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Analytic methods are developed to aid in determining the equipment configuration

which achieves sorting of outgoing mail at a given (required) rate at least cost.

The tech-

niques are applied to a specific numerical problem; several of the suggested configurations

are quickly eliminated, and a “hybrid”

of two of the proposed configurations is found which

comes within four percent of optimum (if a certain pair of parameters is chosen correctly).

1. Introduction

A number of plausible configurations for auto-
matic mail sorting equipment have been suggested.
In this report methods for the comparative study
of such configurations are developed, with the object
of determining the configuration which achieves
sorting of mail at a given (required) rate at least cost.

The solution to this “optimization” problem of
course depends upon the distribution (by destina-
tions) and volume of mail at the sorting installation,
and also on the operating parameters and costs
associated with the various components of the sorting
system. Therefore, in order to present our methods
in the most comprehensible way (i.e., in the context
of a specific numerical application), it was nec essary
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These inputs are described in sections .5 to 6 and
appendix A. We wish to emphasize that we work
with these particular data only to illustrate the
methods employed; the reader who follows out the
calculations for this specific case should have little
trouble carrying out the corresponding calculations
for other data.

The results of the analyses are summarized in
section 2. In brief, we are able (4) to rule out several
of the proposed configurations, (i) to show that
one of the proposed configurations will (if a certain
parameter 1s choosen conectlv) come wnhln 8 per
cent of optimum, and (i7i) to exhibit a “hybrid” of
two of the proposed configurations which (if a
certain pair of parameters is chosen correctly) will
come within 4 percent of optimum.

We also determine how accurately the parameters
in (77) and (i77) must be chosen. In view of (i)
analysis of more complicated configurations did not
seem worthwhile.

For a comparative study, it is necessary only to
consider costs which vary appreciably from one
configuration to another. Our analysis is set up so
that these variable costs are all absorbed into costs
associated with (@) the devices which inject mail
into the sorting system (we will generally use the

1 The preparation of this paper was sponsored by the Post Office Department,
Office of Research and Engineering.

term /oa(lmg complex for such a device, instead of the
longer “distributor loader (omplo.\”), (b) the re-
ceptacles (bins) in which the mail ends after passing
through each stage of the system, and (¢) the opera-
tion (sweeping) of removing the mail from these bins.

A natural method of determining the cost of any
proposed configuration, therefore, is to determine
the numbers of loading complexes, bins, and sweepers
imvolved, and then to multiply each of these numbers
by the appropriate cost coefficient and add up the
resulting partial costs.  We might call this the
add wp method; it is described in section 7 and at the
end of section 8. We have also developed a follow
through method based on the idea of following an
individual letter through the sorting system, charg-
ing it an appropriate fraction of the cost of each
loading complex through which it passes, each load-
ing complex by which it passes (and thus prevents

from operating at maximum rate), each bin it oc-
cupies, and each sweep it receives. The follow

through method is not strictly applicable to some
configurations (though 1t does seem to provide
initial approximations which may shorten some of
the work of the “add up” method); its main ad-
rantage 1s that it permits a much closer estimation
of the theoretical minimum cost described in the next
paragraph.

An important step in the analysis is the derivation
of a theoretical minimum cost (more precisely, a
“lower bound”) which is independent of the configu-
ration. This cost is minimum in the sense that “(an
actual configuration must cost at lmsl this much”
and is theoretical in the sense that “no actual con-
figuration can cost quite this little”; it therefore pro-
vides a yardstick against which the costs of specific
configurations can be measured, the deviation from
optimality of a configuration can be assessed, and
the permissibility of plausible approximations can
be checked. A rough estimate of such a minimum
cost is given in section 8 (without using the specifie
mail distribution); in section 9 the “follow through”
method is employed to derive a significantly more
accurate result.”

2 The importance of this is discussed in section 8.
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The detailed analyses of the configurations studied
are given in sections 10 to 14 and appendixes B and
C. We hope that our rather full exposition of this
material will prove helpful to the reader faced with
the problem of carrying out similar analyses.

2. Summary of Results

From our specific numerical results (which are valid
only for the particular data and assumptions used
in our analysis) we can infer certain qualitative results,
believed to be valid for post-offices () for which
the sorting system must be able to handle about
1,000,000 letters/hr or more and (i7) in which local
mail is removed before the outgoing sort.

Of these two types of results, the qualitative ones
are more informative, and so we list them first:

(a) The simplex scheme and Christmas Tree
scheme 3 can be eliminated from further considera-
tion.

(b) The residue scheme (if properly chosen) is
quite good; some multiple input schemes may pos-
sibly be competitive.

(¢) A promising approach is to combine the basic
ideas of the residue and multiple input schemes;
the resulting “hybrid” scheme has lower cost than
either of the two original schemes if the relevant
parameters are correctly chosen.

We turn now to the specific numerical results.
The “inputs” leading to these results are given in
detail in sections 3-6 and appendix A; at this point
we only add to () and (i7) above the facts that
(212) only costs which vary between different equip-
ment configurations were considered, (i) the use of
automatic transfer equipment was not considered,
and (») the possibility of memory-sharing between
oading complexes was not considered.

Condition (7i2) is a natural one, since we are
primarily interested in comparing different configu-
rations. Auxiliary calculations (not given in this
paper) show that the qualitative results reported
above do not depend on (iv) and ().

As noted in section 1, a ‘“theoretical minimum
cost” is used as a yardstick against which the de-
sirability of any proposed configuration can be meas-
ured. For this purpose we use the ratio

R— (Cost of proposed config.) — (Theoretical minimum)
- (Theoretical minimum)

2.1

“Near-optimal” configurations are those with small
values of #. In the notation of the body of the re-
port, (2.1) becomes
= (0'— Ofaiu)/atin- (2-2)
Our specific numerical results are as follows:
(@) The theoretical minimum (yearly variable)

cost is about $2,050,000.
(b) For the simplex scheme, R is about 160 percent;

3 These schemes are described as they arise later in the report

i.e., the scheme costs about 2.6 times the theoretical
minimum cost.

