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Capacity Requirement of a Mail Sorting Device:

A.J. Goldman

(July 14, 1959)

The combinatorial analysis of a mathematical model of a sorting device suggested by
S. Henig is completed. The relevant parameters are r, the number of destinations for the
g )

mail, and £, the number of letters entering the device during each cycle of operation.

The

capacity of the device, if it is never to jam, should be between rk and 7k — (r—1) inclusive;
arguments indicating that the latter value is preferable are given.

1. Introduction

We deal with a highly idealized mathematical
model of a mail sorting device suggested by S. Henig
(NBS Electronice Instrumentation Section).  For our
purposes the operation of the device can be described ?
as follows. Mail (to any of » destinations) enters
the system. After k letters have entered, the device
“asks itself” to which destination it contains the
most letters.®  All letters to this predominant destina-
tion are then dropped out of the device, another k
letters enter, and the process continues. The device
is said to jam if, after a dropout, it is still so “full”
that entrance of the next £ letters would cause an
“overflow.”

Investigation of the most appropriate capacity for
such a device leads to mathematically interesting
problems of two general types. If the capacity is
to be so chosen that jamming never occurs, then the
problems are essentially combinatorial in nature and
can be treated mainly by “counting’” methods. 1If,
however, the object is the more modest one of keep-
ing the frequency of jamming down to some specified
“tolerable level,” then rather difficult probabilistic
problems arise; this is due to the fact* that the
behavior of the device constitutes a Markov chain
with a great many states, governed by the probabilis-
tic distribution of mail by destinations.

The present paper completes an earlier analysis ®
of the combinatorial questions, which showed that

r—1)(k—1)4+k=rk—(r—1)

(1)

is a possible capacity for the device, and (if the device
begins operation empty) is in fact the mainimum
capacity. This left open the possibility of gaining
some advantage by using a greater capacity than
that given in (1) and beginning operation with the
device partly or entirely filled. Tt will be proved
below that no capacity in excess of 7k should be
employed, and that any advantage arising from a

I Part of a project sponsored by the Post Office Department, Office of Research
and Development.

2 The physical device can also operate under dropout rules other than the one
described below.

3 A rule for breaking ‘‘ties” between destinations is also required.

4 Pointed out (unpublished memorandum, July 1956) by J. R. Rosenblatt
(NBS Statistical Engineering Laboratory).

5 B, K. Bender and A. J. Goldman, Capacity requirement of a mail sorting
device, J. Research NBS 62, 171 (1959) RP2948.

capacity greater than 7k—(r—1) would be only
transient.

The author acknowledges several improvements in
the exposition suggested by J. R. Rosenblatt. Un-
fortunately a somewhat more formal treatment than
that of the previous paper seemed required by the
greater complexity of the analysis below.

2. Statement of Results

In order to describe our results, it is convenient to
define

2(t) =number of letters in the device just (2)
before the tth dropout,

and also to give a precise definition of “capacity.”

A non-negative integer (' will be called a capacity
for the device if, should the device begin operation
containing no more than € letters, it can never sub-
sequently contain more than € letters under the
dropout rule described above; symbolically,

x(t) <C () <C for all t>14,. (3)
This condition is clearly necessary to insure that the
device never jams.

Turorem 1. Cis a capacity if and only if

rk—(r—1) <C.

implies

A capacity O will be called efficient if there is at
least one set of initial contents for the device, with
no more than ' letters, such that the device might
possibly contain € letters again at some later time;
symbolically, for some set of mitial contents,

2 (S G (R (1) ——— t >t,. 4)

If this condition is not satisfied, then the full capac-

ity € of the device will not actually be needed after

the start of operation, a wasteful situation.
Turorem 2. O is an efficient capacity if and only

of

for

rk—(r—1) <C<rk.

A capacity (' will be called essentially efficient © if
there is at least one set of initial contents with no
more than O letters such that the device with non-
zero probability will contain € letters infinitely

6 Use of the term ‘‘essential’ here, and of the subscript ‘‘ess” in (5), was sug-
gested by a roughly similar usage in measure theory.
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often 7; symbolically, for some set of initial contents,

x(to)SO and I(t)max ess:O for t>t0 ( )
This definition is strengthened to that of a uniformly
essentially efficient capacity by requiring that the

stated condition hold for al/l initial contents of no
more than C letters; i.e., that

z(t) <C

=

[3)

x(ﬁmax ess:C for 2‘>t0 (6>
TraroreEM 3. The only essentially efficient capac-
ity is rk—(r—1)=0; it is also uniformly essentially
efficient.
The proofs of these theorems are given in section
3. Section 4 contains a very crude probabilistic
estimate related to theorem 3.

