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Analytic methods are developed to aid in determining the equipment configuration

which achieves sorting of outgoing mail at a given (required) rate at least cost.

The tech-

niques are applied to a specific numerical problem; several of the suggested configurations

are quickly eliminated, and a “hybrid”

of two of the proposed configurations is found which

comes within four percent of optimum (if a certain pair of parameters is chosen correctly).

1. Introduction

A number of plausible configurations for auto-
matic mail sorting equipment have been suggested.
In this report methods for the comparative study
of such configurations are developed, with the object
of determining the configuration which achieves
sorting of mail at a given (required) rate at least cost.

The solution to this “optimization” problem of
course depends upon the distribution (by destina-
tions) and volume of mail at the sorting installation,
and also on the operating parameters and costs
associated with the various components of the sorting
system. Therefore, in order to present our methods
in the most comprehensible way (i.e., in the context
of a specific numerical application), it was nec essary
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These inputs are described in sections .5 to 6 and
appendix A. We wish to emphasize that we work
with these particular data only to illustrate the
methods employed; the reader who follows out the
calculations for this specific case should have little
trouble carrying out the corresponding calculations
for other data.

The results of the analyses are summarized in
section 2. In brief, we are able (4) to rule out several
of the proposed configurations, (i) to show that
one of the proposed configurations will (if a certain
parameter 1s choosen conectlv) come wnhln 8 per
cent of optimum, and (i7i) to exhibit a “hybrid” of
two of the proposed configurations which (if a
certain pair of parameters is chosen correctly) will
come within 4 percent of optimum.

We also determine how accurately the parameters
in (77) and (i77) must be chosen. In view of (i)
analysis of more complicated configurations did not
seem worthwhile.

For a comparative study, it is necessary only to
consider costs which vary appreciably from one
configuration to another. Our analysis is set up so
that these variable costs are all absorbed into costs
associated with (@) the devices which inject mail
into the sorting system (we will generally use the

1 The preparation of this paper was sponsored by the Post Office Department,
Office of Research and Engineering.

term /oa(lmg complex for such a device, instead of the
longer “distributor loader (omplo.\”), (b) the re-
ceptacles (bins) in which the mail ends after passing
through each stage of the system, and (¢) the opera-
tion (sweeping) of removing the mail from these bins.

A natural method of determining the cost of any
proposed configuration, therefore, is to determine
the numbers of loading complexes, bins, and sweepers
imvolved, and then to multiply each of these numbers
by the appropriate cost coefficient and add up the
resulting partial costs.  We might call this the
add wp method; it is described in section 7 and at the
end of section 8. We have also developed a follow
through method based on the idea of following an
individual letter through the sorting system, charg-
ing it an appropriate fraction of the cost of each
loading complex through which it passes, each load-
ing complex by which it passes (and thus prevents

from operating at maximum rate), each bin it oc-
cupies, and each sweep it receives. The follow

through method is not strictly applicable to some
configurations (though 1t does seem to provide
initial approximations which may shorten some of
the work of the “add up” method); its main ad-
rantage 1s that it permits a much closer estimation
of the theoretical minimum cost described in the next
paragraph.

An important step in the analysis is the derivation
of a theoretical minimum cost (more precisely, a
“lower bound”) which is independent of the configu-
ration. This cost is minimum in the sense that “(an
actual configuration must cost at lmsl this much”
and is theoretical in the sense that “no actual con-
figuration can cost quite this little”; it therefore pro-
vides a yardstick against which the costs of specific
configurations can be measured, the deviation from
optimality of a configuration can be assessed, and
the permissibility of plausible approximations can
be checked. A rough estimate of such a minimum
cost is given in section 8 (without using the specifie
mail distribution); in section 9 the “follow through”
method is employed to derive a significantly more
accurate result.”

2 The importance of this is discussed in section 8.
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The detailed analyses of the configurations studied
are given in sections 10 to 14 and appendixes B and
C. We hope that our rather full exposition of this
material will prove helpful to the reader faced with
the problem of carrying out similar analyses.

2. Summary of Results

From our specific numerical results (which are valid
only for the particular data and assumptions used
in our analysis) we can infer certain qualitative results,
believed to be valid for post-offices () for which
the sorting system must be able to handle about
1,000,000 letters/hr or more and (i7) in which local
mail is removed before the outgoing sort.

Of these two types of results, the qualitative ones
are more informative, and so we list them first:

(a) The simplex scheme and Christmas Tree
scheme 3 can be eliminated from further considera-
tion.

(b) The residue scheme (if properly chosen) is
quite good; some multiple input schemes may pos-
sibly be competitive.

(¢) A promising approach is to combine the basic
ideas of the residue and multiple input schemes;
the resulting “hybrid” scheme has lower cost than
either of the two original schemes if the relevant
parameters are correctly chosen.

We turn now to the specific numerical results.
The “inputs” leading to these results are given in
detail in sections 3-6 and appendix A; at this point
we only add to () and (i7) above the facts that
(212) only costs which vary between different equip-
ment configurations were considered, (i) the use of
automatic transfer equipment was not considered,
and (») the possibility of memory-sharing between
oading complexes was not considered.

Condition (7i2) is a natural one, since we are
primarily interested in comparing different configu-
rations. Auxiliary calculations (not given in this
paper) show that the qualitative results reported
above do not depend on (iv) and ().

As noted in section 1, a ‘“theoretical minimum
cost” is used as a yardstick against which the de-
sirability of any proposed configuration can be meas-
ured. For this purpose we use the ratio

R— (Cost of proposed config.) — (Theoretical minimum)
- (Theoretical minimum)

2.1

“Near-optimal” configurations are those with small
values of #. In the notation of the body of the re-
port, (2.1) becomes
= (0'— Ofaiu)/atin- (2-2)
Our specific numerical results are as follows:
(@) The theoretical minimum (yearly variable)

cost is about $2,050,000.
(b) For the simplex scheme, R is about 160 percent;

3 These schemes are described as they arise later in the report

i.e., the scheme costs about 2.6 times the theoretical
minimum cost.

(¢) For the Christmas Tree scheme, R is at least
69 percent; 1.e., the scheme costs at least 1.69 times
the theoretical minimum cost.

(d) For the best residue scheme, R is about §
percent.

(¢) There are a great many ways in which the
basic ideas of the residue and multiple input schemes
can be combined. An analysis of the full range of
possibilities would be beyond the scope of our study.
We have, however, examined a relatively simple
class of systems of this type, in which each sub-
system involves only two loading complexes in
series; the optimal configuration within this class
has R about 4 percent, which (z) compares favorably
with all other configurations studied, and (i) in-
dicates that investigation of more complicated
systems would not be worthwhile.

(f) All multiple input schemes with more than
four subsystems (i.e., more than four series of loading
complexes) have R at least 8 percent (but probably
substantially more); multiple input schemes with
four subsystems have R at least 4 percent (but
probably substantially more). We do not have a
complete proof that multiple input schemes with
fewer than four subsystems have excessively high
values of R (in comparison with (d) and (¢)), but
strongly believe that this is the case. Each sub-
system of such a configuration would involve nine or
more loading complexes in series.

3. Equipment Cost Data

Only those equipment costs which appeared likely
to vary appreciably from one configuration to
another were considered. The cost of coding the
letters, for example, was neglected on the grounds
that in a code sort system, all letters to be sorted
must be coded once and only once, regardless of
how many readings or sorts they undergo.

The two pieces of equipment whose costs were
considered variable are the loading complexes and
the modules of bins. Hereafter, the cost of bins for
the sorted mail will be considered to include the
costs of the corresponding conveyor, cart pockets, ete.

The following tentative cost estimates were given
by a representative of the manufacturer:

$2,000/module of 30 bins, (3.1)
$125,000/first loading complex of a sorter, (3.2)
$50,000/each of the next 4 loading
complexes of a sorter, (3.3)
$10,000/pair of end-pieces. (3.4)

Because (@) total equipment costs are somewhat
lower than total personnel costs (see the three sum-
mands of (8.6), for example) and (b) the estimates
(3.1) to (3.4) are only rough ones, it seemed per-
missible to be rather loose in our treatment of equip-

o



ment costs. First, the end-piece costs are small
relative to other costs, and are difficult to handle
because of the way in which the number of end-
pieces depends on the particular placement of
equipment. For these reasons, the end-piece costs
have been neglected altogether. Second, there was
apparently some doubt as to whether the extra
loading complexes of a multi-input sorter can actually
be used in the manner assumed in the estimate
(3.3); for this reason we have disregarded (3.3) and
taken the cost of every loading complex to be
$125,000. Our numerical work for specific sorting
schemes 1s fairly sensitive to these decisions, but
the results of comparing different schemes are not.

In summary, the equipment costs actually used in
what follows

are
$2,000/module of 30 bins (3.5)
$125,000/loading complex (3.6)

These are initial costs; yearly costs are based on a
10-yr amortization period.

4. Space Cost Data

The only space requirements taken mto account *
were those for the loading complexes themselves, for
bins, and for the sweepers’” work area around them:

8.75 ft=Ilength of a loading complex. (4.1)
8.75 ft=Iength of a module of 30 bins. (4.2)
11.25 ft=width of a module, including
sweepers’ work space (4.3)
Using the tentative cost figure
$2.20/ft 2/yr (4.4)

suggested by 1. Allison (NBS Electronic Instru-
m(‘ntdtlon Section) we obtain (8.75) % (11.25) % (2.2)

~9220, or
$220 /loading complex/yr (4.5)
$220 /module of 30 bins/yr. (4.6)

[t is convenient to combine space and equipment

costs. From (3.6) and (4.5), remembering the
10-yr amortization applying to (3.6), we have
$12,500 +$220 ~$12,700/loading complex/yr. (4.7)

Similarly, from (3.5) and (4.6) we have $200-4$220
=$420/module of 30 bins/yr, so that we have

$14/bin/yr. (4.8)
Formulas (4.7) and (4.8) are the ones used in our
analysis.
5. Personnel Cost Data
The personnel which appears to vary appreciably
from one configuration to another is composed of

4 These gave the costs which appeared likely to vary appreciably from one
configuration to another.

sweepers and pouchers. The tentative data used
below were suggested by L. Allison.

Sweep operators remove sorted letters from the
bins and either tie them out or place them in trays
preceding a further sort. We take

60 letters=number of letters a sweeper can be
expected to handle in one sweep,

(5.1)
180 sweeps/hr=working rate expected of a
sweeper. (5.2)

It is assumed that the sweeping is carried on in such
away that:

Each bin is swept at least once per hour, (5.3)

if more than 60 letters/hr are expected in a
particular bin, then (subject to over-rule by (5.3))
the bin is not swept when it contains fewer than

60 letters, and (5.4)
no more than 20 sweeps (i.e., 1,200 letters)/hr
1s expected for any one bin. (545,

The rules (5.1) to (5.5) permit computation of the
number of sweepers required, 7f it is known how
many letters/hr are expected in each bin. This
quantity can in turn be computed (as will be done
in later sections) for any particular sorting scheme
and mail distribution.

Pouching operators toss tied bundles of mail into
pouches lhvn working rate is

540 sweeps pouched /hr.

Comparing (5.2) and (5.6), we see that, for
which are immediately followed by pouching,

(5.6)

sorts

number of pouchers=1/3> (number of sweepers).
(5.7)

As for sorts which are not followed by pouching (i.e.,
primary sorts to be followed by secondary sml%),
we observe that the additional work involved in
handling the trays and feeding the loading com-
plexes for a secondary sort appears to be of the same
order of magnitude as that of pouching a similar
quantity of mail. Therefore, since we suppose the
transfer between sorts to be nonautomatic, we
will take the cost of the personnel needed for this
transfer to be equal to that of a number of fictitious

pouchers given by (5.7).°

The average salary figure used is

$11,000/man-position/yr, (5.8)

where a “man-position’” requires more than one per-
son because of the several shifts worked and the 7-day
week involved.

