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Applications of a Theorem on Partitioned Matrices 
Emilie V. Ha ynsworth 

(May 25, 1959) 

A reduction formula for p art itioned matri ces is applied to block-stochast ic mat ri ces 
and other types of partitioned m atrices in order to reduce the compu tation in findin g the 
eigenvalues. Such matrices occur frequently in physics and chemistry, an d the red uctio n 
formulas given h ere h ave been applied successfully in practical problems. In addition, 
some results of A. Bra uer on stochastic m atrices and of J . vVillia mson in partitioned matrices 
are genera lized. 

1. Introduction 

In a previous paper ,1 a general reduction formula 
was given for certain partitioned matri ces, 

A I2 

(1 ) 

of order ~N, wllCl'e t he submatrices, A ih h ave di­

mens ions nt X nj> i,j= I ,2, . .. t , and 

One of the special cases of this general t heorem 
is of partic ular interest in practical applica tions to 
the problem of ftnding the eigenvalues of a matrix 
and, in fact , has been applied successfully to such 
problems. This special case is given below as the­
orem 1, since its proof is simpler than that fo[, the 
general theorem and exhibits the transforma tion 
matrices needed for the reduction formula. 

This result is used in section 3 to give generaliza­
tions of some theorems by A. Brauer 2 on stochastic 
matrices. Other applications are given in later 
sections. 

As in the previous paper, for a given partitioning 
of a matrix A we shall call the submatrices, A i}, 
the blocks of A and we sball write A = (A ij). The 
clements of the blocks will be denoted by a(~t), i.e., 

A ij= (a(!{). 

Unless otherwise stated , the matrices will be 
I I, . HaYllsworth, Reduction formulas [or partitioncd matrices (to bc 

publishcd). 

arbitrary complex matrices. Also, since we will 
be dealing throughout wi th matrices A = (Aij) of 
form (1) , we will a~sume, unless otherwise indicated, 
that the sta tements and formulas given are true 
for i,j= I,2, .. . , t. 

2 . Special Reduction Formula 

For Lbe sake of completeness we include a lemma 
from the previous paper 1 which is needed in the 
proofs of theorems 1 and 3. In this lemma we 
consider three cases where t liere are zeros in con­
venien t places in Lhe blocks of [), partitioned matrix, 
A. III each of these cases A is redu cible, and the 
proof consists merely ill defi.ning Lhe permllLaLion 
matrix which puts A into the redu ced form, 

_ (0 
A= 

D 
(2) 

where 0 and T are square matrices and 0 is a matrix 
composed enLirely of zeros. 

L EMMA : Given a partitioned matrix A of order N 
with nl X nj blocks A ij: 

1. If n i=n (i= 1,2, ... , t) and the blocks Aij 
are lower triangular with elernents A <:/, h= 1,2, :.... "' n, 
on the sJiagonal , A is similar to a matrix A, with 
blocks Ahh=(Ai~», h= I ,2, ... , n , on the diagonal , 
and zero blocks above the diagonal (this case is given 
by W illiamson 3) . 

2. If 

(3) 

where all matrices T i} are square, of order r, and the 
matrices Gij are (n i-r) X (nj-r) , then A has the form 
(2), where G= (Oij) and T = (TiJ)' 

3. If A i} has the form (3) where the matrices T ij 
are lower triangular, we will say A ij is partially trian­
gular. Then if A has blocks A i} which are all par­
tially trianoular with submatl'ices, T ij oj order 1', having 
elements tD), h= 1,2, . . . ,1', on the diagonal , tf 
roots oj A are roots oj tlw l' matrices, (tiJ) . 

2 . \ . TI raucr, Limits for the characteristic roots of a matrix, IV, Duke Math . 
~ J. 19, 75 (1952). 

3 J. Williamson, The latent roolsofa matrix of special type, Bull. Am. M ath. 
Soc. 37 , 585 (1931). 
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The proofs given below would follow in a cOlTe­
sponding manner if all blocks were transposed. 