(¢) For the Christmas Tree scheme, R is at least
69 percent; 1.e., the scheme costs at least 1.69 times
the theoretical minimum cost.

(d) For the best residue scheme, R is about §
percent.

(¢) There are a great many ways in which the
basic ideas of the residue and multiple input schemes
can be combined. An analysis of the full range of
possibilities would be beyond the scope of our study.
We have, however, examined a relatively simple
class of systems of this type, in which each sub-
system involves only two loading complexes in
series; the optimal configuration within this class
has R about 4 percent, which (z) compares favorably
with all other configurations studied, and (i) in-
dicates that investigation of more complicated
systems would not be worthwhile.

(f) All multiple input schemes with more than
four subsystems (i.e., more than four series of loading
complexes) have R at least 8 percent (but probably
substantially more); multiple input schemes with
four subsystems have R at least 4 percent (but
probably substantially more). We do not have a
complete proof that multiple input schemes with
fewer than four subsystems have excessively high
values of R (in comparison with (d) and (¢)), but
strongly believe that this is the case. Each sub-
system of such a configuration would involve nine or
more loading complexes in series.

3. Equipment Cost Data

Only those equipment costs which appeared likely
to vary appreciably from one configuration to
another were considered. The cost of coding the
letters, for example, was neglected on the grounds
that in a code sort system, all letters to be sorted
must be coded once and only once, regardless of
how many readings or sorts they undergo.

The two pieces of equipment whose costs were
considered variable are the loading complexes and
the modules of bins. Hereafter, the cost of bins for
the sorted mail will be considered to include the
costs of the corresponding conveyor, cart pockets, ete.

The following tentative cost estimates were given
by a representative of the manufacturer:

$2,000/module of 30 bins, (3.1)
$125,000/first loading complex of a sorter, (3.2)
$50,000/each of the next 4 loading
complexes of a sorter, (3.3)
$10,000/pair of end-pieces. (3.4)

Because (@) total equipment costs are somewhat
lower than total personnel costs (see the three sum-
mands of (8.6), for example) and (b) the estimates
(3.1) to (3.4) are only rough ones, it seemed per-
missible to be rather loose in our treatment of equip-
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ment costs. First, the end-piece costs are small
relative to other costs, and are difficult to handle
because of the way in which the number of end-
pieces depends on the particular placement of
equipment. For these reasons, the end-piece costs
have been neglected altogether. Second, there was
apparently some doubt as to whether the extra
loading complexes of a multi-input sorter can actually
be used in the manner assumed in the estimate
(3.3); for this reason we have disregarded (3.3) and
taken the cost of every loading complex to be
$125,000. Our numerical work for specific sorting
schemes 1s fairly sensitive to these decisions, but
the results of comparing different schemes are not.

In summary, the equipment costs actually used in
what follows

are
$2,000/module of 30 bins (3.5)
$125,000/loading complex (3.6)

These are initial costs; yearly costs are based on a
10-yr amortization period.

4. Space Cost Data

The only space requirements taken mto account *
were those for the loading complexes themselves, for
bins, and for the sweepers’” work area around them:

8.75 ft=Ilength of a loading complex. (4.1)
8.75 ft=Iength of a module of 30 bins. (4.2)
11.25 ft=width of a module, including
sweepers’ work space (4.3)
Using the tentative cost figure
$2.20/ft 2/yr (4.4)

suggested by 1. Allison (NBS Electronic Instru-
m(‘ntdtlon Section) we obtain (8.75) % (11.25) % (2.2)

~9220, or
$220 /loading complex/yr (4.5)
$220 /module of 30 bins/yr. (4.6)

[t is convenient to combine space and equipment

costs. From (3.6) and (4.5), remembering the
10-yr amortization applying to (3.6), we have
$12,500 +$220 ~$12,700/loading complex/yr. (4.7)

Similarly, from (3.5) and (4.6) we have $200-4$220
=$420/module of 30 bins/yr, so that we have

$14/bin/yr. (4.8)
Formulas (4.7) and (4.8) are the ones used in our
analysis.
5. Personnel Cost Data
The personnel which appears to vary appreciably
from one configuration to another is composed of

4 These gave the costs which appeared likely to vary appreciably from one
configuration to another.

sweepers and pouchers. The tentative data used
below were suggested by L. Allison.

Sweep operators remove sorted letters from the
bins and either tie them out or place them in trays
preceding a further sort. We take

60 letters=number of letters a sweeper can be
expected to handle in one sweep,

(5.1)
180 sweeps/hr=working rate expected of a
sweeper. (5.2)

It is assumed that the sweeping is carried on in such
away that:

Each bin is swept at least once per hour, (5.3)

if more than 60 letters/hr are expected in a
particular bin, then (subject to over-rule by (5.3))
the bin is not swept when it contains fewer than

60 letters, and (5.4)
no more than 20 sweeps (i.e., 1,200 letters)/hr
1s expected for any one bin. (545,

The rules (5.1) to (5.5) permit computation of the
number of sweepers required, 7f it is known how
many letters/hr are expected in each bin. This
quantity can in turn be computed (as will be done
in later sections) for any particular sorting scheme
and mail distribution.

Pouching operators toss tied bundles of mail into
pouches lhvn working rate is

540 sweeps pouched /hr.

Comparing (5.2) and (5.6), we see that, for
which are immediately followed by pouching,

(5.6)

sorts

number of pouchers=1/3> (number of sweepers).
(5.7)

As for sorts which are not followed by pouching (i.e.,
primary sorts to be followed by secondary sml%),
we observe that the additional work involved in
handling the trays and feeding the loading com-
plexes for a secondary sort appears to be of the same
order of magnitude as that of pouching a similar
quantity of mail. Therefore, since we suppose the
transfer between sorts to be nonautomatic, we
will take the cost of the personnel needed for this
transfer to be equal to that of a number of fictitious

pouchers given by (5.7).°

The average salary figure used is

$11,000/man-position/yr, (5.8)

where a “man-position’” requires more than one per-
son because of the several shifts worked and the 7-day
week involved.

