (1
— < 7hi? (kor) } )
o ~k, (:Ffi cos T'—E’qn , (>'

3 2k
| 20,
D (lgr)

r=a

An application of the two latter relations yield:

d d /
M |t . & ) g
i (2 ) hi? () P (k) SHED
. tan’r 1
=~k <z cos T—o7 >><

ko('—i Cos T__tan T> % exp |:——2tk0a{cos T—sin 7 (——7)}]
2koa

The final substitutions of all these approximations into (21) yields:

— T(n) 2ikoh cos « 141 tan®r/(2kya cos 7)
1—1 tan®r/(2k.a cos 7—) (25)
1 + _[’(7&) g2ikgh cos 7

d
T (rfn)
dr tan®r
— ~—<1k0 cos T+— >

provided we neglect the small difference between 7 and 7/ (this difference vanishes altogether
in the flat-earth approximation).
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In (16) we need the derivative of (25) with respect to n. According to the relation n
=k, a sin 7 we have
o 1 0
on koa cos T ot

A corresponding evaluation of the n-derivative of (25) results in:

d
d | dr (rfa) sin 7
=~——< 7sin 7—7—

9 _ 1 (% -~ +ta112 >
on 7fy @ Ccos T koa cos®r " ok Jor

) 1+ tan®r/(2k.a cos 7)

. 2ikoh co8 1

1—T(n)e*% 1—1 tan?r/(2k.a cos 1-). (26)
1 +T(n) ezikoh Ccos 7

Moreover, we shall apply the well-known asymptotic approximation for Legendre func-
tions having a large complex order n with positive imaginary part, viz.,

P,{cos (m—6)} ~_<7r 21 )1/26i(n+l/2)0_ 27)

sin (nm) n sin 6

A final substitution of both (25) and (27) into (16), while approximating n,+1 and n,+1/2
by n,=kea sin 7, yields the following expansion in the simplest case of a transmitter and
receiver on the ground (r=b=a):

szz 2ir \/2

E.~—2 o102
’ asin 6
© Sin5/27.l 6ik0a0 sinrg
lE==e 1—T(m) (2ikgh cosr L= Sin2T/2]C0(l cos’r
tan - 7 tant 7 sin®r 1—1 sin®r/2kqa cos’r @8)
T . )
kot cos’t 2k cos’r ar 14T (n) ot cosr

7. Flat Earth Approximation of the Mode Expansion

The following simplification results from (28) for a= «, remembering the relation §=d/a
(d=distance from transmitter to receiver):

E k3/21l 271.7/ 1/2 aa sm5/27' eucod sinrg
N — < > <tan Fo) > n)eZ'lkoh €os7
1+T(n)e2“‘0" o8t [ feer,

This expression can also be derived straightforwardly by applying the flat earth condi-
tions right from the beginning, while replacing the boundary condition (7) at the earth’s
surface by

(29)

2—g=~,n (2=0). (30)

The rigorous expansion for the amplitude of the vertically directed Hertzian vector II [to be
substituted in (2) instead of H7| then arrived at reads:

27 1 5 Fuho) 15, (2)

(= [m{dfx/dZ}:L . 1:0)

271'1,

HP (\d). (31)




In this series, replacing (15), fi(z) denotes a height-gain function solving the differential
equation

Tht (B (@) —NH=0,

and satisfying the radiation condition at infinity (z= ). The other boundary condition (30)
ivolves the relation

RO =v/0)  (z2=0) (32)
at the earth’s surface [replacing (7)]; this condition can only be satisfied if X equals one of the
eigenvalues \;; hy represents the height of the transmitter above the earth. The expansion

for the vertical component of the electric field [replacing (16)], to be derived from (31),
becomes:

fx,(llo) fx,( 2)
/co(, l__m[ {dfx/dz} ] T2 0)
O\ 2=0; A=),

The wave functions in the homogeneous slab 0<Zz<Ch above the earth here reduce to
simple exponentials so that (17) is to be replaced by:

H® (Nd). (33)

e, =—

f(2)=an exp{— (N—k3) 22} + By oxp { (B—K3)1122), (34)

which enables an easy evaluation of the denominator in (29). The final series representing e,
for a transmitter and receiver on the ground (h,=z=0) then proves to be, substituting more-
over \;=k,sin 7,

L .
e ki e A0 H Y (fd sin 7).

c Tl i) a e=qF (T 2ikgh €OS 1
tan 7— 1+11(T)621k0h cos 7 i

This rigorous series leads to (29) if the Hankel function is replaced by its asymptotic approxi-
mation. A comparison of (29) and (28) shows under what circumstances the earth’s curvature
becomes negligible.