PROOF: 
1. The rows and columns of A should be arranged 

in the order 

1, n+ l, 2n+ l, . . . , (t - l )n+ l; 

2, n+ 2, 2n+ 2, ... , (t - l )n+ 2; 
(4) 

n, 2n, 3n, . . . , tn. 

Then the new matrix A will have the matrices 
A hh= (;>..W) on the diagonal and A hk= O fOE i< j, 
so its roots are the roots of the n matrices, A hk• 

k 
2. Let L2n j=N k • Then N1 = nl , Nt = N . If we 

i=l 
arrange the rows and columns of A in the following 
order: 

1,2, . ' .. , N1 - r, 

(5) 

we have a new matrix A in which the matrices 
Gij are together in the upper left corner, and the 
matrices T jj are together in the lower right corner. 
So A will have the form (2) where G= (Cij) and 
T= (Tij) . 

3. Case 3 follows immediately now by first apply­
ing the permutation in 2 to the rows and columns of 
A and then applying the permutation in 1 to the 
rows and columns containing T. 

THEOREM 1: Suppose the blocks A ij oj the par­
titioned matrix given in (1 ) satisjy the equation 

(6) 

where B ij is a square matrix oj order 1' , ° < r;:;;;'n i, 
with strict inequality jor at least one value oj i , and 
X i is an n iXr matrix with a nonsingular matrix oj 
order l' X z(i) , in the first l' rows. L et the last 
ni-r r~ws oj X i be X~i), and let 

A(W ) 
A (iil 

22 

(7) 

where AW) is square, oj order r. Then A is similar to 
the matrix, 

~) (8) 

where B is a partitioned matrix oj order tr with blocks 
B ij , as defined in (6) , and G has blocks, 

with dimensions (ni- r) X (n j- r). (If either n i or 
n j= r, the corresponding block Gij does not appear . 
By hypothesis not all n i are equal to 1', or else we 
would be left with the matrix B = (B ij) which would 
be similar to A. ) 

Thus the roots of A are the roots of the smaller 
matrices Band G. 

PROOF: Let P i be a matrix of order n ,: 

then 

where I k represents an identity maLrix of order k. 

Since by (7) and (10) 

then by (0) , 

and, using (11) and (9) , 

A gi» , 

A ij 
22 

AW)) , 
A (ij) 

22 

(X i i) -lA gi». 

Gij 

(10) 

(11 ) 

(12) 

So, if we let P be the direct sum of the matrices 
1'" 

(13) 

and let 

then A has the blocks Aij given in (12) , and the 
simultaneous permutation of rows and columns 
of A given by case 2 of the lemma above, will put it 
into form (8). 
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3. Generalizations of Brauer Theorems on 
Stochastic Matrices 

A. Brauer 2 proved a number of interesLing 
theorems about generalized sLochasLic matrices, i.e., 
matrices A = (aij) of order n snch Lhat 

" "L,aij=s, (i = 1,2, . .. n). (14) 
j= 1 

Sneh matrices have as onc root , s, and the vector cor­
responding to this root is 

U n= (1,1, . 0 0, 1) (14a) 

I The redu ction formula of theorem 1 is applied in this 
section to matrices which can be partitioned into 
stochastic blocks, to give generalizations of Brauer 's 
results. 

If a matrix: A of order N can be partitioned in to 
I rectangular (n iX nj) blocks, in each of which the 

row-sums arc all C'q nal , i.e., 

A ij= (a h~j) ), 

wit h 

(h= 1,2, ... , II i , 1c = 1,2, ... ,71 j) 

n· 
"""'aCiiJ- s' L-1 Il k - ih 
k= 1 

(h= 1,2, . . . , n i ), 

A is a block-stochastic matrix. 