6. Mail Distribution

The particular mail distribution assumed in our
numerical work is a hypothetical one obtained by

5 In contrast, the personnel required for initial loading on the primary sort is
nearly independent of the equipment configuration, and so is not considered.
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modifying data of outgoing mail from Los Angeles.®
It was decided that for a code sort machine, at least,
all local, postage due, uncancelled mail, etc., could be
removed at the coding station. The mail listed as
go backs and residue (about 49) was excluded from
sorter input because of the difficulty of distributing it
properly by destination. The mail distribution to
the sorting system, therefore, consists approximately
of what is left after these deletions, with the percent-
age of mail to each destination upgraded to bring the
total to 100 percent, and the amount of mail to each
destination upgraded to bring the total to

1,000,000 letters/hr. (6.1)
Our distribution involves
1,600 destinations. (6.2)

The details of the distribution are given in appendix
A ; they involve some inconsequential grouping in the
“tail” of the distribution.

7. Cost Formula

The three variables in the cost formula are
L=number of loading complexes,

B=number of bins, and

7.1)
7.2)
S=number of sweeper man-positions. (7.3)

The values of these variables can be found for any
particular mail distribution and specified arrange-
ment of equipment.

The total yearly cost C'is given by

C=C+Ci+Cy,

where

C,=yearly equipment cost,

Cs;=yearly space cost, and

C,=yearly personnel cost.
Using (4.7) and (4.8), we have

C.+0,=12,700 L+14 B;
using (5.7) and (5.8) we have
C,=11,000 (S+18) ~14,670 S.

The cost formula we will use is therefore

C=12,700 L+14 B+14,670 S (7.4)
where L, B, and S are defined above and
CO=variable dollar cost/yr. (7.5)

6 N. C. Severo and A. E. Newman, A statistical chain ratio method for deter-
mining the distribution of mail by destination (to be published).
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8. General Minimum Cost Estimate

We will first derive a theoretical minimum cost
estimate which is general in the sense that it does not
depend on the particular distribution by destina-
tions of mail, but only on the volume of mail; i.e., on
the fact that the sorting system must be able to
handle

1,000,000 letters/hr. (8.1)

Using this and the fact that the maximum input rate

is

36,000 letters/loading complex/hr, (8.2)

we see that at least 1,000,000/36,000=27F loading

complexes are required; since L is an integer,

L>28. (8.3)

By (5.5) each bin accounts for at most 1,200 letters/

hr, so that in view of (8.1) the number of bins re-
quired is at least

1,000,000/1,200 =833+

since bins come in 30-bin modules, B must be a
multiple of 30, and so

B> 840. (8.4)
By (5.1) each stack of letters contains at most 60
letters, so there must be af least

1,000,000/60 stacks/hr,

and thus in view of (5.2) there must be at least
(1,000,000/60)/180=92* sweepers;

thus S>93. (8.5)
We now apply (8.3), (8.4), and (8.5) to (7.4), ob-

taining
C>(12,700) X (28) + (14) X (840) -+ (14,670) < (93).
or, rounding off,

C>356,000+12,000+ 1,364,000 =~1,732,000. (8.6)
Thus we have proved that $1,732,000 is an (approxi-
mate) minimum variable yearly total cost for equip-
ment, space, and personnel. The three summands
in (8.6) refer, respectively, to costs associated with
loading complexes, bins, and personnel. We em-
phasize that this is a theoretical minimum cost; no
actual system can cost this little.

Next we will be a little more realistic (and a little
less general), and use the following one fact about
the particular mail distribution with which we deal:
Each of the 700 least frequent destinations receive
60 or fewer letters/hr. On the one hand, they re-



quire at least 700 sweeps/hr and therefore yield at
least 700 stacks/hr. On the other hand, these 700
destinations account for about 1.8 percent of the
total mail, and thus for 18,000 letters/hr; if these
letters were arranged into stacks of size 60 (as was
assumed in deriving (8.5)), then

18,000/60=300 stacks/hr,

rather than 700, would result. Thus the argument
leading to (8.5) underestimates the minimum pos-
sible number of stacks/hr by 700—300=400, and
thus (using (5.2)) underestimates S by 400/180 ~2
sweepers. (8.5) should be replaced by

S>95, (8.7)

and the corresponding modification of (8.6), after
rounding, is
C>1,761,000,

so that we have a minimum cost estimate of

Cn=$1,761,000. (8.8)

The estimate (8.8) is still too “general” to use as
a yardstick, and we shall use instead a “detailed
minimum cost estimate” (based on the detailed
properties of the specific mail distribution) which
will be derived in section 9. This care in choosing
a yardstick might seen unnecessary, since a “yard-
stick” is only a unit of measurement whose choice
cannot affect which of two proposed sorting systems
appears less costly. The choice of yardstick does,
however, affect our decisions as to what constitutes
a significant difference in cost (either between two
systems being compared or between a single system
and a hypothetical “minimum-cost” system), and
also as to what constitutes an allowable error in
making simplifying approximations.

We shall use (8.8) primarily as an aid in calculat-
ing the costs of the various systems studied. If,
using (8.3), (8.4), and (8.7), we ‘define

AL=L—28 (8.9)
AB=B—840 (8.10)
AS=S--95, (8.11)

then it turns out that a convenient way to calculate
the cost €' of a system is (i) to find these numbers
AL, AB, and AS of “‘extra” loading complexes, bins,
and sweepers, (i1) to calculate an “‘extra cost,”

AC': (= Yminv
by AC=(12,700) AL+14 AB+(14,670) AS (8.12)

(this formula follows from (7.4)), and (i12) to find
(' by
C=Ct (A O). (8.13)

This constitutes the “add up” method mentioned in

section 1.

9. Detailed Minimum Cost Estimate

Our main goal in this section is to derive a mini-
mum cost estimate which makes detailed use of the
particular mail distribution we are studying. The
methods used in this derivation will also turn out
to be helpful in the analysis of some of the systems
considered later in the report. Reading the first
paragraph of section 12 may be helpful here.
hAll the systems studied later have the property
that:

For each destination, either all mail to that
destination is sorted by destination on the pri-
mary, or all mail to that destination goes into
residue on the primary and is then given a sec-
ondary sort. (9.1)

We shall therefore assume this property in (mentally)
constructing a_hypothetical “‘minimum-cost” sys-
tem. Since this is to be a mmlmum -cost system,

we can also suppose (to minimize the cost of residue
bins) that:

All residue bins are operating at their maximum
capacity (see (5.5)) of 1,200 letters/hr. (9.2)

Once this assumption is made, it follows (in order to
minimize loading complex costs) that:

A letter which is to go into residue will be
dropped into a residue bin before passing another
loading complex. (9.3)

The method of estimating costs used in section 8
depended on counting the numbers of loading com-
plexes, bins, and sweepers, and adding up the result-
ant costs.  The approach used below is fundamen-

tally different, in that it involves following every
letter thlough the system and assigning an appro-
priate cost at each stage of its progress. We first
consider a letter which enters the system through
some loading complex ¢ and then (without being
dropped) passes a succeeding loading complex %,.
This letter prevents %% from working at its maximum
capacity of 36,000 letters/hr; some other letter,
which could otherwise have entered the system
through 7%, will now have to enter the system
through some “extra” loading complex (in addition
to the minimal 28 complexes known to be required
by (8.3)). If we suppose (to minimize the number
of extra complexes and thus the total cost of all
extra complexes) that all extra complexes are oper
ating at capacity, then our original letter, by passing
Y5 has created a requirement of “l/ 36,000) of an
extra loading complex.” Since (by 7.4) each extra
loading complex adds $12,700 to the system, we are
led to the following rule for use in estimating the
cost of our hypothetical system:

Assign a cost of 12,700/36,000 ~.353 whenever

a letter passes a loading complex. (9.4)
Suppose now that it is possible to divide each
extra loading complex into 36,000 parts, each able
to handle 1 lcttor/hr, and that it is possible to add
enough of these parts to each of the minimal 28
“nonextra’” loading complexes required for the pri-
mary sort to ensure that these complexes operate at
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their full 36,000 letters/hr capacity. Such a policy
would tend to decrease bin costs and, indirectly,
sweeper costs (since bins which previously received
fewer than 60 letters/hr might now receive 60 or
more; see (5.3)). We therefore assume, for our
hypothetical minimum-cost system, that this policy
has been adopted, so that the primary sort involves
28 loading complexes (each possibly augmented by
parts of extra loading complexes) all working at thewr
mazimum capacity. If we also make the “minimum-
cost” assumption that all loading complexes used
for the secondary sort are operating at maximum
capacity, then we have a situation in which:

All loading complexes operate at their maximum
rate of 36,000 letters/hr. (9.5)

Thus any letter entering the primary or secondary
sort uses 1/(36,000) of the services of the loading
complex through which it enters, so that we have
the following rule analogous to (9.4):

Assign a cost of .353 whenever a letter enters
the primary or secondary sort. (9.6)

The essential assumptions made so far are (9.1),
(9.2), (9.3), and (9.5). Before proceeding further,
we point out that two of the (physically realizable)
types of sorting configurations to be analyzed later
actually do satisfy these assumptions. The simplex
scheme (treated in sec. 10) satifies them exactly,
obeying vacuously the conditions referring to residue;
the optimal residue scheme found in section 12
satisfies them very nearly. Thus these schemes can
be treated by the method developed below.” There
is no need (see sec. 10) for such a detailed treatment
of the simplex scheme. We shall treat the residue
scheme, however; in fact, since the methods of this
section are less obviously correct than is the “count
the sweepers, bins, and loading complexes’ approach,
we will later analyze the residue scheme using each
approach separately and verify that the same answer
is obtained in both cases.

Returning to the analysis, we define

fi=fraction of the mail which goes to the ith
destination (9.7)

and consider whether or not letters to the ith des-
tination should go into residue on the primary sort.
For this purpose it is convenient to define

v — [1,000,000f,

‘ if 1,000,000f, <60,
160

otherwise,

(9.8)

and to note that (by (6.1))

1,000,000 f,=number of letters/hr to the ith
destination (9.9

In addition, from (7.4) and (5.2) we are led to the
rule:
7 A ctual schemes involving multiple input fail to obey (9.5); in treating these

schemes by the methods developed below, one must take into account the actual
input rates of the loading complexes.