6. Mail Distribution

The particular mail distribution assumed in our
numerical work is a hypothetical one obtained by

5 In contrast, the personnel required for initial loading on the primary sort is
nearly independent of the equipment configuration, and so is not considered.
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modifying data of outgoing mail from Los Angeles.®
It was decided that for a code sort machine, at least,
all local, postage due, uncancelled mail, etc., could be
removed at the coding station. The mail listed as
go backs and residue (about 49) was excluded from
sorter input because of the difficulty of distributing it
properly by destination. The mail distribution to
the sorting system, therefore, consists approximately
of what is left after these deletions, with the percent-
age of mail to each destination upgraded to bring the
total to 100 percent, and the amount of mail to each
destination upgraded to bring the total to

1,000,000 letters/hr. (6.1)
Our distribution involves
1,600 destinations. (6.2)

The details of the distribution are given in appendix
A ; they involve some inconsequential grouping in the
“tail” of the distribution.

7. Cost Formula

The three variables in the cost formula are
L=number of loading complexes,

B=number of bins, and

7.1)
7.2)
S=number of sweeper man-positions. (7.3)

The values of these variables can be found for any
particular mail distribution and specified arrange-
ment of equipment.

The total yearly cost C'is given by

C=C+Ci+Cy,

where

C,=yearly equipment cost,

Cs;=yearly space cost, and

C,=yearly personnel cost.
Using (4.7) and (4.8), we have

C.+0,=12,700 L+14 B;
using (5.7) and (5.8) we have
C,=11,000 (S+18) ~14,670 S.

The cost formula we will use is therefore

C=12,700 L+14 B+14,670 S (7.4)
where L, B, and S are defined above and
CO=variable dollar cost/yr. (7.5)

6 N. C. Severo and A. E. Newman, A statistical chain ratio method for deter-
mining the distribution of mail by destination (to be published).
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8. General Minimum Cost Estimate

We will first derive a theoretical minimum cost
estimate which is general in the sense that it does not
depend on the particular distribution by destina-
tions of mail, but only on the volume of mail; i.e., on
the fact that the sorting system must be able to
handle

1,000,000 letters/hr. (8.1)

Using this and the fact that the maximum input rate

is

36,000 letters/loading complex/hr, (8.2)

we see that at least 1,000,000/36,000=27F loading

complexes are required; since L is an integer,

L>28. (8.3)

By (5.5) each bin accounts for at most 1,200 letters/

hr, so that in view of (8.1) the number of bins re-
quired is at least

1,000,000/1,200 =833+

since bins come in 30-bin modules, B must be a
multiple of 30, and so

B> 840. (8.4)
By (5.1) each stack of letters contains at most 60
letters, so there must be af least

1,000,000/60 stacks/hr,

and thus in view of (5.2) there must be at least
(1,000,000/60)/180=92* sweepers;

thus S>93. (8.5)
We now apply (8.3), (8.4), and (8.5) to (7.4), ob-

taining
C>(12,700) X (28) + (14) X (840) -+ (14,670) < (93).
or, rounding off,

C>356,000+12,000+ 1,364,000 =~1,732,000. (8.6)
Thus we have proved that $1,732,000 is an (approxi-
mate) minimum variable yearly total cost for equip-
ment, space, and personnel. The three summands
in (8.6) refer, respectively, to costs associated with
loading complexes, bins, and personnel. We em-
phasize that this is a theoretical minimum cost; no
actual system can cost this little.

Next we will be a little more realistic (and a little
less general), and use the following one fact about
the particular mail distribution with which we deal:
Each of the 700 least frequent destinations receive
60 or fewer letters/hr. On the one hand, they re-



quire at least 700 sweeps/hr and therefore yield at
least 700 stacks/hr. On the other hand, these 700
destinations account for about 1.8 percent of the
total mail, and thus for 18,000 letters/hr; if these
letters were arranged into stacks of size 60 (as was
assumed in deriving (8.5)), then

18,000/60=300 stacks/hr,

rather than 700, would result. Thus the argument
leading to (8.5) underestimates the minimum pos-
sible number of stacks/hr by 700—300=400, and
thus (using (5.2)) underestimates S by 400/180 ~2
sweepers. (8.5) should be replaced by

S>95, (8.7)

and the corresponding modification of (8.6), after
rounding, is
C>1,761,000,

so that we have a minimum cost estimate of

Cn=$1,761,000. (8.8)

The estimate (8.8) is still too “general” to use as
a yardstick, and we shall use instead a “detailed
minimum cost estimate” (based on the detailed
properties of the specific mail distribution) which
will be derived in section 9. This care in choosing
a yardstick might seen unnecessary, since a “yard-
stick” is only a unit of measurement whose choice
cannot affect which of two proposed sorting systems
appears less costly. The choice of yardstick does,
however, affect our decisions as to what constitutes
a significant difference in cost (either between two
systems being compared or between a single system
and a hypothetical “minimum-cost” system), and
also as to what constitutes an allowable error in
making simplifying approximations.

We shall use (8.8) primarily as an aid in calculat-
ing the costs of the various systems studied. If,
using (8.3), (8.4), and (8.7), we ‘define

AL=L—28 (8.9)
AB=B—840 (8.10)
AS=S--95, (8.11)

then it turns out that a convenient way to calculate
the cost €' of a system is (i) to find these numbers
AL, AB, and AS of “‘extra” loading complexes, bins,
and sweepers, (i1) to calculate an “‘extra cost,”

AC': (= Yminv
by AC=(12,700) AL+14 AB+(14,670) AS (8.12)

(this formula follows from (7.4)), and (i12) to find
(' by
C=Ct (A O). (8.13)

This constitutes the “add up” method mentioned in

section 1.