3. Proofs

implies

3.0. Preliminaries
It is helpful to define

M(t) =max z,(t)
7

where

z;(t)=number of letters to the ith destina-
tion in the device just before the tth

dropout.
Levmva 1. M) >k implies  z(t-+1)<x(t).
Lemma 2. z(t) >rk  implies  z(t41)<x(t).
Lemva 3. M(t)=k implies z(t-+1)=xz(t).
Levmva 4. M) >k implies x(t+1)<z(t).
Lemma 5. z(t) >rk—(r—1) implies z(t+1) <z(t).
Lemma 6. x(ty) <rk—(r—1) mplies
x(t) <rk—(r—1) Sfor all  t>t,.
Lemma 7. x(ty) >rk—(r—1) amplies
x(t) <x(ty) Sfor all  t>t,.

Lemma 1 is proved by observing that if M(t) >k,
then more than £ letters leave the device in the
tth dropout, whereas only £ letters enter before the
(t-+1)-st dropout. Since there are only » destina-
tions, z(t) >rk implies M(t) >k, and so lemma 2
follows from lemma 1. Lemma 3 is an obvious con-
sequence of the dropout rule, and lemma 4 is obtained
by combining lemmas 1 and 3.

To prove lemma 5, note that since there are only
r destinations,

c(t) >rk—(r—1) >r(k—1) implies M) >k—1,
so that lemma 4 can be applied. Lemma 6 merely
states the fact® that 7k—(r—1) is a capacity. In

7If this condition is not satisfied, then with probability one the device will,
from some point on, fail to use its full capacity.
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proving lemma 7, two possibilities must pe con-
sidered. If, on the one hand,

x(t) >rk— (r—1) for all >4,

then by lemma 5, z(t) <z(t,) for all t>t,.
other hand, there is a #, >f, such that

to <t<ty

If, on the

x(t) >rk—(r—1)

I(t1)<f‘k—(/‘—1),

for
but

then by lemma 5, z(t) <z(t) for ¢, <t<t;, andby
lemma 6
x(t) <rk— (r—1) <x(t,) for all t>t,
so that again
(@) =<x() for all t>¢,.
3.1. Proof of Theorem 1
To prove the ‘“only if”” statement, suppose

C<rk—(r—1) and x(t,) <C. TIf, on the one hand,
x(ty) =0, then (see op. cit. footnote 5, p. 79) there is
a sequence of possible events leading to a situation in
which

2(t) =rk—(r—1)>C; t<to+(r—1)(k—1)+2.

This violates condition (3) and so (Vis not a capacity.
If, on the other hand, z(#,) >0, then a sequence of
possible events can be constructed leading to a
situation in which

x(t)=0; H<t+C. @)
To do this, choose the k£ letters entering the device
between the fth and (¢+1)-st dropouts, for

ty<t<t;, to consist entirely of letters to some one
destination for which z;(t) >0. Then M(t) >k for
to<t<t;, and so by lemma 1 the number of letters in
the device steadily decreases until condition (7) is
satisfied. From this point we may argue as in the
case x(t)) =0 (now using ¢, instead of {,), again ob-
taining the conclusion that ' is not a capacity.
To prove the “if”” statement, suppose

O>rk—(@r—1) and x(t) <C.

If x(t)) <rk—(r—1), then by lemma 6
() <rk—(r—1)<C for all t>t,,

while if z(ty) > rk— (r—1), then by lemma 7
x(t) <uz(ty) <C

for all ¢>t;

in either case condition (3) is satisfied, and so C'is a
capacity.



3.2. Proof of Theorem 2
To prove the “if”” statement, suppose
rhk— (r—1) <C<Lrk.

The initial contents of the device can clearly be
chosen so that x(t)=C and M(t,))=Fk. Among the
destinations with z;(t,) =k, select the one “preferred”
by the tie-breaking rule at the #-th dropout; let k
letters to this destination enter the device between
the fo-th and (f,+1)-st dropouts. Then M(f,+1)
=/; among the destinations with z,(f,+1) =k, select
the one preferred by the tie-breaking rule at the
(ty+1)-st dropout, and let £ letters to this desti-
nation enter the device between the (f,+1)-st and
(t,+2)-nd dropouts, etc. This construction results
in M(t)=Fk for all t>1,, so that, by lemma 3,

for all

() =z(ty) =C > 1.

Hence ('is an efficient capacity.

The “only if”” statement will be proved next. By
theorem 1, no C'<’rk— (r—1) can be a capacity; thus
no such € can be an efficient capacity. Suppose
O >rk and z(t)) <C. There are three possibilities to
be considered. 1f z(t)) <rk— (r—1), then by lemma 6

z(t) <rk—(r—1) <rk<C forall t>t,
so that ('is not an efficient capacity. If
rk—(r—1)<z(t) <rk,
then by lemma 7
x(t) <x(ty) <rk<C for all t>1,,

so that ' is not an efficient capacity. Finally, if
x(ty) >rk, then by lemma 2 there is a ¢, >, (with
t, <ty+C—rk) such that

rk<x(t) <a(ty) <C for
x(t) <rk;

te<t<th

and

the arguments for the first two possibilities can be
applied to ¢, to yield

z(t) <z() <rk<C forall t>1¢
so that x(t)<C for all t>#, and again (' is not an
efficient capacity.

