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Applications of a Theorem on Partitioned Matrices

Emilie V. Haynsworth
(May 25, 1959)

A reduction formula for partitioned matrices is applied to block-stochastic matrices
and other types of partitioned matrices in order to reduce the computation in finding the

eigenvalues.

formulas given here have been applied successfully in practical problems.

Such matrices occur frequently in physics and chemistry, and the reduction

In addition,

some results of A. Brauer on stochastic matrices and of J. Williamson in partitioned matrices

are generalized.
1. Introduction

In a previous paper,' a general reduction formula
was given for certain partitioned matrices,

r@'lu 4113 . e e "lll\
A“zl 4122 . 4'121
A . (1)
LA Ay .. ;1,,J

of order N, where the submatrices, A,, have di-

mensions 1, <n;, ©,7=1,2,. . . t, and

t
=N

i=1

One of the special cases of this general theorem
is of particular interest in practical applications to
the problem of finding the eigenvalues of a matrix
and, in fact, has been applied successfully to such
problems. This special case is given below as the-
orem 1, since its proof is simpler than that for the
general theorem and exhibits the transformation
matrices needed for the reduction formula.

This result is used in section 3 to give generaliza-
tions of some theorems by A. Brauer ? on stochastic
matrices. Other applications are given in later
sections.

As in the previous paper, for a given partitioning
of a matrix A we shall call the submatrices, A4,
the blocks of A and we shall write A=(A,;). The
elements of the blocks will be denoted by a4, 1.e

A= (@)
the
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arbitrary complex matrices. Also, since we will
be dealing throughout with matrices A=(A4;;) of
form (1), we will assume, unless otherwise indicated,
that the statements and formulas given are true
HOXE U=l & o o U

2. Special Reduction Formula

For the sake of completeness we include a lemma
from the previous paper ! which is needed in the
proofs of theorems 1 and 3. In this lemma we
consider three cases where there are zeros in con-
venient places in the blocks of a partitioned matrix,
A, In each of these cases A is reducible, and the
proof consists merely in defining the permutation
matrix which puts A into the reduced form,

_[C 0
A= ’ (2)
D ¥

where C'and 7" are square matrices and O is a matrix
composed entirely of zeros.

Lemyma: Given a partitioned matriz A of order N
with ny X n; blocks A;;:

i, M7 = (=12, . ) and the blocks Ajy
are lower triangular with elements N'%), h=1,2, . . . n,
on the diagonal, A is similar to a matriz A, with
blocks Awm=(N{Y), h=1,2,. . . =, on the diagonal,
and zero blocks above the diagonal (this case is given
by Williamson ?).

2. If

s 0
A= ) 3
\p, 1 )

where all matrices Ty are square, of order r, and the
matrices Cy; are (ny—r) X (n;—r), then A has the form
(2), where 0: (Oi]') and T:(TU)

3. If Ay has the form (3) where the matrices T,
are lower triangular, we will say Ay, is partially trian-
gular.  Then of A has blocks A;; which are all par-
trally triangular with submatrices, T'; of order r, having
elements %, h=12, . . , 7, on the diagonal, tr
roots of A are roots of the r matrices, (t{"

3 J. Williamson, The latent roots of a matrix of special type, Bull. Am. Math.
Soc. 37, 585 (1931).
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The proofs given below would follow in a corre-
sponding manner if all blocks were transposed.

Proor:

1. The rows and columns of A should be arranged
in the order

1, n+1, 2041, ..., (t—1)n+1;
2, n+2, 2042, ..., t—1)n+2;
(4)
n, 2n, 3n, 5 0 og in.
Then the new matrix A will have the matrices

A=) on the diagonal and A,,=0 for <,
so its roots are the roots of the n matrices, A

k
2. Le’ozl]ni:Nk. Then Ny=n,, N,=N. 1If we

arrange the rows and columns of A in the following
order:

1,2, ..., Ni—r,
Ni+1, Ni+2, . . ., No—r,
N,_1+1,
Ny—r+1, N\—r+2, ..., N,

[io1t+2, ..., Ni—r, (5)

N—r+1, N—r+2, ..., N,

we have a new matrix A in which the matrices
(;; are together in the upper left corner, and the
matrices 7';; are together in the lower right corner.
So A will have the form (2) where C=(C);) and
T=(T 1])

3. Case 3 follows immediately now by first apply-
ing the permutation in 2 to the rows and columns of
A and then applying the permutation in 1 to the
rows and columns containing 7.