9. Detailed Minimum Cost Estimate

Our main goal in this section is to derive a mini-
mum cost estimate which makes detailed use of the
particular mail distribution we are studying. The
methods used in this derivation will also turn out
to be helpful in the analysis of some of the systems
considered later in the report. Reading the first
paragraph of section 12 may be helpful here.
hAll the systems studied later have the property
that:

For each destination, either all mail to that
destination is sorted by destination on the pri-
mary, or all mail to that destination goes into
residue on the primary and is then given a sec-
ondary sort. (9.1)

We shall therefore assume this property in (mentally)
constructing a_hypothetical “‘minimum-cost” sys-
tem. Since this is to be a mmlmum -cost system,

we can also suppose (to minimize the cost of residue
bins) that:

All residue bins are operating at their maximum
capacity (see (5.5)) of 1,200 letters/hr. (9.2)

Once this assumption is made, it follows (in order to
minimize loading complex costs) that:

A letter which is to go into residue will be
dropped into a residue bin before passing another
loading complex. (9.3)

The method of estimating costs used in section 8
depended on counting the numbers of loading com-
plexes, bins, and sweepers, and adding up the result-
ant costs.  The approach used below is fundamen-

tally different, in that it involves following every
letter thlough the system and assigning an appro-
priate cost at each stage of its progress. We first
consider a letter which enters the system through
some loading complex ¢ and then (without being
dropped) passes a succeeding loading complex %,.
This letter prevents %% from working at its maximum
capacity of 36,000 letters/hr; some other letter,
which could otherwise have entered the system
through 7%, will now have to enter the system
through some “extra” loading complex (in addition
to the minimal 28 complexes known to be required
by (8.3)). If we suppose (to minimize the number
of extra complexes and thus the total cost of all
extra complexes) that all extra complexes are oper
ating at capacity, then our original letter, by passing
Y5 has created a requirement of “l/ 36,000) of an
extra loading complex.” Since (by 7.4) each extra
loading complex adds $12,700 to the system, we are
led to the following rule for use in estimating the
cost of our hypothetical system:

Assign a cost of 12,700/36,000 ~.353 whenever

a letter passes a loading complex. (9.4)
Suppose now that it is possible to divide each
extra loading complex into 36,000 parts, each able
to handle 1 lcttor/hr, and that it is possible to add
enough of these parts to each of the minimal 28
“nonextra’” loading complexes required for the pri-
mary sort to ensure that these complexes operate at
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their full 36,000 letters/hr capacity. Such a policy
would tend to decrease bin costs and, indirectly,
sweeper costs (since bins which previously received
fewer than 60 letters/hr might now receive 60 or
more; see (5.3)). We therefore assume, for our
hypothetical minimum-cost system, that this policy
has been adopted, so that the primary sort involves
28 loading complexes (each possibly augmented by
parts of extra loading complexes) all working at thewr
mazimum capacity. If we also make the “minimum-
cost” assumption that all loading complexes used
for the secondary sort are operating at maximum
capacity, then we have a situation in which:

All loading complexes operate at their maximum
rate of 36,000 letters/hr. (9.5)

Thus any letter entering the primary or secondary
sort uses 1/(36,000) of the services of the loading
complex through which it enters, so that we have
the following rule analogous to (9.4):

Assign a cost of .353 whenever a letter enters
the primary or secondary sort. (9.6)

The essential assumptions made so far are (9.1),
(9.2), (9.3), and (9.5). Before proceeding further,
we point out that two of the (physically realizable)
types of sorting configurations to be analyzed later
actually do satisfy these assumptions. The simplex
scheme (treated in sec. 10) satifies them exactly,
obeying vacuously the conditions referring to residue;
the optimal residue scheme found in section 12
satisfies them very nearly. Thus these schemes can
be treated by the method developed below.” There
is no need (see sec. 10) for such a detailed treatment
of the simplex scheme. We shall treat the residue
scheme, however; in fact, since the methods of this
section are less obviously correct than is the “count
the sweepers, bins, and loading complexes’ approach,
we will later analyze the residue scheme using each
approach separately and verify that the same answer
is obtained in both cases.

Returning to the analysis, we define

fi=fraction of the mail which goes to the ith
destination (9.7)

and consider whether or not letters to the ith des-
tination should go into residue on the primary sort.
For this purpose it is convenient to define

v — [1,000,000f,

‘ if 1,000,000f, <60,
160

otherwise,

(9.8)

and to note that (by (6.1))

1,000,000 f,=number of letters/hr to the ith
destination (9.9

In addition, from (7.4) and (5.2) we are led to the
rule:
7 A ctual schemes involving multiple input fail to obey (9.5); in treating these

schemes by the methods developed below, one must take into account the actual
input rates of the loading complexes.

Assign a (personnel) cost of 14,670/180=81.50
for each stack to be swept. (9.10)

If letters to the ith destination go into residue,
then the total cost to be assigned to each such letter
as it travels through the sorting system can be
calculated in the following way. The letter enters
the primary and secondary sorts, so (9.6) yields a
loading complex cost of 2 (.353). By (9.3), there
is no contribution from (9.4). By (9.2) and (7.4),
the letter should be “charged” 14/1,200 for its use
of a residue bin. By (5.5) and (7.4), assuming
10%/,<1,200, it should be charged 14/10%, for its
use of a bin in the secondary sort. By (5.1) and
(9.10) 1t should be charged 81.50/60 for the sweep
of its residue bin, while by (5.1), (5.3) and (9.10) it
should be charged 81.50/V; for the sweep of its bin
in the secondary sort. Adding together these partial
costs and defining

C(f;)=cost to be assigned to a letter to the vth
destination, if such letters go into residue,
(9.11)
we have

C(f)=(14/10%)) +(81.50/V ;) +2.076
(if 10°,<1,200). (9.12)
Next we want to calculate the analogous cost if
letters to the ith destination do not go into residue
for a secondary sort. The primary sort of our
hypothetical system now consists of 28 (possibly
augmented) loading complexes in series, each followed
by a row of bins (some of which may be residue bins);
this series arrangement involves no loss in generality,
since any other arrangement can be obtained as a
special case.® We note first that

bins for the ith destination are spaced uniformly
through the primary (except possibly at the end).
(9.13)