Assign a (personnel) cost of 14,670/180=81.50
for each stack to be swept. (9.10)

If letters to the ith destination go into residue,
then the total cost to be assigned to each such letter
as it travels through the sorting system can be
calculated in the following way. The letter enters
the primary and secondary sorts, so (9.6) yields a
loading complex cost of 2 (.353). By (9.3), there
is no contribution from (9.4). By (9.2) and (7.4),
the letter should be “charged” 14/1,200 for its use
of a residue bin. By (5.5) and (7.4), assuming
10%/,<1,200, it should be charged 14/10%, for its
use of a bin in the secondary sort. By (5.1) and
(9.10) 1t should be charged 81.50/60 for the sweep
of its residue bin, while by (5.1), (5.3) and (9.10) it
should be charged 81.50/V; for the sweep of its bin
in the secondary sort. Adding together these partial
costs and defining

C(f;)=cost to be assigned to a letter to the vth
destination, if such letters go into residue,
(9.11)
we have

C(f)=(14/10%)) +(81.50/V ;) +2.076
(if 10°,<1,200). (9.12)
Next we want to calculate the analogous cost if
letters to the ith destination do not go into residue
for a secondary sort. The primary sort of our
hypothetical system now consists of 28 (possibly
augmented) loading complexes in series, each followed
by a row of bins (some of which may be residue bins);
this series arrangement involves no loss in generality,
since any other arrangement can be obtained as a
special case.® We note first that

bins for the ith destination are spaced uniformly
through the primary (except possibly at the end).
(9.13)

To see why this is so, suppose for example that it is
found that the first bins for the ith destination should
be placed after the third loading complex. Then in
view of (9.5), the situation regarding this destina-
tion is the same beginning with the fourth loading
complex as it was beginning with the first complex,
and for the same reasons as before we would find
that the next bins for the destination should be
placed as far after the fourth complex as the first
bins were placed after the first complex. Thus we
can define

n;=number of loading complexes between suc-
cessive appearances in the primary of bins
for the ith destination. (9.14)

In view of (9.5), a letter to the ith destination is
equally likely to pass 0, 1, 2, . . ., n,—1 complexes,
each with a probability 1/n,, so that the average cost
contribution due to (9.4) is

¢ For example, to obtain as a special case (so far as cost factors are concerned)
a multiple input system involving two series of 14 loading complexes each, we

simply assume in our hypothetical system that all mail is dropped between
the 14th and 15th complexes.
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(.353) X (0+142+. . .4 (n;—1))/n,=0.1765 (n,—1),

where the formula for the sum of an arithmetic
progression has been used. There is a contribution
of .353 due to (9.6). The system contains 28/n;
sets of bins for the sth destination, each set (dis-
regarding fractional effects) receiving

1,000,000 f;/(28/n;) letters/hr;
if we define

Vie {1,000,000 f/(28/n)  if this is <1,200,
11,200 otherwise,  (9.15)

the let ter should be charged (again ignoring fractional

effects) 14/V7 for its use of a bin. Similarly, if we

define
v 1,000,000 f,/(28/n,) if this is <60,
60 otherwise, (9.16)
then the letter should be charged (see (9.11))

81.50/V"’! for the sweep of its bin. Adding together

these partial costs and defining

C(f,, n;)=cost to be assigned to a letter to the
ith destination, if such letters are
sorted directly on the primary,

(9.17)
we have

C(fi, 1) =0.1765 n,+ (14/V3)+ (81.50/ V)

+0.1765.  (9.18)

We have now developed the formulas needed to

investigate whether or not mail to a given destina-

tion should be put into residue. It 1s convenient to
divide the destinations into three classes:

Class 1. 1,000,000 f; <60,
Class 2. 60<_1,000,000 f;<1,200,
Class 3. 1,200<1,000,000 f;.

In each class, the “into-residue” cost ('(f;) should be
compared with the “not-into-residue” cost C(f;, n,)
evaluated at that value of the system design param-
eter n; which minimizes it.

Analysis of class 1. Since the first alternative of
(9.8) holds, (9.12) yields

C(fi)=2.0764(0.955X 1074 /f..

Since the first alternatives of (9.15) and (9.16) apply,
(9.18) yields

O(fn:) =0.1765 n,+ (2.674 X 1073) /(n,f,) +0.1765,
(9.20)

OO (fs, my) /O =0.1765—2.674 X 103/ (n2f,),

(9.19)

so that

from which it follows that C(f;, n;) is a decreasing
function of 7, for

n?<1.515X1072/f,,

i.e., for n,<0.1231/y/f,
and is increasing for higher values of 7, Since
n,; <28, the minimizing value of n, is

{0.12:;1/\’]‘; if this is <28,

28 otherwise,
1.e., 18
{0.12:41/\11T i f,>4.439%107%,
28 otherwise. (9.21)

By (9.20) and (9.19)
C(fy, 28)=5.1185+ (0.955 X 10~ /f,>C(f,),

so that if the second alternative of (9.21) holds then
mail to the ith destination should go into residue.
If the first alternative holds in (9.21) then

C(fin)mn=C(f;, 0.1231/3/f,)=0.1765+ (.04345/~/f,),
and (from (9.21) and the fact 1,000,000 f,<60)
4.439 %1073 <Vf, <7.746 X 1073,

129.1 <z=(1/4f,) <225.3. (9.22)
From (9.19) and our expression for C(f,, 7.)mm, we
then have

C(fin)mn— C(f:) =0.04345 2—0.955 X 10~ *%¢*
— IS asi

this function of x is increasing (i.e., its derivative is
positive) in the range (9.22) and is >0 at x=129.1;
thus it is positive throughout the range (9.22), which
shows that even if the first alternative of (9.21) holds,
mail to the ith destination should go into residue.
Thus in our minimum-cost system, all mail to class 1
destinations should go into residue.

For our particular mail distribution (see app. A)
the class 1 destinations are destinations 901 to 1,600,
and these 700 destinations receive 18,080 letters/hr.
These letters lead via (9.6) to a cost of

2% (.353) X 18,080
assoclated with loading complexes, of
14 % (18,080/1,200) + 14 %X 700

associated with residue bins and secondary bins,
and of

81.50 % (18,080/60) -+ 81.50 X 700

associated with sweeps of residue bins and secondary
bins. Adding these, we find that in our minimum-
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cost system class 1 destinations involve a total cost
of approximately

$104,400. (9.23)

Analysis of class 2. Since the second alternative
of (9.8) holds, (9.12) yields
O(f:) = (14/10%,) +3.434. (9.24)

The first alternative of (9.15) holds, but either alter-
native of (9.16) may apply, so that (9.18) yields

C(fi;n:) =0.1765n,-+ (2.674 X 1073) /(n f,) +-0.1765
(if n,<1680/10%,), (9.25)

O(fin:) =0.1765n,-+ (0.392 X 1073) /(n f,) +1.5348
(if 7,>>1,680/10%,). (9.26)

As in the analysis of class 1, the function given in
(9.25) is a decreasing function of n; for

n:<0.12311/f; (9.27)
and is increasing for higher values of n;. On the
other hand, the function given by (9.26) is a decreas-
ing function of n; for

n:<0.04713\F: (9.28)
and is increasing for higher values of 7.

For further analysis it is convenient to divide
class 2 into subclasses, depending on the relative
positions of 7,;=0.1231/yf; (where the function
given by (9.25) has its minimum), n;—0.04713/y/f;
(where the function given by (9.26) has its mini-
mum), and 7,=1,680/10%; (where the formula for
C(fi, n;) changes from (9.25) to (9.26)). This sub-
division leads to

Class 2a.
Class 2b.

60<1,000,000 f,<186.3,
186.3<1,000,000 f,< 1,200,

corresponding respectively (subject to 60<10° f, <

1,200) to
0.04713/4/f:<0.1231/4/f;<1,680/10%,,  (9.29a)

0.04713/y/f; <1,680/10%,<0.1231/xf.  (9.29b)

Analysis of class 2a.  Here (;(fi, M) mm Must arise
either by setting n,=0.1231/4/f, in (9.25), yielding

0.1765-+ (0.04345/\f,),
or by setting n,=1,680/10%; in (9.26), yielding
1.76814 (296.5/10°,).

It turns out that the first form is the smaller, so
that, combining the first form with (9.24), we have
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C(f 1, ) mw— C(f:) = (0.04345 \/f;) — (14/10%,) —3.258.
(9.30)

This function of f; is positive for

60<"1,000,000 £,< 168.2, (9.31)
which shows that mail to the ith destination should
go into residue if (9.31) holds.

For our particular mail distribution, destinations
526 to 900 are the ones obeying (9.31); these 375
destinations receive 40,250 letters/hr, leading to a
cost of

2% (.353) X (40,250)
associated with loading complexes, of
12X (40,250/1,200) 414 X 375

associated with residue bins and secondary bins,
and of

81.50 % (40, 250/60) +81.50 % (40, 250/60)

associated with sweeps of residue bins and secondary
bins. Adding these, we find that in our hypothetical
minimum-cost system the mail to destinations obey-
ing (9.31) has a total associated cost of approximately
$143,500. (9.32)

Before proceeding further, we will write out ex-
plicitly a principle which will be helpful in much of
the following work. The correctness of the principle
could be proved analytically in each situation in
which we invoke it, but such proofs would be lengthy
and repetitious, and so we content ourselves here
with stating the principle (which is intuitively evi-
dent anyhow). Informally, the principle simply
recognizes the fact that bins for destinations receiving
a good deal of mail should appear rather frequently
in the primary of our minimum-cost system (i.e., n;
will be small), bins for destinations receiving less mail
should appear less frequently, (i.e., n; will be larger),
and there is a “threshhold #” such that the destina-
tions whose mail is put into residue are precisely
those which receive fewer than ¢ letters/hr. Formally:

Suppose it is best in our minimum-cost system
that mail to the ith destination not go into residue,
and suppose that (n,)q: 1s the best value of n,.
Then for any other destination with f;>f;, it is
best that mail to this destination also not go into
residue, and furthermore (1) opt < (74) opt- (9.33)

Returning to the analysis, we now consider the
class 2a destinations not obeying (9.31); i.e., those
for which

168.2 <1,000,000 £, <186.3. (9.34)
For these destinations, the function of f; given in
(9.30) is negative, but we cannot automatically con-



clude that mail to these destinations should not go
into residue. The difficulty is that we treated n; as
a continuous variable in finding C(f;, 7;)mi, whereas
in fact n; must be a positive integer. We therefore
define (for fixed f;)

C(f;, ny) 2 —=minimum of C(f;, n,) for all positive
/ . I o~
integer values of n;; (9.35)

the value of n; yielding C(f;, n,) %Y will be one of the

integers between which the n; yielding C(f;, 7:)min
lies.
We begin at the “top” of (9.34), with
1,000,000 f,=186.3. (9.36)

The value of n; yielding C(f,, n;)mm 18
11,20.]231/\']?:9*‘,

s0 that (1) ep 18 either 9 or 10. From (9.24) we have

O(f)=0(186.310~% ~3.51.

Substituting 7;=9 and 7n;=10 into the applicable
choices of (9.25) and (9.26) (since 1,680/10%,=97%,
7,=9 goes into (9.25) and n;=10 into (9.26)), we
obtain costs of approximately
3.34 for n,;=9, 3.51 for n,=10,

s0 that (1;) =9 and mail to destinations obeying
(9.36) should not go into residue in our hypothetical
minimum-cost system. We note for future reference
that, by (9.33), all destinations in classes 2b and 3
should not have their mail sent into residue, and that
throughout these classes (1) > 9.

We now continue “down’” through (9.34), con-
sidering lower values of f;. Throughout (9.34),

1:=0.1231/y/ fi=9"

50 that (1) 18 either 9 or 10; also, throughout (9.34)
we have 1,680/10% =97, so that n;,=—9 must be sub-
stituted into (9.25), n,= 10 must be substituted into
(9.26), and the results compared with the result of
(9.24). Since this yields

O(fi, 9)=1.7650+ (297.1/10%,),
O(f,, 10)=3.2998+(39.2/10%,),

we find (using (9.24) also) that mail should go into
residue for

168.2 < 1,000,000 £, <169.6 (9.37)
and should not go into residue for
169.6<1,000,000 £, <186.3, (9.38)
and also that
(n)opt=9  in (9.38). (9.39)
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For our particular mail distribution, there are no
destinations in the narrow range (9.37). The cost
associated with destinations obeying (9.38) will not
be found here, since it can more ((mwmvntlv be
combined with the cost found for class 2b.

Analysis of class 2b.  We know that mail to these

destinations does not go into residue. Also, we
know that at the “bottom” of class 2b (i.e., 10%,—=

186.3) we have (n;)op1=9, an(l from (9.33) we can
expect that as we search “upward” through class
2b (i.e., examine successively larger values of D)
we will reach a point where (1;)p (lnm(ros from 9 to
8. Our immediate aim is to find this turnover
point.