(15) 

~laLemeJl t 2 f?llows from (9) . ];"'01' example, the 
iollowmg malnx arose from a problem in molecular 
phYSlCS: 4 

a b b b c CC ddl 
b a b b c ddc c 
IT a b dcdcd 
bb ba ddcdc 

A = cc dd e jfff 
Cd cd 1 efjg 

lCd dc j fegf 
dc cel f fgef 
cl c el c f gf J e 

The lines are drawn in to show how A is subdivided 
in to stochastic blocks. Then by t heorem 3, the roots 
of A are those of t he 5 X 5 matrix, 

ra~b 0 c- el c- el d-'l a- b c-d d-c c-d 

C-l c-d 
c- d e- g 0 

g~f J c-d 0 f-g e-f 

0 c- d f-g g- f e-f 

THEOREM 2: If A is block-stochastic, (1 ) t roots of A and those of tbe 4 X 4 matrix, 
are roots of the matrix S = (Sij), and (2) the other N-t 
are roots oj the partitioned matrix oj order N - t, 

0 = (O, j), 

(h= 2, 3, .. . ,nil Ic= 2,3, ... ,nj). 
(16) 

Ij either n i 0 /' nj is t , the block Oij is omitted, so i 
and j do not necessariLy take on all values t , 2, . , t. 

PROOF : Since, by (14a) and (15) 

(17) 

I statement 1 follows ilmnediately, for by (17), if we 
set 1'= 1 in (6) the matrices B ij of theorem 1 arc 
simply the elem ents Sij given by (15). Then , if we 
subdivide A ij as in (7), A ( ~~ ) consists of all the 
elem ents of the block A i} except for those in the 
first ro"". and column, i .e., 

Agj)= (ahl/)) 

a nd 

A gj)= (aW )) 
'r i Since by (17), Lhe m atrices X i m (6) are the 
I vectors Un i , we have 

~ 

I 

Then , since Uni-1AgiJ is a matrix having J11 each 
row the clemen ts 

a+ b 2b c 2c+ 2d 

2b a+b d 2c+ 2d 
S = 

2c 2d e 4f 

c+ d c+ d f e+2f+ g 

It is easy to sec tha t 0 can ag$l,in be divided in to 
stochastic blocks where 711 = 2, n2= 1, 11,3= 2. So 
the five roots of 0 arc those of the 2 X 2 matrix, 

(
a-b 

01= 
c-d 

and the 3 X 3 matrL~ 

[ 

a-b 

O2= 2c- 2d 

c-d 

2C-2rZ\ 

e-g ) 

c-d 

e-g 

f-g 

: ]. 
e-2f+ g 

Thus e- 2j+ g is a root, and tbere arc t wo deo-en­
crate roots since the ma trix 01 corresponds to "'the 
quadratic matrix which remains when t he root 
e- 2j+ g is factOl'ed out of O2 , 

COROLLARY (THEOREM 2): I f A is a block-stochas­
tic matrix with nt X nj blocks ' A ij, and P = "L, ·P t , 

0 = "L,·Qi where P i and Qi are permutation matrices of 
, The a uthor is grateful to J . Bradley for supplying this example. 
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order n i, any matrix P AQ is also block-stochastic and 
has t roots in common with A. 

PROOF: Since the row-sums in a given block would 
be uncbanged by permuUJ tions within the block, this 
followf' immediately from statemeD t 1 of theorem 2. 

Brauer (see footnote 2) proved the following 
theorems for certain special stochastic matrices: 

1. Assume that 

(j = 2, 3, ... n; i < j ). 

Then A has the same roots as the diagonal matrix 

2. Assum e 

Then (b- c) is a root of multiplicity r. 
We generalize these resul ts in the following 

theorem for block-stochastic matrices: 
THEOREM 3: L et A be a block-stochastic matrix with 

submatrices A ij = (ah{) having constants Ck above the 
~iagonal in the last r columns of each block, 0< r< min n i, 
~.e., 

Then tr oj the roots of A are roots of the matrices 

Q - (a(;j) Cif) kk - kk - k (19) 

(T he second of Brauer's theorems comes as a special 
case of the above if we permute the rows and columns 
so that the columns jl, j2, ' .. , jT are the last r columns 
of the matrix. Also it isn't necessary that all the 
nondiagonal elements of a column be equal as in 
Brauer's hypothesis .) 