To see why this is so, suppose for example that it is
found that the first bins for the ith destination should
be placed after the third loading complex. Then in
view of (9.5), the situation regarding this destina-
tion is the same beginning with the fourth loading
complex as it was beginning with the first complex,
and for the same reasons as before we would find
that the next bins for the destination should be
placed as far after the fourth complex as the first
bins were placed after the first complex. Thus we
can define

n;=number of loading complexes between suc-
cessive appearances in the primary of bins
for the ith destination. (9.14)

In view of (9.5), a letter to the ith destination is
equally likely to pass 0, 1, 2, . . ., n,—1 complexes,
each with a probability 1/n,, so that the average cost
contribution due to (9.4) is

¢ For example, to obtain as a special case (so far as cost factors are concerned)
a multiple input system involving two series of 14 loading complexes each, we

simply assume in our hypothetical system that all mail is dropped between
the 14th and 15th complexes.
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(.353) X (0+142+. . .4 (n;—1))/n,=0.1765 (n,—1),

where the formula for the sum of an arithmetic
progression has been used. There is a contribution
of .353 due to (9.6). The system contains 28/n;
sets of bins for the sth destination, each set (dis-
regarding fractional effects) receiving

1,000,000 f;/(28/n;) letters/hr;
if we define

Vie {1,000,000 f/(28/n)  if this is <1,200,
11,200 otherwise,  (9.15)

the let ter should be charged (again ignoring fractional

effects) 14/V7 for its use of a bin. Similarly, if we

define
v 1,000,000 f,/(28/n,) if this is <60,
60 otherwise, (9.16)
then the letter should be charged (see (9.11))

81.50/V"’! for the sweep of its bin. Adding together

these partial costs and defining

C(f,, n;)=cost to be assigned to a letter to the
ith destination, if such letters are
sorted directly on the primary,

(9.17)
we have

C(fi, 1) =0.1765 n,+ (14/V3)+ (81.50/ V)

+0.1765.  (9.18)

We have now developed the formulas needed to

investigate whether or not mail to a given destina-

tion should be put into residue. It 1s convenient to
divide the destinations into three classes:

Class 1. 1,000,000 f; <60,
Class 2. 60<_1,000,000 f;<1,200,
Class 3. 1,200<1,000,000 f;.

In each class, the “into-residue” cost ('(f;) should be
compared with the “not-into-residue” cost C(f;, n,)
evaluated at that value of the system design param-
eter n; which minimizes it.

Analysis of class 1. Since the first alternative of
(9.8) holds, (9.12) yields

C(fi)=2.0764(0.955X 1074 /f..

Since the first alternatives of (9.15) and (9.16) apply,
(9.18) yields

O(fn:) =0.1765 n,+ (2.674 X 1073) /(n,f,) +0.1765,
(9.20)

OO (fs, my) /O =0.1765—2.674 X 103/ (n2f,),

(9.19)

so that

from which it follows that C(f;, n;) is a decreasing
function of 7, for

n?<1.515X1072/f,,

i.e., for n,<0.1231/y/f,
and is increasing for higher values of 7, Since
n,; <28, the minimizing value of n, is

{0.12:;1/\’]‘; if this is <28,

28 otherwise,
1.e., 18
{0.12:41/\11T i f,>4.439%107%,
28 otherwise. (9.21)

By (9.20) and (9.19)
C(fy, 28)=5.1185+ (0.955 X 10~ /f,>C(f,),

so that if the second alternative of (9.21) holds then
mail to the ith destination should go into residue.
If the first alternative holds in (9.21) then

C(fin)mn=C(f;, 0.1231/3/f,)=0.1765+ (.04345/~/f,),
and (from (9.21) and the fact 1,000,000 f,<60)
4.439 %1073 <Vf, <7.746 X 1073,

129.1 <z=(1/4f,) <225.3. (9.22)
From (9.19) and our expression for C(f,, 7.)mm, we
then have

C(fin)mn— C(f:) =0.04345 2—0.955 X 10~ *%¢*
— IS asi

this function of x is increasing (i.e., its derivative is
positive) in the range (9.22) and is >0 at x=129.1;
thus it is positive throughout the range (9.22), which
shows that even if the first alternative of (9.21) holds,
mail to the ith destination should go into residue.
Thus in our minimum-cost system, all mail to class 1
destinations should go into residue.

For our particular mail distribution (see app. A)
the class 1 destinations are destinations 901 to 1,600,
and these 700 destinations receive 18,080 letters/hr.
These letters lead via (9.6) to a cost of

2% (.353) X 18,080
assoclated with loading complexes, of
14 % (18,080/1,200) + 14 %X 700

associated with residue bins and secondary bins,
and of

81.50 % (18,080/60) -+ 81.50 X 700

associated with sweeps of residue bins and secondary
bins. Adding these, we find that in our minimum-
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cost system class 1 destinations involve a total cost
of approximately

$104,400. (9.23)

Analysis of class 2. Since the second alternative
of (9.8) holds, (9.12) yields
O(f:) = (14/10%,) +3.434. (9.24)

The first alternative of (9.15) holds, but either alter-
native of (9.16) may apply, so that (9.18) yields

C(fi;n:) =0.1765n,-+ (2.674 X 1073) /(n f,) +-0.1765
(if n,<1680/10%,), (9.25)

O(fin:) =0.1765n,-+ (0.392 X 1073) /(n f,) +1.5348
(if 7,>>1,680/10%,). (9.26)

As in the analysis of class 1, the function given in
(9.25) is a decreasing function of n; for

n:<0.12311/f; (9.27)
and is increasing for higher values of n;. On the
other hand, the function given by (9.26) is a decreas-
ing function of n; for

n:<0.04713\F: (9.28)
and is increasing for higher values of 7.