We find that for 186.3<10%,<186.7, C(f,
and C(f;, 9) are both given by (9.25), so that

(’(f,, 9)=1.7650 (297.1/10%))

C (¥, 8)=1.5885+ (334. ;/107) (9.40)

Throughout the range C'(f;, 9) is smaller, so that

(1) ops=9 for

186.3 <10%,<186.7.
For 186.7<10%,<210, C(f;, 8) is still given by
(9.25) but C(f;,9) is now given by (9.26), so “that

C(f:, 9)=3.1233 4 (43.56/10%,). (9.41)

Comparing (9.40) and (9.41), we find that

(BE==l0) for 186.7<10%,<189 .4

but
(1) opr=38

for values of l()ﬁfl immediately above 189 .4.

We can continue to search upwards through class
2b, looking next for the turnover from (n )‘,,,,fs to
(n ,)(,mfz, (‘t( The results of this search are given
in table 1 which includes the class 2a destinations
()l)(‘ylng (9.38). The quantity 10°; has been rounded.

The first three columns of table 1 are independ-
ent of the particular mail (ll\llll)llll()ll The first,
third, fourth, and fifth columns can be used to
derive a cost figure in the following way: For
each row, the fourth entry shows how many destina-
tions are involved and the first entry enables us to
find how many bins to each destination appear in
our minimum-cost system. If (9.25) holds, then
these bins are each swept once an hour, whereas if
(9.26) holds then the number of sweeps involved is
the same as that used in deriving (8.7); we can use
the fifth entries of the rows involving (9.25) to find
the numbers of “extra sweepers” involved (see
(8.11)) and then multiply this contribution to AS
by 14,670 in accordance with (8.12). Finally, we
can use the first and fifth columns, together with
(9.4) and (9.6), to assign a loading complex cost to
each row. The result? is a total cost of about

9 Different methods of associating integral numbers of bins with values of n:
which are not divisors of 28 were tested and found to change (9.42) only negligibly.



$401,200 (9.42)

associated with class 2b destinations and the class 2a
destinations obeying (9.38).

TaBLe 1. Optimizing n; in class 2b

‘ Formula ! Letters/hr

(mi)opt | 106 f; Destinations
| ‘ [
9 | 170 to 187 (9.25) | 491 to 525 “ 5, 950
9 | 188 to 189 (9.26) |
8 | 190 to 209 (9.25) | 451 to 490 | 7,700
8 | 210 to 217 (9.26) | 441 to 450 | 2,100
7 | 218 to 239 (9.25) | 421 to 440 4, 500
7 | 240 to 254 (9.26) | 401 to 420 4, 900
6 | 255 to 279 (9.25) | 381 to 400 5, 300
6 | 280 to 305 (9.26) | 351 to 380 | 8, 800
5 | 306 to 335 (9.25)| 341 to 350 3,200
5 | 336 to 384 (9.26) | 311 to 340 10, 800
4 | 385 to 419 (9.25) | 300 to 310 ‘ 4,510
4 | 420 to 516 (9.26) | 265 to 299 16. 120
3 | 517 to 559 (9.25) | 253 to 264 6, 300
3 | 560 to 786 | (9.26) | 203 to 252 32,720
2 | 787 to 839 | (9.25) | 200 to 202 2,420
2 | 840 to 1,200 (9.26) | 154 to 199 46, 400
| i o
Total number of letters/hr__ . ________________ 161, 720

Analysis of class 3. Here the different possible
alternatives in (9.15) and (9.16) lead to three possible
formulas for C(f;, n,;):

O(fs, 1) =0.1765n,+ (2.674 X 107%)/(n,f,) +0.1765
(if n,<1,680/10%,), (9.43)

O(f;, n)=0.1765n,+ (0.392 X 107%) /(nf,) +1.5348

(if 1,680/10%,< n,<33,600/10°,), ; (9.44)
C(fi, m:)=0.1765n ;4 1.546
(if 7,>33,600/10°,). (9.45)

We can work “upwards” through class 3 just as we
did in class 2b, beginning with (n;),:=2; the only
new complication is that possible transitions to
(9.45) must be allowed for. It turns out that the
change from (n;)ep;=2 to (n;)eps=1 occurs for
105f,=1,614 (i.e., at destination 119 in our particu-
lar mail distribution) and that the cost associated
with class 3 destinations is

$1,397,000. (9.46)

Finally, we add up (9.23), (9.32), (9.42), and (9.46)
to obtain (after rounding off) a total of
Ck.=$2,046,000 (9.47)
as the approximate cost of our hypothetical mini-
mum-cost system. This is then our theoretical
minimum cost, to be used as a yardstick in dealing
with proposed sorting configurations. It is signifi-
cantly larger than (8.8).
The general approach used in this section consti-
tutes the “follow through” method mentioned in
section 1.

10. Simplex Scheme

The first sorting scheme we examine is also the
simplest. The sorting system consists of a number
of essentially independent subsystems, each consist-

3 i )

ing of a single loading complex followed by 1,600
bins, one for each of the 1,600 destinations.

The argument used to derive (8.3) shows that for
this system L=28, so that

AL=0; (10.1)

thus there are 28 subsystems, so that

AB=(28) % (1,600) —840 ~44,000.  (10.2)

Assuming the 1,000,000 letters/hr divide equally
(on the average) among the 28 subsystems, we find
that a bin corresponding to one of the 114 most
frequent destinations will receive 60 or more let-
ters/hr, whereas a bin corresponding to one of the
(1,600—114)=1486 least frequent will receive fewer
than 60. There are

1,486 % 28 ~ 41,600

bins in the system which correspond to these last
1,486 destinations, and by (5.3) these bins give rise
to 41,600 stacks/hr. These last 1,486 destinations
receive only 27.6 percent of the total mail (276,000
letters/hr) and so, if all stacks consisted of 60 letters
(the basis on which (8.5) was derived), they would
give rise to only

276,000/60=4,600 stacks/hr.

Thus we have 41,600—4,600=237,000 extra stacks/hr,
leading via (5.2) to

37,000/180 =205

additional sweepers, of which two were taken into
account in passing from (8.5) to (8.7). So

AS=203 (10.3)
and by (8.12)

AC=(14) X (44,000) + (14,670) X (203) ~ 3,594,000,
(10.4)

so that, by (8.8) and (8.13),
O=Cnt(AC) = 5,355,000,
and by (9.47),
(C— i) [Clin=162%,
Thus on a cost basis the simplex scheme should
definitely be rejected. The excessive cost comes

primarily from personnel, i.e., from the second
summand in (10.4).

11. Christmas Tree Scheme

This might also be called the ‘“square root”
scheme. In our case the square root of the number
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of destinations is v'1,600=40. The system consists
of a number of subsystems, each containing a single
loading complex and 40 bins.'® The 1,600 destina-
tions are divided into 40 groups of 40 destinations
each; the primary sorting of mail is done by group,
and the mail to each group is then given a secondary
sort by individual destinations.

The key to the analysis is the fact that each piece
of mail is dealt with twice. By applying (8.3), (8.4),

and (8.5) to both the primary and the secondary
sorts, and adding the results, we have
L>56, B>1,680, S>186,
so that
AL>28, AB>840, AS>91
and by (8.12)
AC>1,702,000,
so that by (8.8) and (8.13)
O'>3,463,000
and
(( = mm)/(vmm/ﬁg%'
On this basis we can reject the Christmas Tree

Scheme. Again personnel costs are the major factor.

12. Residue Scheme

In this system the primary sort consists of sorting
letters directly to those destinations which receive
a relatively large fraction of the mail, while dropping
all letters to the less “frequent” destinations into a
relatively small number of residue bins, which are
then given a secondary sort by destination. The
purpose of this maneuver is to avoid having a large
number of sweeps (corresponding to infrequent
destinations) resulting in small stacks; such sweeps
lead to excessive personnel costs.

The system is determined by stating definitely
which destinations are to be considered “infrequent”
(so that mail to them goes into residue) and which
are to be considered “frequent.” We therefore
define a system design parameter

the ith destination is frequent if
infrequent if 10°f,<%; (12.1)

t=threshold;
10%f, > ¢,

the value of 7 is to be chosen so as to minimize the
cost of the system. As before,

fi=Tfraction of mail which goes to the ith destination.
(12.2)

We shall determine the optimal value of ¢ by two
methods (in order to check their agreement). First
we apply the “follow through’ approach of section 9.
The residue scheme certainly satisfies (9.1) and
(9.3); if well-designed, it will very nearly satisfy

_19%The cost estimate would be even higher if we took into’account the indivis-
ibility of the 30-bin modules.

(9.2) and (9.5) as well.  We will therefore proceed
as in section 9.  The number of letters/hr to the 2th
destination in each of the 28 primary subsystems is

1,000,000 £,/28,

and if this quantity is >60 then by (5.4) there
would be no reason to put mail to the ith destination
into residue. Thus the only destinations about
which there is any question are those for which

(1,000,000 f;/28) <60.

We can split these destinations into classes, according
as
1,000,000 f, <60, (12.32)
or
60<"1,000,000 £,< 1,200, (12.3b)
or

1,200<1,000,000 f,< 1,680. (12.3¢)

For destinations obeying (12.3a), (9.12) yields
C(f:)=2.0764(95.50/10° f,), (12.4a)

n;—1 in the residue scheme,

(12.5a)
Similarly, for destinations obeying (12.3b) we have

O(fo)=3.434+ (14/10%,)

C(fi, 1)

For destinations obeying (12.3¢), it is not clear in

view of (5.5) what a letter going into residue should
be “charged” for the sweep of its secondary bin;

while (9.18), since
yields

C(fi, 1)=0.3534(2674/10%,).

(12.4b)

=0.3534(2,674/10%).  (12.5b)

it should be at least 14/1,200, however, so that
(see (9.25)) we have

O(f)< (14/1,200)+3.434=3.451,  (12.4c)
wnd O(fi, 1)=1.7113+ (392/10%,). (12.5¢)
We find that C(f,)—C(f;, 1) is negative (i.e., it is

less expensive to put mail to llw ith destination into
residue) for 10%,<863 and is positive for 10%,>
864. Thus the optimal ¢ is
tope=864, (12.6)

which for our particular mail distribution corre-
sponds to destination 196.

Next we apply the “add up”
(8.12). First we define two relevant
depending on £, by

method based on
quantities,

N, =number of frequent destinations,
V,=number of letters/hr to frequent destinations,

so that (since our situation involves in all 1,000,000
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letters/hr and 1,600 destinations).

1,600 —N,=the number of infrequent destinations,
1,000,000 —V ,=number of letters/hr to infrequent
destinations.

The number AL of extra loader complexes needed
for the secondary sort is given (using (8.2)) by
AL=(1,000,000—1V,)/36,000; (12.7)
more precisely, AL is the integer next above the
right side of (12.7). The infrequent destinations
are divided into AL groups whose total expected
hourly mail volumes are approximately equal.
The sorting system contains 28-(AL) sub-
systems, each consisting of a loading complex
followed by a number of bins. Each of the 28 sub-
systems needed for the primary sort contains N,
bins for the frequent destinations and one residue
bin'* for each of the AL groups of infrequent desti-
nations. Each of the AL subsystems used for the
secondary sort, sorts the entire primary residue of
some one of the groups; thus these AL subsystems
together contain one bin' for each infrequent desti-
nation, and thus contain 1,600—XN, bins in all.
Therefore

B= 28(N,+ (AL)) AF (1;600_Arz)

—28(AL)+27N,+ 1,600,
AB=B—840=28(AL)+27N,+760. (12.8)

Having found AL and AB, we must find AS. The
frequent destinations receiving 60 or more letters/hr
on each of the 28 primary subsystems, require no
more sweeps than was assumed in caleulating the
minimum cost. The same holds for secondary sweeps
of mail to the infrequent destinations. The extra
sweeps therefore arise (@) from sweeping the residue
bins and (b) from the primary sweeps of frequent
destinations receiving fewer than 60 letters/hr on
each of the 28 primary-sorting subsystems; the
frequent destinations described in (b)) are those
receiving fewer than (28) < (60)=1,680 letters/hr in
all, and thus those whose mail frequencies are less
than 0.168 percent. In our actual mail distribution,
114 destinations have frequencies of 0.168 percent
or more, and these destinations account for 72.40
percent of the total mail. Thus

N;—114=number of destinations of the type (b),
(12.9)

V,—724,000=hourly volume of mail to these
destinations. (12.10)

The destinations deseribed in () thus lead to
approximately

28 (N,—114)/180 sweepers

I Some extra bins may be required in order to satisfy (5.5), but their cost is
negligible.

of which ((V,—724,000)/60)/180 were accounted for
in calculating (8.8). The number of extra sweepers
due to source (b) is therefore approximately

(1,680N,— V4 532,500)/(60) (180).