TarorEM 1: Suppose the blocks A, of the par-
titioned matrixz gien in (1) satisfy the equation

AyX;=X,By, (6)

where By is a square matriz of order r, 0<r=n,,
with strict inequality for at least one value of 1, and
X, is an nXr matriz with a nonsingular matriz of
order r, 10, in the first v rows. Let the last
n,—r rows of X, be X5, and let

A9 A4 (7)
AU: (19) (i)
i
A 21 A 2%

where A" is square, of order r.  Then A is similar to

the matriz,

(8)

where B is a partitioned matriz of order tr with blocks
By, as defined in (6), and C has blocks,

= (AP — X0 (X (7)1 A" (9)

with dimensions (n,—r) X (n;—r). (If either n; or
n;=r, the corresponding block (;; does not appear.
By hypothesis not all n; are equal to r, or else we
would be left with the matrix B= (B,,) which would
be similar to A.)

Thus the roots of A are the roots of the smaller
matrices B and C.

Proor: Let P, be a matrix of order n,:

X0 0
Pi: ‘Yéi) ]”i_r ’ (10)
then
(X )=t 0
e _ , ’ 11
_‘Yz(”CYf”)-l Ini—r ( )
where I represents an identity matrix of order k.
Since by (7) and (10)
[AH]’)X;i)_’_tiié])Xé]')} / lféj)
(AP X+ AP XY Ay
then by (6),
[X{"-By) AR
Afjpj: ’
(X-Byl A
and, using (11) and (9),
o B, (X =1AL
Alj:Pz‘lAlej: . (12)

So, if we let 2 be the direct sum of the matrices
r,
PP R (13)
and let

A=P-14P,

then A has the blocks A,; given in (12), and the
simultaneous permutation of rows and columns
of A given by case 2 of the lemma above, will put it
into form (8).
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3. Generalizations of Brauer Theorems on
Stochastic Matrices

A. Brauer? proved a number of interesting
theorems about generalized stochastic matrices, i.e.
matrices A= (a”) of order n such that

Slay=s, (i=12,...n). (14)

. =1
Such matrices have as one root, s, and the vector cor-
responding to this root is

.
U=(1,1,...,1) (14a)
The reduction formula of theorem 1 1s applied in this
section to matrices which can be partitioned into
stochastic blocks, to give generalizations of Brauer’s
results.

If a matrix A of order N can be partitioned into
rectangular (n,>n;) blocks, in each of which the
row-sums are all equal, 1.e.,
(h=1,2, . .. =25 6 o o 110))

u*(”h/ )) 9":‘7

with

Ny

(

k=1

=1l

.y M),

A 1s a block-stochastic matrix.

TureoreM 2: If A is block-stochastic, (1) t roots of A
are roots of the matriz S— (si;), and (2) the other N—i
are roots of the partitioned matriz of order N—t,

J= ((—’YIJ') )

C,=(ay¥—af}?), (=28%00 o iy =080 o Gk

(16)

If either n; or njis 1, the block Cy; is omitted, so i

and j do not necessarily take on all values 1,2, . . . t.
Proor: Since, by (14a) and (15)

AUn=81Un, (17)

statement 1 follows immediately, for by (17), if we
set r=1 in (6) the matrices B;; of theorem 1 are
simply the elements s;; given by (15). Then, if we
subdivide A,; as in (7), A% consists of all the
elements of the block A;; except for those in the
first row and column, i.e.,

A ={5P) =2y o « oy B =2y o ¢ o Tl))s

and

(lj) (a\:p

=2 0 o o i)

Since by (17), the matrices X; in (6) are the
vectors {7, , we have

Y vt r
4\1):11 ‘\2):1/ ni—1l.

Then, since U/, -1 Aj;” is a matrix having in each
row the ol('moan

a(ij), . a(tj)

],njy

statement 2 follows from (9). For example, the
tnll()\\mtr matrix arose from a problem in molecular
physies:

ab|bbleleedd
ba bbbl ddce

bblab (/crl('(/
bb balddede

ce (/(].e\ffjf

C(/.(‘([ f(jj'(/
cd|dce [f fm/f
de ('(/[f I/(’
\dc|dc 4/ff€

A=

The lines are drawn in to show how A is subdivided
into stochastic blocks.  Then by theorem 3, the roots

of A are those of the 5> 5 matrix,
(a—b 0 c—d c—d d—c ")
0 a—b c—d d—ec c—d
C=| ¢c—d c—d e—g 0 0
c—d 0 J=g e g—f
L 0 —d  f—g  g—F )
and those of the 44 matrix,
a+b 2b ¢ 2¢+2d
, 2b a-+b d 2¢-+2d
o 20 2d ¢ 4f ’
ctd ctd f e+2f+g

It is easy to see that (' can again be divided into
stochastic blocks where =200 =175, —2 S q
the five roots of (" are those of the 22 matrix,

a—Db 2¢—2d
(71:
c—d e—(g

and the 33 matrix

a—b c—d 0
Cy=\| 2¢—2d e—g 0 5
c—d i

Thus ¢—2f+4-g is a root, and there are two degen-
erate roots since the matrix €y corresponds to “the
quadratic matrix which remains when the root
¢—2f-+g is factored out of (.