For further analysis it is convenient to divide
class 2 into subclasses, depending on the relative
positions of 7,;=0.1231/yf; (where the function
given by (9.25) has its minimum), n;—0.04713/y/f;
(where the function given by (9.26) has its mini-
mum), and 7,=1,680/10%; (where the formula for
C(fi, n;) changes from (9.25) to (9.26)). This sub-
division leads to

Class 2a.
Class 2b.

60<1,000,000 f,<186.3,
186.3<1,000,000 f,< 1,200,

corresponding respectively (subject to 60<10° f, <

1,200) to
0.04713/4/f:<0.1231/4/f;<1,680/10%,,  (9.29a)

0.04713/y/f; <1,680/10%,<0.1231/xf.  (9.29b)

Analysis of class 2a.  Here (;(fi, M) mm Must arise
either by setting n,=0.1231/4/f, in (9.25), yielding

0.1765-+ (0.04345/\f,),
or by setting n,=1,680/10%; in (9.26), yielding
1.76814 (296.5/10°,).

It turns out that the first form is the smaller, so
that, combining the first form with (9.24), we have
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C(f 1, ) mw— C(f:) = (0.04345 \/f;) — (14/10%,) —3.258.
(9.30)

This function of f; is positive for

60<"1,000,000 £,< 168.2, (9.31)
which shows that mail to the ith destination should
go into residue if (9.31) holds.

For our particular mail distribution, destinations
526 to 900 are the ones obeying (9.31); these 375
destinations receive 40,250 letters/hr, leading to a
cost of

2% (.353) X (40,250)
associated with loading complexes, of
12X (40,250/1,200) 414 X 375

associated with residue bins and secondary bins,
and of

81.50 % (40, 250/60) +81.50 % (40, 250/60)

associated with sweeps of residue bins and secondary
bins. Adding these, we find that in our hypothetical
minimum-cost system the mail to destinations obey-
ing (9.31) has a total associated cost of approximately
$143,500. (9.32)

Before proceeding further, we will write out ex-
plicitly a principle which will be helpful in much of
the following work. The correctness of the principle
could be proved analytically in each situation in
which we invoke it, but such proofs would be lengthy
and repetitious, and so we content ourselves here
with stating the principle (which is intuitively evi-
dent anyhow). Informally, the principle simply
recognizes the fact that bins for destinations receiving
a good deal of mail should appear rather frequently
in the primary of our minimum-cost system (i.e., n;
will be small), bins for destinations receiving less mail
should appear less frequently, (i.e., n; will be larger),
and there is a “threshhold #” such that the destina-
tions whose mail is put into residue are precisely
those which receive fewer than ¢ letters/hr. Formally:

Suppose it is best in our minimum-cost system
that mail to the ith destination not go into residue,
and suppose that (n,)q: 1s the best value of n,.
Then for any other destination with f;>f;, it is
best that mail to this destination also not go into
residue, and furthermore (1) opt < (74) opt- (9.33)

Returning to the analysis, we now consider the
class 2a destinations not obeying (9.31); i.e., those
for which

168.2 <1,000,000 £, <186.3. (9.34)
For these destinations, the function of f; given in
(9.30) is negative, but we cannot automatically con-



clude that mail to these destinations should not go
into residue. The difficulty is that we treated n; as
a continuous variable in finding C(f;, 7;)mi, whereas
in fact n; must be a positive integer. We therefore
define (for fixed f;)

C(f;, ny) 2 —=minimum of C(f;, n,) for all positive
/ . I o~
integer values of n;; (9.35)

the value of n; yielding C(f;, n,) %Y will be one of the

integers between which the n; yielding C(f;, 7:)min
lies.
We begin at the “top” of (9.34), with
1,000,000 f,=186.3. (9.36)

The value of n; yielding C(f,, n;)mm 18
11,20.]231/\']?:9*‘,

s0 that (1) ep 18 either 9 or 10. From (9.24) we have

O(f)=0(186.310~% ~3.51.

Substituting 7;=9 and 7n;=10 into the applicable
choices of (9.25) and (9.26) (since 1,680/10%,=97%,
7,=9 goes into (9.25) and n;=10 into (9.26)), we
obtain costs of approximately
3.34 for n,;=9, 3.51 for n,=10,

s0 that (1;) =9 and mail to destinations obeying
(9.36) should not go into residue in our hypothetical
minimum-cost system. We note for future reference
that, by (9.33), all destinations in classes 2b and 3
should not have their mail sent into residue, and that
throughout these classes (1) > 9.

We now continue “down’” through (9.34), con-
sidering lower values of f;. Throughout (9.34),

1:=0.1231/y/ fi=9"

50 that (1) 18 either 9 or 10; also, throughout (9.34)
we have 1,680/10% =97, so that n;,=—9 must be sub-
stituted into (9.25), n,= 10 must be substituted into
(9.26), and the results compared with the result of
(9.24). Since this yields

O(fi, 9)=1.7650+ (297.1/10%,),
O(f,, 10)=3.2998+(39.2/10%,),

we find (using (9.24) also) that mail should go into
residue for

168.2 < 1,000,000 £, <169.6 (9.37)
and should not go into residue for
169.6<1,000,000 £, <186.3, (9.38)
and also that
(n)opt=9  in (9.38). (9.39)
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For our particular mail distribution, there are no
destinations in the narrow range (9.37). The cost
associated with destinations obeying (9.38) will not
be found here, since it can more ((mwmvntlv be
combined with the cost found for class 2b.

Analysis of class 2b.  We know that mail to these

destinations does not go into residue. Also, we
know that at the “bottom” of class 2b (i.e., 10%,—=

186.3) we have (n;)op1=9, an(l from (9.33) we can
expect that as we search “upward” through class
2b (i.e., examine successively larger values of D)
we will reach a point where (1;)p (lnm(ros from 9 to
8. Our immediate aim is to find this turnover
point.