3.3. Proof of Theorem 3

First, 7k— (r—1) is a uniformly essentially efficient
capacity. To see this, note that the construction
used above to prove the “only if”” part of theorem 1
shows that if

x(ty) <rk—(r—1)

519835—59 2

then with probability one ® there is a ¢, >t, for which
x(t) =rk— (r—1);

by the very same argument, with probability one
there 1s a t, >, for which

2(ty) =rk— (r—1),

and so on. In fact, for 7k— (r—1) the phrase “with
nonzero probability” in the definition of “uniformly
essentially efficient capacity” could actually have
been strengthened to “with probability one.”

Second, no ' >rk— (r—1) 1s an essentially efficient
capacity. To prove this, observe that by theorem 2
attention can be confined to the case

rk—(r—1)<C<rk.

Suppose z(t,) <C. 1If

z(t) <rk—(r—1) for some ¢, >1,,
then by lemma 6
x(@) <rk—(r—1)<C for all t>1,

so that the device cannot contain (' letters infinitely

often. Thus we may assume that
x(t) >rk—(r—1) for all 1>t (8)
so that, by lemma 5,
z(t+1) <z(t) for all t>t,. (9)
If 2(t,) < C, then by (9)
x(t) <a(ty) <O for all t>1,

so that the device can never contain ' letters.
Therefore assume that z(t),=C. If

M) >k for some #, >1t,,
then by lemma 1 and (9)
z(t) <z, +1)<z(t) <z(t) =C for all ¢ >,

so that the device cannot contain (' letters infinitely
often. Therefore assume

M) <k for all t>¢,.

From (8) and the fact that there are only » destina-

tions it follows that M(¢#) >k, and so M(t)=k. 'Thus

the only possibility for the device to contain

letters infinitely often is given by
()= M@)=k for all t>1;

this clearly has probability zero.

§ The construction shows that if 2(t) <rk—(r—1), then for any block of
[(r—1)(k—1)424rk—(r—1)] values of {>to, there is a nonzero probability (inde-
pendent of the particular block) that z(f) =rk— (r—1) at least once.
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4. A Probabilistic Estimate

Suppose C is an efficient capacity which is not
essentially efficient; i.e. (according to theorems 2
and 3),

rk— (r—1)<C<rk.

We know that with probability one, there is a
t;>t, such that

z(t)<C t>t.

It is of interest to estimate how early the first such ¢,
(the last moment at which the full capacity of the
device 1s wused) might occur. In this primarily
combinatorial paper, we will be content with an
exceedingly crude probabilistic estimate.

Denote by E the event

for all

and

Mty =Fk.

By the proof of theorem 3, # =, unless £ occurs.
Therefore the function of ¢, to be estimated is

t>t1[E} )
where Prob{A|B}denotes the conditional probability
of A given B.

Let the relative frequencies (or probabilities) of
letters to the different destinations be denoted by

0<A<fi< ... £y
O=rk—1)+s+1; 0<s<r,
Fo=fi+f+ ... +fs
It will first be shown that, for any ¢ >,

P(t)=Prob{z(t)=0 for some (10)

let,

and let

Prob{z(t)=C, M@{)=klz(l(—1)=C, M@t—1)=Fk}
<(A=Fy* (11)
Suppose
z(t—1)=0C, M@—1)=k.
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Since
r(t—1)=C>r(k—1)+s=(r—s)(k—1) sk,

it follows that z;(ft—1)=Fk for at least s+1 destina-
tions. The letters to some one of these destinations
leave the device in the (t—1)-th dropout, and
M(t) >k if any of the k letters which next enter the
device go to any of the remaining s destinations
with £ letters each. Since the sum of any s fre-
quencies f; is at least [, the inequality (11) holds.

By the proof of theorem 3, for any one t >,
both z(t—1)=C and M(t—1)=Fk hold if and only if

W)= and M@ )=k for t,<t’<t.
Thus the probability on the left side of (11) can be
rewritten

Prob{z(t)=C, M(t)=Fk|z(t')=C, M({')=Fk for
to<t'<t},
so that the inequality (11) yields
I Prob{z(t)=C, M@)=k|lc@t')=C, M{)=kt,<t<t
for t,< t/<t} <(1—Fy)kti—t),
This last product is equal to
Prob{z(t)=0,

M@)y=k for #<t<t|E},

which, according to the proof of theorem 3, is an
upper bound for P(¢,) and so we have proved that

(12)

If for example £=2 and F;=0.001, then after 500
dropouts the probability that the device will make
any further use of its full capacity is less than 0.50.

])(tl) S (] ——]‘;)’5('1—‘0)_

WasHiNgToN, D.C. (Paper 63B2-10)
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