The residue bins together receive 1,000,000— 1V,
letters/hr and each receives more than 60 letters/hr,
so that the number of extra sweepers due to source
(@) is approximately

(1,000,000— V) /(60) X (180);
adding the last two expressions gives

AS ~ (1,532,500—2V,+1,680N,)/(60) (180).
(12.11)

We now substitute (12.8) and (12.11) into (8.12)
obtaining

AC~13,100(AL)+2,660N,—2.717V + 2,092,5?0. :
12.12

Theerrorinvolved in using (12.7) is at most unity, lead-
ing to an error of at most 13,100 in (12.12) and thus
to an error of less than 1 percent in (C—C%,)/C%,..
We therefore substitute (12.7) into (12.12) getting

AC=~2,660 N,—3.081 V,+2,456,400. (12.13)

To minimize AC quickly (we omit the rigorous
justification of the following method), equate the
differential of the right side of (12.13) to zero:

2,660(dN,) —3.081(dV,)=0.

Since N, increases in steps of size 1 (each step mmvolv-
ing shifting the status of one destination from
“infrequent” to “frequent’”), we set dN,=1 and
obtain
dV,=(2,660)/3.081 ~863 letters/hr. (12.14)
Since the inecrement in V7, due to one extra “frequent’”
destination is simply the expected hourly volume of
mail to that one destination, (12.11) tells us that for
the approximate minimization of AC, the last of the
“frequent” destinations should obey 10°%,=863, so
that (see (12.1))
=i (12.15)
in near-perfect agreement with the result (12.6)
obtained by the “follow through’ method. For our
particular mail distribution this ‘‘cutoft’” occurs
between destinations 196 and 197, and after obtain-
ing the value of V, corresponding to N,=196 from
appendix A and substituting into (12.14) we find
(rounding) that

(AC) pin=440,000
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so that (=2 201,000

Yk /(v*

and (O—Ci) | Crin =8%. (12.16)

Using (12.11) we find that the cost of personnel is
again the main cost factor.

The optimum given by (12.15) (i.e., given by a
“cutoff” between destinations 196 and 197) is not a
very sharp one; the cutoff can occur as low as about
destination 165 or as high as destination 225 without
raising (C—CFk,)/C%, to more than 0.5 percent
above its minimum.

13. Multiple-Input Schemes

In these schemes, the sorting system consists of a
number of identical subsystems, each receiving its
mput from a number of loading complexes arranged
in series. More precisely, each subsystem consists
of a first loading complex followed by a first row of
bins for some (but not all) destinations, then a
second loading complex’? followed by a second row
of bins for some destinations (not necessarily the
same ones as in the first row), . . ., and finally a
last loading complex followed by a last row of bins
for all 1,600 destinations.

Consider some particular sorting system of this
type; call it system 1, and let

M=number of subsystems of system 1. (13.1)
Let system 2 be obtained from system 1 by replacing,
with residue bins, the last 700 bins of the last row of
each subsystem (these bins correspond to destina-
tions 900 to 1600, which for our mail distribution are

the ones receiving fewer than 60 letters/hr). The
residue then requires a secondary sort. Let
R=number of residue bins/subsystem for
system 2. (IBE)

We will compare the costs of system 1 and system 2;
let Ly, B, Sy, O, Ly, B,, S,, (), denote the respective
ralues of L, B, S, (', for the two systems.

Destinations 900 to 1,600 receive about 1.8 percent
of the mail, or 18,000 letters/hr; this is less than the
36,000 letters/hr capacity of a loading complex; and
so only one complex is needed for the secondary sort:

L,—L,—=1. (13.3)

The 700 M bins used for destinations 900 to 1,600
in the last rows of the subsystems of system 1 are
replaced in system 2 by RM residue bins plus 700
bins for the secondary sort, and so

12 Some cf the letters inserted by the first loading complex (namely, letters to
those destinations for which bins were not provided in the first row of bins) will
still be on the conveyor as it passes the second loading complex. Thus the second

loading complex of each subsystem will not operate at its full rate (36,000 letters/hr)
and the same holds for the third, fourth, etc. loading complexes of each subsystem.

95

Bi— Bo=T00M— (RM+700). (13.4)

The above-mentioned 700 M bins for system 1
cach received fewer than 60 letters/hr, and so to-
gether required 700 M sweeps/hr. For system 2, the
700 secondary bins together require 700 sweeps/hr.
As for the RM residue bins, /2 is chosen as small as
possible, so that each residue bin (except possibly for
the last one on each subsystem) receives at least 60
letters/hr; the residue bins receive 18,000 letters/hr
and thus require approximately

18,000/60 =~ 300 sweeps/hr.
Thus we have, using (5.2),
S, — S, ~ (700M — (300 +700)) /180. (13.5)

The analog of (8.12) which applies to our situation

it
C,—Cy=12,700(L,—L,) + 14 (B,—B,) +14,670(S,—S.),
(13.6)
and so, by (13.3), (13.4), and (13.5) we have
C,—Cy=67,000M—14RM—104,000. (13.7)

Since 2 1s chosen as small as (5.5) permits, we have
RM ~19,400/1,200 ~ 16,
and so (13.7) can be rewritten as

O, — (= 67,000M— 104,000 (13.8)
One rather sweeping conclusion which can be
drawn from (13.8) 1s that no multiple input scheme
with more than one subsystem (i.e., with M >1) can be
optimal. 'To prove this, take the system in question
as the “‘system 177 of the above discussion. Since
M >1, (13.8) shows that ,— (5 >0 and thus that
(,<(; since system 2 costs less than system 1, the
latter cannot be optimal. We could use this argu-
ment to eliminate multiple input schemes with M >1
from further discussion, if we were going later to
examine the “systems 2.” Unfortunately, the
analysis of such systems, which combine elements of
the multiple input and residue schemes, appears too
complicated to be attempted here (the difficulties of
even relatively simple systems of this type will be-
come apparent in sec. 14 and app. C).  We can, how-
ever, use (13.8) to eliminate all multiple input sys-
tems (i.e., all “systems 17) with M>7. To do this,

we note first that ', >, so that
N s G

together with (13.8) and M >7, this implies that
AC, > O — Oy = 67,000 M— 104,000 > 365,000,

so that system 1 is at best negligibly less costly than
(actually more costly; see footnote 13, p. 96) the



system to be found in section 14, for which (see
(14.24))
('=366,000 (13.9)
Now we want to examine multiple-input schemes
with M <6 (i.e., with six or fewer subsystems). It
is convenient to define

=number of destinations receiving fewer
than 60M letters/hr, (13.10)

Wir=number of sweeps associated with these
destinations in calculating C7%,. (13.11)

Each such destination receives fewer than 60 letters/
hr (and thus requires at least one sweep/hr) for each
subsystem, so that together these destinations require
at least MN,; sweeps/hr for the entire system. Thus

AS > (M Ny — W) /180. (13.12)
For M=6 we find MN,,
that, by (8.12),

z7,620, I’l};{z2,]40, SO

AC> 14,670 % 5,480/180 ~ 447,000

(for M=6). (13.13)

By comparison with (13.9), systems with M=6 are

elvminated.”* For M=5 we find MN, =~6,150,

Wir=~1,925, as well as
AB=B—840>5%1,600—840="7,160;

thus by (8.12),

(13.14)

AC>14,670<4,225/180+4 14X 7,160 ~445,000
(for M=5). (13.15)

By comparison with (13.9), systems with M=5 are
eliminated.

These relatively simple arguments are not ade-
quate to deal with the schemes with M <4. Con-
sider first the situation M=4. Here MN, ~4,720,
Wiar=1,710 so by (13.12)

AS>3,010/180. (13.16)

Two cases are possible. /f each subsystem contains
eight or more loading complexes, then

AL=L—28>4X8—28=4, (13.17)

AB=B—840>41,600—840=5 560, (13.18)

and by (13.16), (13.17), (13.18), and (8.12), we obtain
AC>374,000,

so that in this case the system can be eliminated by
comparison with (13.9). The other possible alterna-
tive is that each subsystem contains no more than
seven loading complexes. Seven loading complexes

13 The same argument, if applied to M=7, yields AC>552,000, a much stronger
result than the one found earlier (the dl\pla\ first above (|3 9))

can handle at most

7X36,000=252,000 letters/hr,
and each of the four subsystems must handle
1,000,000/4=250,000 letters/hr,

so seven complexes/subsystem are needed, all work-
ing close to capacity; i.e., the input of each loading
complex in a subsystem must be nearly all dropped
in the following row of bins in order for the next
loading complex to have a nearly empty conveyor
belt. This clearly requires at least 200 bins after
each of the first 6 complexes in each subsystem;
the seventh loader is followed by 1,600 bins (one
for each destination) so that
AB:B~84024><((6><200)+1,600)——840:1(0,360;
13.19)

from (13.16), (13.19) and (8.12) we obtain
C'>390,000,

so that the system is elimmated by comparison with
(13.9). 'Thus systems with M=4 are eliminated.

We have not been able, within the limits of time
and effort reasonably assignable to this particular
point,'* to devise a mathematical proof that multiple
mput systems with M=1, 2, or 3 can be eliminated
because of excessive cost. (The difficulties en-
countered, and the reason for their occurrence for
small values of M, are discussed in the next par-
agraph.) Nevertheless, we strongly believe that
such systems are excessively costly. This belief is
based on auxiliary calculations which will not be
reproduced here, and also in general on our ex-
perience with the other parts of this study. Roughly,
the situation is this: In each subsystem, most of the
mail must be dropped out fairly soon after it enters
the subsystem, for otherwise the input from many
of the loading (Omp]('\(\s would be cut substantially
below 36,000 letters/hr, so that a large number of
loading ('omploxos (whoso cost would be excessive)
would be required to pass the required 1,000,000
letters/hour into the system. Such an early dropout
of most mail, however, would require a large number
of bins, many of which would receive fewer than
60 letters/hr and thus (see (5.3) and (5.4)) involve
“ineflicient sweeping”’; the cost of bins and sweepers
(especially the latter) would then be excessive.

The difficulties encountered for small values of
M (i.e., for systems with a small number of sub-
systems) stem from the fact that in such cases each
subsystem must contain a relatively large number
of loading complexes; for M=3, for example, each
subsystem contains at least 9 such complexes, while
for M=1 we have a single long subsystem with at
least 28 loading ('ompl(‘.\'('s in series. 'The first cause
of difficulty is that the formulas involved in the
analysis of a subsystem with n loading complexes

14 Especially since the configuration found in section 14 is so nearly optimal.

96



become more and more complicated as n increases.
(See Appendix B for more details.) For n>9, for
example (i.e., for M <3), it is still possible to use
these formulas in making calculations for any one
given subsystem, but is extremely difficult to use
them in comparing a large number of possible sub-
systems; this latter problem is of course, the one
which actually arises in our work. The second
cause of difficulty is the enormous number of systems
to be compared, when the value of 7 is high (i.e.,
when M is low) ; this number is in fact
(n—1)@ (d=number of destinations),

and since d=1,600 it is clear that even if 99 percent
of the possible systems could be eliminated on some
common-sense grounds, the number remaining for
analysis (if 7 1s moderately large) would still [be
astronomical.