We find that for 186.3<10%,<186.7, C(f,
and C(f;, 9) are both given by (9.25), so that

(’(f,, 9)=1.7650 (297.1/10%))

C (¥, 8)=1.5885+ (334. ;/107) (9.40)

Throughout the range C'(f;, 9) is smaller, so that

(1) ops=9 for

186.3 <10%,<186.7.
For 186.7<10%,<210, C(f;, 8) is still given by
(9.25) but C(f;,9) is now given by (9.26), so “that

C(f:, 9)=3.1233 4 (43.56/10%,). (9.41)

Comparing (9.40) and (9.41), we find that

(BE==l0) for 186.7<10%,<189 .4

but
(1) opr=38

for values of l()ﬁfl immediately above 189 .4.

We can continue to search upwards through class
2b, looking next for the turnover from (n )‘,,,,fs to
(n ,)(,mfz, (‘t( The results of this search are given
in table 1 which includes the class 2a destinations
()l)(‘ylng (9.38). The quantity 10°; has been rounded.

The first three columns of table 1 are independ-
ent of the particular mail (ll\llll)llll()ll The first,
third, fourth, and fifth columns can be used to
derive a cost figure in the following way: For
each row, the fourth entry shows how many destina-
tions are involved and the first entry enables us to
find how many bins to each destination appear in
our minimum-cost system. If (9.25) holds, then
these bins are each swept once an hour, whereas if
(9.26) holds then the number of sweeps involved is
the same as that used in deriving (8.7); we can use
the fifth entries of the rows involving (9.25) to find
the numbers of “extra sweepers” involved (see
(8.11)) and then multiply this contribution to AS
by 14,670 in accordance with (8.12). Finally, we
can use the first and fifth columns, together with
(9.4) and (9.6), to assign a loading complex cost to
each row. The result? is a total cost of about

9 Different methods of associating integral numbers of bins with values of n:
which are not divisors of 28 were tested and found to change (9.42) only negligibly.



$401,200 (9.42)

associated with class 2b destinations and the class 2a
destinations obeying (9.38).

TaBLe 1. Optimizing n; in class 2b

‘ Formula ! Letters/hr

(mi)opt | 106 f; Destinations
| ‘ [
9 | 170 to 187 (9.25) | 491 to 525 “ 5, 950
9 | 188 to 189 (9.26) |
8 | 190 to 209 (9.25) | 451 to 490 | 7,700
8 | 210 to 217 (9.26) | 441 to 450 | 2,100
7 | 218 to 239 (9.25) | 421 to 440 4, 500
7 | 240 to 254 (9.26) | 401 to 420 4, 900
6 | 255 to 279 (9.25) | 381 to 400 5, 300
6 | 280 to 305 (9.26) | 351 to 380 | 8, 800
5 | 306 to 335 (9.25)| 341 to 350 3,200
5 | 336 to 384 (9.26) | 311 to 340 10, 800
4 | 385 to 419 (9.25) | 300 to 310 ‘ 4,510
4 | 420 to 516 (9.26) | 265 to 299 16. 120
3 | 517 to 559 (9.25) | 253 to 264 6, 300
3 | 560 to 786 | (9.26) | 203 to 252 32,720
2 | 787 to 839 | (9.25) | 200 to 202 2,420
2 | 840 to 1,200 (9.26) | 154 to 199 46, 400
| i o
Total number of letters/hr__ . ________________ 161, 720

Analysis of class 3. Here the different possible
alternatives in (9.15) and (9.16) lead to three possible
formulas for C(f;, n,;):

O(fs, 1) =0.1765n,+ (2.674 X 107%)/(n,f,) +0.1765
(if n,<1,680/10%,), (9.43)

O(f;, n)=0.1765n,+ (0.392 X 107%) /(nf,) +1.5348

(if 1,680/10%,< n,<33,600/10°,), ; (9.44)
C(fi, m:)=0.1765n ;4 1.546
(if 7,>33,600/10°,). (9.45)

We can work “upwards” through class 3 just as we
did in class 2b, beginning with (n;),:=2; the only
new complication is that possible transitions to
(9.45) must be allowed for. It turns out that the
change from (n;)ep;=2 to (n;)eps=1 occurs for
105f,=1,614 (i.e., at destination 119 in our particu-
lar mail distribution) and that the cost associated
with class 3 destinations is

$1,397,000. (9.46)

Finally, we add up (9.23), (9.32), (9.42), and (9.46)
to obtain (after rounding off) a total of
Ck.=$2,046,000 (9.47)
as the approximate cost of our hypothetical mini-
mum-cost system. This is then our theoretical
minimum cost, to be used as a yardstick in dealing
with proposed sorting configurations. It is signifi-
cantly larger than (8.8).
The general approach used in this section consti-
tutes the “follow through” method mentioned in
section 1.

10. Simplex Scheme

The first sorting scheme we examine is also the
simplest. The sorting system consists of a number
of essentially independent subsystems, each consist-

3 i )

ing of a single loading complex followed by 1,600
bins, one for each of the 1,600 destinations.

The argument used to derive (8.3) shows that for
this system L=28, so that

AL=0; (10.1)

thus there are 28 subsystems, so that

AB=(28) % (1,600) —840 ~44,000.  (10.2)

Assuming the 1,000,000 letters/hr divide equally
(on the average) among the 28 subsystems, we find
that a bin corresponding to one of the 114 most
frequent destinations will receive 60 or more let-
ters/hr, whereas a bin corresponding to one of the
(1,600—114)=1486 least frequent will receive fewer
than 60. There are

1,486 % 28 ~ 41,600

bins in the system which correspond to these last
1,486 destinations, and by (5.3) these bins give rise
to 41,600 stacks/hr. These last 1,486 destinations
receive only 27.6 percent of the total mail (276,000
letters/hr) and so, if all stacks consisted of 60 letters
(the basis on which (8.5) was derived), they would
give rise to only

276,000/60=4,600 stacks/hr.