CoroLrary (THEOREM 2): [f A 18 @ block-stochas-
tic. matriz with n,Xn; blocks Ay;, and P=33-P,
Q=22-Q; where P; and Q; are permutation matrices of

¢ The author is grateful to J. Bradley for supplying this example.
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order nq, any matriz PAQ s also block-stochastic and
has t roots in common with A.

Proor: Since the row-sums in a given block would
be unchanged by permutations within the block, this
follows immediately from statement 1 of theorem 2.

Brauer (see footnote 2) proved the following
theorems for certain special stochastic matrices:

1. Assume that

=28 0 oo g Tk

Then A has the same roots as the diagonal matrix

@i;=C;y

B=diag (ax—~cs, as3—Cs, - -+, Qun—"Cy;y S)-
2. Assume
a;;=¢, ] %1, and a;=b
(3=01, 32y + - Jr)-

Then (b—c¢) is a root of multiplicity 7.

We generalize these results i the following
theorem for block-stochastic matrices:

Turorem 3: Let A be a block-stochastic matrix with
submatrices A= (ayy) having constants ¢, above the
diagonalinthe lastr columns of each block, 0<r< minn;,
1.e.,

ail’=c"”  (k>n—r; h<k+ni—n,). (18)
Then tr of the roots of A are roots of the matrices
Qkk:<a/£;‘€j)—(’;€j) (k: nj‘—r+1,  eey 'n,j). (19)

(The second of Brauer’s theorems comes as a special
case of the above if we permute the rows and columns
so that the columns 7, 75,. . . , 7, are the last 7 columns
of the matrix. Also 1t isn’t necessary that all the
nondiagonal elements of a column be equal as in
Brauer’s hypothesis.)

Proor: By theorem 2, N-t roots of A are roots
of C=(C;;). Here we have i, j=1,2, . . ., t, since by
hypothesis, 0<r<mi_n n;, and thus min n> 1.

1 1
But by (16) and (18), (’;; is a partially triangular
matrix with elements a'i’—c¢? on the diagonal of
the triangular portion, i.e., for k=n,—r-+1, . . ., n,
Then, using case 3 of the lemma above, we can
permute the rows and columns of A so that A is
*

similar to the matrix
[)
0 @

when = ((),;) 1s a matrix of order #r having square
blocks of order ¢, defined by (15), on the diagonal,
and Qhk:() fOI‘ k<h.

Jp=
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4. Other Applications

In this section we will mention several other types
of partitioned matrices, A= (A,;), such that
%

B
pAp-1_< )
0 C

where P is the direct sum of transformation matrices
P, and B=(B;), C=((;), are partitioned matrices
which will be defined in each case. We also give
a case where the transformation PAP~! produces
a real matrix from a complex one.

Since the proof in each case is the same and
consists merely in performing the indicated matrix
multiplications, it will not be given in detail.

(20)

4.1. Block-Circulant Matrices

This is the case where each block A;;1s a circulant
matrix of order n. The result (21) is given by
Williamson.?

The roots of A are roots of the n matrices of
order ,

(h=1,2,...,m) (21

n
h ij) k
o) =( 35 atipeh )
=1
where €, is one of the nth roots of unity.

4.2. Block-Singular Matrices

If A is singular, of rank n—1, there exists a vector
r=(ry, 2, .., r,), with components not all zero,
such that

AX=X-0.

We may assume, without loss of generality, that

r;=1. Then, as in theorem 1, if X=1+4+.X,, we
can let
1 0
. (22)
_‘Y2 In—-l

and, applying the transformation (16), we can show
that the nonzero roots of A are roots of
C=(a;—x,a,) (1,j=2,...,n).
If A has rank less than n—1, the same type of
transformation can be applied to the matrix € and
this can be continued until a nonsingular matrix is

obtained. Or, we may be able to partition A into
blocks so that

Ainj“—_‘Xi’ 0.