14. Multiple Input and Residue: Double
Loading

The “multiple input and residue” schemes, com-
binations of two of the proposed schemes which
we have analyzed earlier, are like multiple input
schemes except that some of the bins may be assigned
to residue; this residue then requires a secondary
sort.  We therefore speak of “primary subsystems”
and ‘“secondary subsystems.”

There is a great variety of subclasses of this type
of scheme, and within any one subclass the analysis
required to determine the optimal choice of the
relevant parameters appears to be quite difficult.
We will make a detailed analysis only of a relatively
simple subelass; the result turns out to be a system
so nearly optimal (see (14.25)) that mvestigation
of more complicated systems is clearlynot worthwhile.

We consider “multiple input and residue” schemes
which are determined by two parameters, 7 and £
(with 7< k), in the following way: Each primary sub-
system contains two loading complexes. The first
complex of each primary subsystem is followed by
bins for each of
(14.1)

the “type 17 destinations 1, 2, . o 0l

and also by residue bins for

the “type 3” destinations k-1, k+2, . . ., 1,600,

(14.2)

Thus that part of the first complex’s input consisting
of mail to
the “type2” destinations j+1, 742, . . ., k (14.3)
does not get sorted until after the conveyor passes
the second complex. The second complex of each
primary subsystem is followed by bins for type 1
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and type 2 destinations, and residue bins for the
type 3 destinations. We wish to choose 7 and £ so
as to minimize the cost of the system.

We will use the notation

fi=fraction of mail to destination 7; (14.4)

the destinations are so ordered that

hZ2k2fiz .. o Zfi60

We also set
Fi=fi+f.+ +fi=fraction of mail to the first ¢
destinations. (14.5)

The input to the first loading complex of each
primary subsystem is the usual 36,000 letters/hr, but
only a fraction F;+4 (1—1/F) of these (corresponding
to types 1 and 3) get dropped before the second com-
plex, so that the input to the second complex is

36,000 (14 F,—F),) letters/hr
and the input to each primary system is

36,000+36,000 (1+F,—F))
36,000 (24 F;—F) letters/hr.

Therefore the required number of primary subsystems
1s about

1,000,000/36,000 (2+ F,—F})

~28/(2+F,—F,), (14.6)

b
so that the number of loading complexes for the
primary subsystems is about

56/(2+F,—Fy),

while the residue of 1,000,000 (1—/F)) letters/hr re-
quires

1,000,000 (1—F}) /36,000 ~28 (1—F,) (14.7)

loading complexes for secondary sort. Thus

L= (56/2+F,—F;))+28(1—F),
AL=L—28~ (56/(2+F,— F))—28F, (14

or .8)

The type 3 destinations are divided into groups as
for the residue scheme (sec. 12); the number of
these groups is given by (14.7). The secondary sub-
systems together contain one bin for each type 3
destination, or 1,600—% bins in all.  Each primary
subsystem contains 74k bins for separate destina-
tions (7 bins before the second loading complex, k&
bins after it), and also two residue bins for each
group (one before the second complex,“one after it).
Hence, using (14.6) and (14.7),



B=~(1,600—k)+ (28/(2+F;,— F}))
X (G+k+56 (1—Fy)),

SO

AB=B—840 = (760—k)

+98 (j+k+56 (1—F)/@+F,—Fy). (14.9)
Having found AL and AB, we still have the more
complicated task of finding AS. The sweeps of bins
of the secondary sort require no extra sweepers.
The extra sweepers are required (@) in sweeping the
residue bins,'® (b) in sweeping those bins (if any)
before the second loading complex which receive
fewer than 60 letters/hr, and (¢) in sweeping those
bins after the second complex which receive fewer
than 60 letters/hr. There are

1,000,000 (1—F,) letters/hr
going to the residue bins, and so ' the contribution
of (a) to AS is approximately (using (5.1) and (5.2))
1,000,000 (1—F,)/(60%180).  (14.10)
The analysis of the contribution of (b) to AS
depends upon the fact that, for our mail distribution,
only destinations 1 to 114 receive 60 or more letters/
hr out of 36,000 letters/hr (the input of the first

loading complex of a primary subsystem). The
contribution of (b) to AS is
0 if <114, (14.11)

If77>114, then the j—114 destinations 115, 116, . . .,
7 have their bins before the second loading complex
receiving fewer than 60 letters/hr, leading (via
(14.6)) to approximately

28 (j—114)/(2+F;—F}) sweeps/hr.

Notall of these are extra sweeps, however; the volume
of mail involved is '

1,000,000 (Fj_[{'114)/(2+F]‘—]7;;) 1(‘tt‘(‘I‘S/}1I‘,
which in calculating the minimum cost would receive

1,000,000 (F;— F\1y) /60(2-+ F;— F) sweeps/hr.
Thus we have a contribution of (b) to AS of approxi-
mately

[28(j— 114) — 1,000,000 (F;— Fy.4) /60]/180(2+ F;— F})
Gf j>114). (14.12)

The contribution of (¢) to AS arises from fwo
sources. Iirst, there are the type 1 destinations (if
any) which receive fewer than 60 letters/hr after the

15 It is assumed that the parameters are so chosen that all residue bins receive
at least 60 letters/hr.

16 For 1/(2+ F;— Fx) is the fraction of mail entering the system which enters
through the first loading complexes of the primary subsystems.

second loading complex of each primary subsystem.
To handle these, we define a new variable m, depend-
ent on j and k&, by

(last destination for which
36,000 (1+4F;— Fy)f,, > 60).

destination m—
(14.13)

The contribution to AS from the first source of (¢)
1s then

0 if  m>j;
if m<j then the (j—m) destinations m-+1, m-+2,

, 7 are the ones under consideration, loadlrm
via (14 6) to approximately

28 (J—m)/(2+F,—F})

sweeps, of which (see the derivation of (14.12))

(14.14)

1,000,000 (F;—F,)(1+F,—Fy)[60Q2+F;—F})

are extra. Thus we have a contribution to AS from
the first source of (¢), of approximately

[28(j—m)—1,000,000 (F;— F'm) (14 F";— F';) /60]
—=180(2+4 F;— Fy) if m S.} (14.15)
Second, there are the type 2 destinations which

receive fewer than 60 letters/hr after the second com-
plex (i.e., the input from both complexes adds up to
fewer than 60 letters/hr). To handle these, we
introduce another new variable n, also dependent on j
and k, by

destination n= (last destination for which
36,000 (2+F,— F,)f. >60).

The contribution to AS from the second source of (¢)
1s then

n >k;
reasoning as in the derivations of (14.12) and (14.15)

we find thc contribution to AS from the second
source of (¢) to be approximately

F,) 2+ F;—F})/60]

(14.16)

0 if (14.17)

(28 (k—n)— 1,000,000 (/,—

and to be approximately
[28(k—7)— 1,000,000 (F,— F')) 2+ F,— 1) /60]
1802+ F;,— Fy) if n<j. (14.19)

This completes the derivation of the approximate
formula for AS.

At this point it is convenient to split AC into two
parts,

AC=A,C+A,C, (14.20)
where A;C represents the effects of AL, AB, and the
contrlbutlon of (a) to AS, whereas A,(’ represontq the
effects of the contributions of (b) and (¢) to AS.
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By (8.12) and (14.10),

A C=12,700(AL)+14(AB)
+14,670(1,000,000(1— F,)/(60)(180)),  (14.21)
which, together with (14.8) and (14.9), yields

AC=[37.48X 1074 (4.234 X 10%)j+ (3.931 X 108k
+(14.78 X 10%) F,— (52.04 X 109 F,
4 (18.51 <X 10°) (#'2—F;F,)]/(60) (180) X
) (14.22)
where the lower-order-of-magnitude quantity
(1.512 X105k (Fy—F})

has been dropped from the numerator of (14.22).
No single formula can be given for A,C. This is
because A,V 1s the sum of three terms, the first of
which is obtamed (by multiplication by 14,670)
from either (14.11) or (14.12) (according as 7<114
or j >114), the second of which is obtained (by
multiplication by 14,670) from either (14.14) or
(14.15) (according as m_>7 or m<j), from the third of
which is obtained (by multiplication by 14,670) from
either (14.17) or (14.18) or (14.19) (according as n >k
or j<n<k orn<j). 'Thesediverse possibilities lead
to 2X2X3=12 cases; the case-by-case analysis is
quite complicated, and we relegate it to appendix C,
giving here only the result:

The cost A(" is approximately minimized for our
particular mail distribution by choosing

j=120, k=264, (14.23)
vielding AC'= 366,000 (14.24)
so that (O— O Chi) =49, (14.25)

The minimum is a rather insensitive one; if j is
chosen anywhere between roughly 90 and 150 then
(assuming k£ is properly chosen) (O—Ck.)/C%,
will be less than 0.5 percent above its minimum.
The analysis given above (and continued in
app. C) has employed the “add up” method only,
deliberately avoiding any use of the “follow through”
approach of section 9.  We conclude this section by
showing how the “follow through” method can be
used (1) to reduce substantially the calculations of
appendix C, and (ii) to provide rather good approxi-
mations to the optimal (j, k)-pair, (14.23). Our
argument will show that 7 and £ should be chosen
to obey
7>105, k<281. (14.26)
Use of this information would have permitted
significantly less work'” in treating cases 8 to 12
(the most difficult cases) in appendix C. Further-
more, if we regard (14.26) as suggesting j=105, k=
281 as an approximation to an optimal choice, we
find that for these values (O—C%)/C%, is less

min
17Tt would also yield a quick elimination of cases 1 to 5 in appendix C.
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than 0.2 percent above the value determined by
(14.23).

We recall the definitions (14.1) to (14.3) of the three
types of destinations. Our first assertion is that:

if 10%/, <863, then the ith destination should not
be a type 1 destination (14.27)

For, we found in the “simple” residue scheme of sec-
tion 12 that if 10°%; <863 then mail to thezth destina-
tion should go into residue rather than receive its
final sort in the primary. Since this applied after one
loading complex operating at full capacity (and thus
applies after the first complex of each of our primary
subsystems here), there is even more reason for it to
apply after a loading complex operating below capac-
ity (such as the second complex in each of our primary
subsystems). Thus it would be better to have the ith
destination as type 3 than as type 1, and so (14.27) is
proved. Of course, it might be still better to have the
ith destination in type 2, and this is the next question
to be considered.

If the ith destination is taken to be type 2, then
(according to (9.14) and (9.17)) the cost associated
with a letter to 1t would be denoted C(f;, 2). The
formula (9.18) for C(f,, n;) was derived assuming all
primary loading complexes operating at capacity;
this formula therefore provides a lower bound for
C(f;, ny) in our actual system, so that the special case
(9.25) of (9.18) yields

C(f;, 2) >0.5295-+ (1.337 X 1073/f,) (if 10%,<840).
(14.28)

If, on the other hand, the ith destination is taken to
be type 3, then (according to (9.11)) the appropriate
cost 1s denoted C(f,). Except for a negligible correc-
tion due to possible violation of (9.2), the formula
(9.12) still applies, yielding as in (9.24)

(14.29)

O(f) =3.434+ (14/10%) (if 10%,>60).