Thus we have 41,600—4,600=237,000 extra stacks/hr,
leading via (5.2) to

37,000/180 =205

additional sweepers, of which two were taken into
account in passing from (8.5) to (8.7). So

AS=203 (10.3)
and by (8.12)

AC=(14) X (44,000) + (14,670) X (203) ~ 3,594,000,
(10.4)

so that, by (8.8) and (8.13),
O=Cnt(AC) = 5,355,000,
and by (9.47),
(C— i) [Clin=162%,
Thus on a cost basis the simplex scheme should
definitely be rejected. The excessive cost comes

primarily from personnel, i.e., from the second
summand in (10.4).

11. Christmas Tree Scheme

This might also be called the ‘“square root”
scheme. In our case the square root of the number
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of destinations is v'1,600=40. The system consists
of a number of subsystems, each containing a single
loading complex and 40 bins.'® The 1,600 destina-
tions are divided into 40 groups of 40 destinations
each; the primary sorting of mail is done by group,
and the mail to each group is then given a secondary
sort by individual destinations.

The key to the analysis is the fact that each piece
of mail is dealt with twice. By applying (8.3), (8.4),

and (8.5) to both the primary and the secondary
sorts, and adding the results, we have
L>56, B>1,680, S>186,
so that
AL>28, AB>840, AS>91
and by (8.12)
AC>1,702,000,
so that by (8.8) and (8.13)
O'>3,463,000
and
(( = mm)/(vmm/ﬁg%'
On this basis we can reject the Christmas Tree

Scheme. Again personnel costs are the major factor.

12. Residue Scheme

In this system the primary sort consists of sorting
letters directly to those destinations which receive
a relatively large fraction of the mail, while dropping
all letters to the less “frequent” destinations into a
relatively small number of residue bins, which are
then given a secondary sort by destination. The
purpose of this maneuver is to avoid having a large
number of sweeps (corresponding to infrequent
destinations) resulting in small stacks; such sweeps
lead to excessive personnel costs.

The system is determined by stating definitely
which destinations are to be considered “infrequent”
(so that mail to them goes into residue) and which
are to be considered “frequent.” We therefore
define a system design parameter

the ith destination is frequent if
infrequent if 10°f,<%; (12.1)

t=threshold;
10%f, > ¢,

the value of 7 is to be chosen so as to minimize the
cost of the system. As before,

fi=Tfraction of mail which goes to the ith destination.
(12.2)

We shall determine the optimal value of ¢ by two
methods (in order to check their agreement). First
we apply the “follow through’ approach of section 9.
The residue scheme certainly satisfies (9.1) and
(9.3); if well-designed, it will very nearly satisfy

_19%The cost estimate would be even higher if we took into’account the indivis-
ibility of the 30-bin modules.

(9.2) and (9.5) as well.  We will therefore proceed
as in section 9.  The number of letters/hr to the 2th
destination in each of the 28 primary subsystems is

1,000,000 £,/28,

and if this quantity is >60 then by (5.4) there
would be no reason to put mail to the ith destination
into residue. Thus the only destinations about
which there is any question are those for which

(1,000,000 f;/28) <60.

We can split these destinations into classes, according
as
1,000,000 f, <60, (12.32)
or
60<"1,000,000 £,< 1,200, (12.3b)
or

1,200<1,000,000 f,< 1,680. (12.3¢)

For destinations obeying (12.3a), (9.12) yields
C(f:)=2.0764(95.50/10° f,), (12.4a)

n;—1 in the residue scheme,

(12.5a)
Similarly, for destinations obeying (12.3b) we have

O(fo)=3.434+ (14/10%,)

C(fi, 1)

For destinations obeying (12.3¢), it is not clear in

view of (5.5) what a letter going into residue should
be “charged” for the sweep of its secondary bin;

while (9.18), since
yields

C(fi, 1)=0.3534(2674/10%,).

(12.4b)

=0.3534(2,674/10%).  (12.5b)

it should be at least 14/1,200, however, so that
(see (9.25)) we have

O(f)< (14/1,200)+3.434=3.451,  (12.4c)
wnd O(fi, 1)=1.7113+ (392/10%,). (12.5¢)
We find that C(f,)—C(f;, 1) is negative (i.e., it is

less expensive to put mail to llw ith destination into
residue) for 10%,<863 and is positive for 10%,>
864. Thus the optimal ¢ is
tope=864, (12.6)

which for our particular mail distribution corre-
sponds to destination 196.

Next we apply the “add up”
(8.12). First we define two relevant
depending on £, by

method based on
quantities,

N, =number of frequent destinations,
V,=number of letters/hr to frequent destinations,

so that (since our situation involves in all 1,000,000
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letters/hr and 1,600 destinations).

1,600 —N,=the number of infrequent destinations,
1,000,000 —V ,=number of letters/hr to infrequent
destinations.

The number AL of extra loader complexes needed
for the secondary sort is given (using (8.2)) by
AL=(1,000,000—1V,)/36,000; (12.7)
more precisely, AL is the integer next above the
right side of (12.7). The infrequent destinations
are divided into AL groups whose total expected
hourly mail volumes are approximately equal.
The sorting system contains 28-(AL) sub-
systems, each consisting of a loading complex
followed by a number of bins. Each of the 28 sub-
systems needed for the primary sort contains N,
bins for the frequent destinations and one residue
bin'* for each of the AL groups of infrequent desti-
nations. Each of the AL subsystems used for the
secondary sort, sorts the entire primary residue of
some one of the groups; thus these AL subsystems
together contain one bin' for each infrequent desti-
nation, and thus contain 1,600—XN, bins in all.
Therefore

B= 28(N,+ (AL)) AF (1;600_Arz)

—28(AL)+27N,+ 1,600,
AB=B—840=28(AL)+27N,+760. (12.8)

Having found AL and AB, we must find AS. The
frequent destinations receiving 60 or more letters/hr
on each of the 28 primary subsystems, require no
more