Then if we let P=>3P;, where each P; has the
form (22), and apply transformation (20), we show



that the roots of A are the roots of

B=(B;;)=(0) of order ¢
and
where
Oyy= (@4 —a4 aff”)
(=200 1; k=2, ...,n;).
4.3. Block Tridiagonal Matrices
Let
(a 1 0...0 07)
1 a 1...0 0
0 1 am 0 0
T(a)= (23)

0 0 0...a 1

0 0 0...1 aJ

It 1s well known® that such matrices have charac-
teristic roots which may be written in the form
N=a+2 cos (kr/n+1) (k=1,2,...,n) (24
and, if we let 6,=kr/n-+1 it is easy to show that the
characteristic vector corresponding to A, has com-
ponents

(sin 6, sin 26, . . ., sin nf;) (25)
since the trigonometric identities
@ sin G, sin 20,= (a+2 cos 6;) sin 6,
sin (m—1)0,+a sin m,+sin (m-+1) 6,
=(a+2 cos 6;) sin mf;, (m=2, ..., n—1),

sin (n—1) 6,+a sin nf,= (a+2 cos 6;) sin nf;
hold for each 6, as defined above.

So if A=(A,;) where the blocks A, are all tri-
diagonal,

Ay=1T(ay),

these blocks can be simultaneously reduced to
triangular form wusing the matrix of characteristic
vectors (25), since these are independent of the
elements a;;. Thus, according to a theorem by
Williamson,* the roots of A are those of the =
matrices,

(@y+2 cos (w/n+1)), . . .
(as;+2 cos (nw/n+1)). (26)

D. E. Rutherford, Some continuant determinants arising in physics and
chemistry, II, Proc. Roy. Soc. Edinburgh 63, 111 (1952).
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If, in addition, the matrix (a,;) 1s stochastic, with
row sum s, by theorem 1, A has as n of its roots the
number s+ (1/n+1)2t cos kmr (k=1, . ..,n). Theother
n(t—1) roots are degenerate with multiplicity =,
since the matrices (';; in (5) become, by (22) for any
value of n,

(27)

(ay—aiy) W =% o o o Bk

4.4. Complex Matrices Similar to Real Matrices

A=(A;;) where each block is a 22 matrix defined
as follows:

g, 0
(@=1, ... k).

L=

0 e

(We use 4 —1 instead of 7 to avoid confusion with
the subseript.)

@y b,
A= (tg=12,.. .,k 1£7)
b,  ay
@ b ’
A= (=1,2,.. .,k j=k+1,...,%)
@y by
(lr,-] (I{] ‘
A= (t=k+1,...,¢, gj=1,...,k
by ¥y
and A;; an arbitrary real matrix (i,7=k-+1,...t).
Then,
L |
2 2
[Py= - 7 (l=1l.2, & & o 1),
1——\"—] 1+\-]
— S
Pi=1I, =k, y ).
a —b
Pil’i{i]){lz (lzly ORE5) k))
b a
Piflijpi_lzfli]‘) (%.]Zlv SR k;)y
]’,-Ai]-:;lij (i:], DY) /L) jiki]y 5 o o 1
Al P =l (e=k+1, ..., ¢ g5=1,...k),
Since
A=PAP- (28)



has the same elements as A except in the 2 X2 blocks
on the diagonal for i=1, 2, . . ., k, and the elements
in these blocks are real. (Matrices of this type also
arose from an applied problem at the National
Bureau of Standaxrds.)

5. Applications to Determinants and
Systems of Equations

The transformations given here for a partitioned

matrix A= (A, can obviously be applied to finding
the determinant of such a matrix since if

_ B D
4 DY AN 1
il (0 (f)

—|Bl[c].

(29)

A]=|4

These transformations could also be profitably
applied to the solution of a system of linear equations
with coefficient matrix A4; 1.e., the system of equa-
tions

is, by (29), the same as
(P1AP)X=K

or

AX=K
where

IRRES S
and

XX (31)

Then if X=X,+ X, and K=K,+ K, are partitioned
to correspond with the dimensions of B and (), we
can first solve the system

cX,=K,

(32)
and then the system

BX =K,—DX,. (33)

So, solving these two systems of linear equations
and the comparatively smmple system (31) (which
can be partitioned as F 1s partitioned), we have the
solution of (29).

Such a transformation would be especially valuable
in solving a large system on an electronic computer,
where the length of time for solution goes up on
the order of n®. Thus, if we cut the dimensions in
half by transformation (29), systems (32) and (33)
would each take one-eighth as long to solve as the
original system, and if we assumed only that 7
could be partitioned into two parts the total solution
time would be at most one-half that of the original
system. In many cases the time could be cut to
approximately one-fourth or less.

WasnaiNgron, D.C. (Paper 63B2-9)
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