An evaluation of the derivative in the denominator of (35) leads to the alternative form:

(35)

__27rik3 71 i sin®r; H (kyd sin 7;)
“ = 1— T @ coss “gaikoh eos 13k sin 77— 01'[Or) (36)
tan 7 1+ T ikoh oos 7'_2 (1 Tertkon cos )2

The denominator of (36) can further be worked out by considering the equation determining
the modes. The latter is arrived at as follows. A substitution of (34) while evaluating the
boundary condition (32) leads to the relation

(Bfa) —1

(Bfa)+1 (N2 —k§)' 72—y for A=N;-

On the other hand, the definition of the atmospheric reflection coefficient for the flat case
involves the following analogy of (19):

T\ zg (=R,
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An elimination of 8/« from the two latter relations yields an equation which can be put in the
following form [replacing N by kssinr and (\*—k{)'/? by —ikq cos 7]:

?Eko COS TZ+Y . T(T;) egikoh cosTy__1,
ko cos T,—Y

The first quotient here proves to be nothing else but the approximative plane-wave reflection
coefficient at the earth’s surface, R(r,) say, that results from the boundary condition (32).
Hence the mode equation reads:

R (7)) T(r;) 2o cosn=1, (37)

This simple equation is also obtained at once from the following resonance condition. We
consider a plane rising wave in the homogeneous slab 0< 2<%, and derive the other plane rising
wave that results from it after a reflection against the lower edge of the stratification and a
reflection thereafter against the earth surface. The relation (37) then expresses the condition
that the latter rising wave should be identical to the original one.

The exponential exp (2ikoh cos7;) in (36) can now be replaced throughout by {R(r) T(r)}~
This yields the following expansion replacing (36):

21r2ko {1+R(r;)}? sin® 7, o : ’

=" IS i e e F 2 RO S 8 Tog TjorT, 0 G sin 7. (38)

For completeness sake we also mention the corresponding asymptotic approximation based
on large values of ke, viz.,

- (8) ¥ (2h,) *¢ Ill 2 {1+ R (7)) }? sin®7; cos 7} gkl sin
¢ 2 lz_w{l—R2—}—2R cos 7 <2ik0h 0 log /OT>}
sin 7

8. Special Case of a Flat Stratification Reducing to a Homogeneous
Atmosphere

A further reduction of (38) is only possible by introducing a special model for the stratification
in the space z>h. Tet us consider the example of a homogeneous atmosphere, sharply bounded
at z=h. The other boundary z=0 of the interspace 0< z<h also being sharp, the situation
becomes almost identical to that of a wave guide limited by two infinite plane parallel plates
with a separation h. However, we have to bear in mind the approximative boundary condition
applied at z=0 so that this wall behaves differently from the other wall at z=/4. Let us mark the
refractive index of the atmosphere by n;; the reflection coefficient 7" then reduces to an ex-
pression of the Fresnel type, viz.,

T(r) = nicos 7— (n?—sin? ‘r) ¥
72 cos T+ (n2—sin?r)

This formula involves the relation

olog T' 2 tan 7(1+7)
or  (1—T)(sin?r—nZ cos?r)’

with the aid of which (38) can further be transformed [6] into:

(1+R)? sin?r cost

2k , .
- ]“1:2 1—182+411’{ik0hcosr— oo fd } HY (e sinT;).  (40)
T=Tl

(1—1T) (sin?*r —n?cos?7)
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Owing to the approximative boundary condition at z=0 we here obtain a completely discrete
sum. The rigorous boundary condition at z=0, on the contrary, would yield also an integral
contribution which can be aseribed to a continuous part of the mode spectrum. However, the
latter vanishes in the case of a perfectly conducting wall at 2=0.

The result (40) is also rigorous for a wave guide limited by two perfectly conducting walls at
z=0and z=h;we then have 7'=R=1. In this case we derive from (40) the following series for
the vertical field component at z=0 that is due to a dipole also situated at z=0:

27|'k0

Il Z sin?r; HQ (ko sin 7).

l=—o

The corresponding asymptotic approximation becomes:

/2 )
e, ~23/?<7rk°> f—’fl_ sin®2r;, HY (kyd sin 7;);

moreover, we may substitute 7,=arc cos (wl/koh).

This work was done at the United States National Bureau of Standards, while the author
was on leave from Philips Research Laboratories (Eindhoven, Netherlands). He is indebted to
the Radio Propagation Engineering Division of the National Bureau of Standards for providing
him with the opportunity to work in Boulder.
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