From (14.28 and (14.29) we find that

C(f;, 2)—C(f)>0 for 60<10%,<455;
i.e., if 10°f,<455, then the 2th destination should be
taken as type 3 rather than type 2. (14.30)

From (14.30) we have 10%, >455, which for our
particular mail distribution yields k <281.

Next we recall that in the discussion in section 9
(see (9.46)) the change from (1,)gp=2 to (n;)opi= 1
occurred for 10°%,=1,614; that is, for 10%,>1,614
it was better to sort a letter to the ith destination
directly after it enters the system, rather than either
to put it into residue or to send it on past another
loader complex. In our current situation this con-
dition must be altered to take account of the fact
that the second loading complex of each subsystem
operates at only a fraction 1+F,—F), of capacity.



We find thus that for

(1+F,—F,) 10%,>1,614

(10°f,>864)

on the basis of input to the second loading complexes
only, the ith destination should be of type 1 rather
than type 2.

Since k<281 implies /7, < Fyg, it follows that the 7>105.

Appendix A: Mail Distribution by Destinations

so that in particular we should have

1th destination should be of type 1 rather than
type 2 if

Thus (14.26) is obtained.

(1 +F]‘—‘F281> 106f12 1,614,

(14+F,—Fyy) 10%,.,<1,614,

which for our particular mail distribution yields

In the following table f; denotes the fraction of mail to the ith destination, and F'; denotes the fraction of mail to the first i destinations so that

Fi=fi+fot . . . Hfiatfi

i fi F; i fi F; i fi F; fi F;
o % %0 % % o

1 3.912 3. 912 56 375 57. 659 111 172 71. 887 166 110 79. 471

2 2. 967 6. 879 57 .371 58. 030 112 172 72. 059 167 .110 79. 581

3 2. 893 9. 772 58 . 366 58. 396 113 170 72. 229 168 .108 79. 689

4 2. 626 12. 398 59 . 366 58. 762 114 170 72.399 169 .108 79.797

5 2. 480 14. 878 60 . 353 59.115 115 . 166 72. 565 170 .106 79. 903

6 2. 230 17. 108 61 . 345 59. 460 116 . 166 72.731 171 . 106 80. 009

7 2.057 19. 165 62 . 345 59. 805 117 . 166 72.897 172 .106 80.115

8 2.044 21. 209 63 . 343 60. 148 118 . 166 73. 063 173 .106 80. 221

9 1. 754 22. 963 64 .319 60. 467 119 . 164 73.227 174 .101 80. 322
10 1. 648 24. 611 65 .319 60. 786 120 L1567 73.384 175 .101 80. 423
11 1. 635 26. 246 66 .319 61. 106 121 154 73. 538 176 .101 80. 524
12 1. 622 27. 868 67 317 61. 422 122 154 73. 692 177 .101 80. 625
13 1. 504 29. 372 68 317 61.739 123 154 73.846 178 . 099 80. 724
14 1. 467 30. 839 69 315 62. 054 124 152 73.998 179 .097 80. 821
15 1.379 32.218 70 312 62. 366 125 152 74.150 180 .097 80.918
16 1. 256 33. 474 71 . 308 62. 674 126 152 74. 302 181 . 095 81.013
17 1. 163 34. 637 72 302 62. 976 127 . 150 74.452 182 .095 81. 108
18 1.073 35.710 73 . 297 63. 273 128 150 74. 602 183 .095 81. 203
19 1. 053 36. 763 74 . 289 63. 562 129 150 74.752 184 .095 81. 298
20 . 982 37.745 75 . 287 63. 849 130 147 74. 899 185 .095 81. 393
21 827 38. 572 76 . 278 64.127 131 145 75.044 186 .095 81. 488
22 . 814 39. 386 77 273 64. 400 132 . 145 75.189 187 .093 81. 581
23 773 40. 159 78 .271 64. 671 133 . 140 75. 329 188 091 81. 672
24 . 734 40. 893 il . 267 64. 938 134 140 75. 469 189 .091 81.763
25 713 41. 606 80 . 265 65. 203 135 140 75. 609 190 . 088 81. 851
26 . 706 42. 312 81 . 265 65. 468 136 .138 75.747 191 .088 81. 939
27 . 702 43.014 82 . 260 65. 728 137 .138 75. 885 192 .088 82.027
28 . 655 43. 669 83 . 260 65. 988 138 L138 76.023 193 L088 82.115
29 644 44. 313 84 . 254 66. 242 139 .138 76. 161 194 .088 82.203
30 623 44. 936 85 . 252 66. 494 140 . 136 76.297 195 .088 82.291
31 . 615 45. 551 86 . 246 66. 740 141 .136 76. 433 196 . 088 82.379
32 . 604 46. 155 87 . 246 66. 986 142 . 136 76. 569 197 . 086 82. 465
33 . 580 46. 735 88 . 239 67. 225 143 136 76.705 198 . 086 82. 551
34 . 571 47. 306 89 .233 67. 458 144 L134 76. 839 199 .084 82. 635
35 . 551 47. 857 90 .233 7. 691 145 .134 76. 973 200 . 082 82.717
36 . 538 48. 395 91 .224 67.915 146 .132 77.105 201 . 080 82.797
37 . 534 48. 929 92 .224 68. 139 147 .132 77.237 202 . 080 82.877
38 . 534 49. 463 93 .220 68. 359 148 130 77. 367 203 L078 82. 955
39 . 534 49. 997 94 .218 68. 577 149 .128 77.495 204 .078 83.033
40 . 508 50. 505 95 .214 68. 791 150 .126 77. 621 205 .076 83.109
41 . 508 51. 013 96 .211 69. 002 151 .126 77.747 206 .076 83.185
42 . 506 51. 519 97 211 69. 213 152 .126 77.873 207 .076 83. 261
43 . 501 52. 020 98 . 209 69. 422 153 .122 77. 995 208 .074 83.335
44 . 491 52. 511 99 . 202 69. 624 154 .116 78.111 209 .074 83. 409
45 . 491 53. 002 100 . 200 69. 824 155 .116 78.227 210 074 83. 483
46 . 483 53. 485 101 .198 70. 022 156 .116 78. 343 211 .073 83. 556
47 . 465 53. 950 102 . 198 70. 220 157 .114 78. 457 212 .073 83. 629
48 . 461 54. 411 103 . 196 70. 416 158 .114 78. 571 213 .073 83.702
49 . 457 54. 868 104 . 196 70. 612 159 .114 78. 685 214 .071 83.773
50 . 445 55. 313 105 .192 70. 804 160 .114 78.799 215 071 83. 844
51 . 407 55. 720 106 .187 70. 991 161 .114 78.913 216 070 83.914
52 . 401 56. 121 107 L187 71.178 162 .114 79.027 217 . 070 83. 984
53 . 394 56. 515 108 .185 71. 363 163 .112 79. 139 218 070 84. 054
54 . 390 56. 905 109 ol 71. 540 164 .112 79. 251 219 . 068 84.122
55 . 379 57. 284 110 175 71.715 165 .110 79. 361 220 . 068 84.190
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In the following table f; denotes the fraction of mail to the ith destination, and F; denotes the fraction of mail to the first i destinations so that

Fi=fitfot . . . Hirtfi
i fi F; Ji Fy i fi Fi i fi F;
% % % % % %
221 . 068 84. 258 241 . 058 85. 523 261 . 052 86. 623 281 . 045
222 . 068 84. 326 242 . 058 85. 581 262 052 86. 675 282 L 045
223 . 068 84. 394 243 058 85. 639 263 .052 86. 727 283 . 045
224 . 067 84. 461 244 . 058 85. 697 264 . 052 86. 779 284 . 045
225 . 067 84. 528 245 . 058 85. 755 265 )50 86. 829 285 . 045
226 . 067 84. 595 246 . 058 85. 813 266 050 86. 879 286 043 87. 832
227 . 065 84. 660 247 . 056 85. 869 267 050 86. 929 287 043 87.875
228 . 065 84.725 248 . 056 85. 925 268 050 86. 979 | 288 043 87.918
229 . 065 84.790 249 . 056 85. 981 269 050 87.029 | 289 043 87. ¢61
230 . 065 84. 855 250 . 056 86.037 270 050 87.079 | 290 043 88. 004
231 . 065 84. 920 251 . 056 86.093 271 . 050 87.129 291 043 88. 047
232 L 065 84. 985 252 . 056 86. 149 272 050 87.179 292 . 043 88. 090
233 . 062 85.047 253 . 054 86. 203 273 050 87.229 293 . 043 88. 133
234 . 062 85.109 254 054 86. 257 274 050 87.279 204 . 043 88.176
235 . 062 85.171 255 L0564 86.311 275 050 87. 329 205 . 043 88. 219
236 . 060 85. 231 256 . 0562 86. 363 276 . 047 87.376 ! 296 . 043 88. 262
237 . 060 85. 291 257 . 052 86. 415 277 . 047 87.423 | 297 . 043 88. 305
238 . 058 85. 349 258 . 052 R6. 467 278 047 87.470 | 298 043 88, 348
239 . 058 85. 407 259 . 0562 86. 519 279 047 87.517 | 299 . 043 88. 391
240 . 058 85. 465 260 . 0562 86. 571 280 . 047 87. 564 ] 300 L041 88. 432
Average Group Average Group
i 5 % F; i fi % | Fi
e - _—— R S —
|
301 to 310 0. 041 0.410 88,842 || 626 to 650 0.013 0.325 |
311 to 320- - . 038 . 380 89.222 651 to 675._ . 012 . 300
321 to 330 . . 036 . 360 89.582 || 676 to 700 L011 | 275
331 to 340_ _ . 034 . 340 89.922 || 701 to 725 X 011 | .275
341 to 350 . 032 . 320 90.242 || 726 t0 750 - - --—---- 010 250
351 60360 ... . 030 L300 90. 542 || 751 to 775-. . 009 .225 |
561 to 370 - . 030 . 300 90.842 || 776 to 800 = . 008 . 200
371 to 380- . 028 .280 91.122 || 801 to 825 R . 008 . 200
381 t0 390 _ . 027 .270 91.392 || 826 to 850 s . 007 175 |
391 to 400 . 026 260 91.652 || 851 t0 875 ... . 007 .178
401 to 410 . 025 250 91.902 || 876 t0 900 ... . 007 175 98. 192
411 to 420- . . 024 .240 92.142 | 901 to 925. - . 006 . 150 98. 342
421 to 430- - . 023 . 230 92.372 || 926 to 950- - L005 | 125 98. 467
431 to 440 _ . 022 .220 92,592 || 951 to 975 e .005 | 125 98. 592
441 to 450 .021 210 92,802 || 976 t0 1,000 __.___. L 005 | . 125 } 98.717
45110460 - cooceen- . 020 .200 93.002 || 1,001 to 1,050 . 004 . 200 } 98. 917
461 to 470 - 019 . 190 93.192 1,051 to 1, 100- - . 004 200 | 99. 117
471 to 480 - 019 190 93. 382 1,101 to 1 150 - . 003 150 | 99. 267
481 to 490 - 019 . 190 93.572 || l, 151 to 1, 200 - . 003 150 99. 417
491 to 500 017 70 93.742 || 1,201 to 1,250 . 003 150 | 99. 567
501 to 525 .. ... 017 425 94. 167 1,251 to 1, 300 . 002 . 100 ‘ 99. 667
526 to 5¢ 016 . 400 94, 567 1,301 to 1, 350 - . 002 . 100 99. 767
551 to 575 015 375 94.942 || 1,351 to 1,400. . . 002 100 | 99. 867
576 t0 600 014 . 350 95.292 || 1,401 to 1,450 - . . 001 050 99. 917
601 to 625 013 .325 95.617 || 1,451 to 1, 600 <. 001 083 ‘ 160. 000

Appendix B: Analysis of Multiple Input
Systems

We consider a multiple input system in which

M=number of subsystems

n=number of loading complexes in each
subsystem.

(B1)

B2)

In order to specify the system completely, we must
also specify, for i=1, 2,

n

)

D,=set of destinations whose letters are dropped
in the row of bins after the ith loading com-
plex in each subsystem.

(B3)

(D, will necessarily consist of all the destinations.)
The sets D, , D, may overlap (for example,
some dostmatlons may be included both in ), and in

D,), so that it is also necessary to deal with combina-
tions of the D;’s such as D,~D), (the set of destina-
tions included in D, but not in 1J,). If &/1s any set
of destinations (for example, & might be D), or
D,—D,), we use the notation

F(

) =fraction of the total mail which

goes to destinations in &. (B4)

We wish now to analyze the inputs to the various
loading complexes, and also the mput to each sub-
system as a whole. Let
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I,=ratio of the actual input to the ith loading
complex of each subsystem to its maximum
possible input of 36,000 letters/hr. (B5)

The quantities 7, I, . . . , I, (and thus the inputs

36,000 7,, 36,000 75, . . ., 36,000 /,) can be com-
puted one by one from the formulas

e |
L=F(D,),

Li=F(Dy— D)+ LFD,),

L= F(Dy—Dy— D)+ LF(D,—Dy) + LE(Dy),

" (B0)
IIL:I4‘(DrI~1"Dn—27~ . *[)1)
LB = D o o 1)
+~ . -+In—llf(l)n—l)' y,

To obtain a more compact notation for these equa-
tions, we adopt the convention /;=0 and define the
sets of destinations

D¥=D;, ,—D; o—. .. —D, G<i—1); (B7)
then (B6) can be rewritten as
I,=2 F(Dt)1;. (B8)

J<i
The input to each subsystem is given by

(input/subsystem)=36,000 (/,+ I,+. . .+ 1,). (B9)

Appendix C: Proofs of Results Asserted in
Section 14

The following material presupposes familiarity
with section 14, to which frequent reference is made.
We recall that AC had been split into two parts,

A0:A10+A20,

that a formula (14.22) had been derived for A,C, but
that A,C could apparently be given by any one of 12
possible formulas, leading to 12 possible cases re-
quiring analysis.

First we write down the conditions defining the 5
cases (out of these 12) which can be treated most
easily:

Case 1: 7<114, m>j, n<j.
Case 2: j>114, m >, n<J.
Case 3: 1<114, m<j, n<j.
Case 4:  j>114, m>], n>k.
Case 5: j>114, m>7j, j<n<k.

These cases will be proved logically impossible. From
(14.13) and (14.16) it can be deduced that f,, >f,, so
that m< n, ruling out cases 1 and 2. The first and
third conditions of case 3 would yield, using (14.16),

1/600 ~f, 14 <f;<fn=1/6002+ F,—F),
which is impossible since
2+ F—Fy > 24+ F,— 1> 14 F11y=1.724;

thus case 3 is ruled out. The first and second con-
ditions common to cases 4 and 5 yield, using (14.13),

1/600 z][1 14>fj me ~1/600(1 +1“j_ ),

which 1s impossible since (using <k to deduce
F;<F,) we have

14+ F,—F, <14 F,— F,=1;

thus cases 4 and 5 are ruled out.

Next we describe the technique to be used in
handling some of the remaining seven cases. The
parameters 7 and k& will be treated as continuous
(rather than integer-valued) wvariables, so that
calculus methods can be used in searching for the
minimum of AC. As the two independent variables,
it is convenient to choose not j and k, but rather

j and uzl—‘y_F]'_I{‘}(. (Cl)

Then £ becomes a dependent variable, and from
(C1) we have

(C2)

(E€3)

OF'+/0j=f;,
Ok[0j = (0F}/j)[(AF}:/dk) =] ;/f-

For our purposes, it is sufficiently accurate to replace
(14.13) and (14.16) by

so that

Fu=1/600u,  f,=—1/600(1+u), (C4)

50 £, and f,, (hence m, n, F,,, and F,) depend only on
% and not on 7, vielding

om/dj=0n/dj=0F,/0j=0F,/0j=0  (C5)
A necessary condition for a minimum of AC' is

d(AC) /=0,

and if we introduce the symbol D solely as an
abbreviation for the frequently-occurring quantity

D=f(1+u)0o(AC)/9j, (C6)

then 1t follows that a necessary condition for a
minimum of AC is
D=0 (C7)

We will be able to eliminate a number of the remain-
ing seven cases by showing that they are incom-
patible with (C7).
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A useful preliminary step is obtained by rewriting
(14.8) as

AL=—28 (14+-F;—u)+56/(1+wu),
rewriting (14.9) as
AB=(760—Fk) +28(j+k+56(u—F}))/(1+u),
noting that (14.10) can be written as
10(u—17) /60 <180,
and then using (14.22) and (C1) to (C3) to obtain
Jr(1+u)0(A,0)/0j=—17.139 X 10%f ;£ (1 +u)
—14f,(1+u) —2.195 X 10% £, +392(f,4-f:) . (C8)

The next 3 cases (out of the remaining 7) to be
treated are

Case 6: 71<114, m_>j, n >k
Case 7:  7>114, m<j, n<j
Case 8: j <114, m<j, n>k

These cases are logically possible, but we will prove
that they do not give rise to the minimum of AC.
In case 6, AC=A,C; so that by (C6) and (C8),

D=—17.139 X 105 f,(1+u) — 14f,(1 +u)
—2.195X 10%;fx+392(f;41). (C9)
Since (C4) and the last condition of case 6 imply
fi(14u) >>1/600,
we can deduce from (C9), using the fact f,>f,, that
D —17.139X 107 f, (1 +w) + 784f;
< (—17.139X10°/600)f,+ 784f 0,
so that in case 6, <0, contradicting (C7).
In case 7, AC'1s obtained by adding to A, the sum

(multiplied by 14,670) of (14.12), (14.15), and
(14.19). Using (C1) to (C6), we obtain

D=—30.722 X 10%f,(1 +u) — 14f u— 22 X 10% 1,
+2,660f,42,674f;.

Since the third condition of case 7, together with

(C4), implies
1(14u)<1/600,
while the first condition (together with 7 <k) implies
e <fi <fus<1/110,

we have
D> (—30.722 X 10%/600)f,— 22 ,000f, 1+ 2,646f;
+2,674f,=2,646f,—2,446f,— 22,0001 .f,>200f,
—22,000f f,=200f,(1—110f,) >0,

so that in case 7, D >0, contradicting (C7).

In case 8, AC' is obtained by adding to A, the
product of (14.15) by 14,670. Using (C1) to (C6),
weobtain

D=—30.722 X 105 f,(1+u) +13.363 X 10 f+
+378f,+2,674f,— 14f;u.
The third condition of case 8 (together with (C4))
implies
Jie(1+u) >1/600,
so that (using the fact that f, <f;)
D<(—30.722X10%/600)f,413.363 X 10%f .+ 3,052,
—1,(13.363 X 10%,—2,068).
Thus D0 if 13.363X10%,—2.0680: ie., if
£2.00155, or equivalently, if £ >120. Hence, in the
remainder of the discussion of case 8, we can ssume

that £ <120, so that /., <F,. The second condition
of case 8, together with (C4), yields.

1/600 >f,(1+4F,—F}),
so that, using the fact F, <F\,, we obtain
1/600 >1,;(.2662-+F,). (C10)

By the first condition of case 8, f;>f,4, so that by

(C10),
1/600 >f114(.2262+F)),
or F,<.7142, implying 71<108,
50 by (C10) 1/600 >f0s(.2262+F))
or F;<.6347 immplying J<73,

so by (C10) 1/600 > f25(.2262+ F)

or F;<.2949 implying 7 <13,

so by (C10) 1/600 >f,5(.2262+ F,),

or
F;<—0.1552,

which is impossible since F;>0. Thus case 8 is

eliminated.

There are now only four cases left. We now ex-
amine

Case 9: <114, m<j, j<n<k.

It turns out that =0 can occur in this case, but
only in the subcase defined by

99<j<114, 187 <k<281. (C11)
To prove this, we note first that in case 9, AC is
obtained by adding to A,(’ the sum (multiplied by
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14,670) of (14.15) and (14.18); usmg (C1) to (C6),
this yields

D=—44.305X 10° f fru— 14f u—30.942 X 10%, 1
+2,660 f,42,674 fs.
By the second condition of case 9 (together with
(C4)),
fu<1/600, (C12)

which together with » <1 yields

D> (—44.30510°/600)f,—30.942 X 10% f,+2,646f;
+2,674f,=2,646f,—f,(30.942 X 10%,+4,710),

so that D >0 if
1 <2,646f,/(4,710+30.942 X 10°f))
or equivalently, if
Fo<1/(1,169.4+1.780/f,).

Thus in the remainder of the discussion of case 9,
we can assume that

Fi>1/(1,169.441.780/f;).

From the first condition of case 9 we have f;>f,
and combining this with the last inequality yields

Fo.00045,
so that £ <281 as asserted in (C11). Thus,
Fy < Fg,

which together with the version

1/600 >1,(14+F;— Fy)
of (C12) yields 1/600 >f;(14+F,— Fug), or

1/600 >£,(.12391+F,). (C13)
Since 7> 1, we have F,> [, so that by (C13)

1/600>f,(.12391 -+ F)),
or

£;<<.0102 implying  72>20,

so by (C13)
1/600>£,(.12391+ Fyy),
or
f;<<.00332 implying ~ 7>64,

so by (C13)
1/600 >1;(.12391+ Fyy),
or
£,<.00229  implying  j>91

so by (C13)
1/600 >1;(.12391+Fy,)

7,<2.00208

or

implying 7>99. as asserted in (C11).
To prove the remaining part of (C11), we note that
the third condition of case 9, together with (C4),
yields
Je@+F;—Fy) <1/600,
and since 7>99 and k <281, we have
fk(2+]’199_F281) S 1/6007

£:<.000916

yielding

sy that £>187 as asserted in (C11).
The 3 cases not treated so far are

Case 10: 7<114, m>7, 71<n<k,
Case 11: j>114, m<j, n >k,
Case 12: J>114, m <j, 1<n<k.

in all these cases, D=0 can occur, and no reduction
like that in case 9 appeared possible. We therefore
resorted to numerical exploration for these three
cases and also for the range (C11) of case 9. A
number of values of j were used; for each the value
of k such that D=0 was found and the correspond-
ing value of AC was computed. The results of the
calculations are given in the following table, which
supplies the conclusions given in (14.23) and (14.24).

Calculations * for (C11) and cases 10 to 12

j k U AC i k u AC
20 246 0. 519 466, 000 114 272 . 852 367, 000
30 253 . 587 440, 000 120 264 . 866 366, 000
40 255 . 642 421, 000 125 256 . 878 367, 000
50 264 . 685 407, 000
60 265 723 398, 000 130 256 . 885 367, 000

135 253 . 893 369, 000

70 265 . 755 388, 000 140 252 . 901 371, 000

80 275 L7718 381, 000 150 245 .919 376, 000

90 275 . 804 375, 000 160 236 . 938 388, 000
95 275 .815 372, 000

100 275 .825 371, 000 170 226 . 952 395, 000

180 213 .972 410, 000

105 275 . 835 370, 00 194 200 . 995 433, 000

110 275 . 847 368, 000 197 197 1. 000 440, 000

* The quantity « can be interpreted as the ratio of the actual hourly input of
the second loading complex of each subsystem to its mazimum input (36,000
letters/hr).

WasamvGron, D.C. (Paper 63B2-11)
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