PROOF: By theorem 2, N -t roots of A are roots 
of 0= (Oij) . Here we have i, j = 1,2, ... , t, since by 
hypothesis , O< r < min n i, and thus min n ;> 1. 

i i 
But by (16) and (18), O ij is a partially triangular 

rna trix with elemen ts a (!t> - c(i1> on the diagonal of 
the triangular portion , i.e ., for k= n j - r+ l , ... , n j • 

Then, using case 3 of the lemma lLbove, we _can 
permute the rows and columns of A so that A is 
similar to the matrL--;: 

when Q= COhk) is a matrix of order tr having square 
blocks of order t, defined by (15), on the diagonal, 
and Qhk= 0 for k < h. 
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4 . Other Applications 

In this section we will mention several other types 
of partitioned matrices, A = (Aif), such that 

(20) 

where P is the direct sum of transformation matrices 
P i, and B =(B ii), 0 = (Oii), are partitioned matrices 
which will be defined in each case. W e also give 
a case where the transformation P AP-l produces 
a real matrix from a complex one. 

Since the proof in each case is the same and 
consists m erely in performing the indicated matrix 
multiplications, it will not b e given in detail . 

4 .1. Block-Circulant Matrices 

This is the case where each block A ii is a circulant 
matrL--;: of order n. The resul t (21) is given by 
Williamson.3 

The roots of A are roots of the n matrices of 
order t, 

h (ii) k 
( n ) (Aij) = fj a hk Eh (11,= 1,2, .. . , n) (21) 

where Eh is one of the nth roots of unity. 

4.2 . Block-Singular Matrices 

If A is singular, of rank n- l, there exists a vector 
X= (Xl, xz, ... , xn), with componcn ts not all zero, 
such that 

A.X= X·O. 

We may assume, without loss of generality, that 
Xl= 1. Then, as in theorem 1, if X = I + X 2, we ' 
can let 

(22) 

and, applying the transformation (16), we can show 
that the nonzero roots of A are roots of 

(i,j= 2, ... , n). 

If A has rank less than n - l , the same type of 
transformation can be applied to the matrix 0 and 
this can be continued until a nonsingular matrix is ~ 
obtained. Or, we may be able to partition A into \ 
blocks so that 

Then if we let P = "L,P i, where each P i has the 
form (22), and apply transformation (20), we show 

\ 



that the roots of A arc the 1'00Ls of 

and 

wh ere 

B =(B ij)=(O) of order t 

0= (Oij) 

Oij= (a';.ij) -xi,i) aWl) 

(11,= 2, ... ,ni ; 

4.3. Block Tridiagonal Matrices 
Let 

r: 1 O. . 0 

:1 a 1 . .0 

0 1 a. .0 0 

T (a) = 

l: 
I 

0 O . . a 

~J 0 o . . 1 

(23) 

It is well known5 tha t such m atrices have cbarac­
teris tic l'ooLs wh ie lt m ay b e wl'iLLen in th e form 

(1e= 1, 2, . .. , n) (24) 

and, if we let Ok= br/n + 1 iL is easy to show that t he 
characLeri sLic vector corresponding Lo Ak h as com­
ponen ts 

(25) 

since the trigonometr ic identi ties 

sin (m- l )Ok+ a sin mOk+ sill (m+l) Ok 

= (a+ 2 cos Ok) sin mOk (m = 2, . .. , n - l ), 

sin en- I ) Ok+a sin nOk= (a+ 2 cos Ok) sin nO; 

If, in addiLio11 , t he maLrix (a ij) is stochastic, with 
row s um s, by theorem 1, A has as n of its roots th e 
number s+ (l /n + 1)2t eos br (lc= ] , ... , n ) . The o ther 
n(t- l ) roots arc degenera te with multipli ci ty n, 
since the maLrices Oij in (5) b ecome, by (22) for any 
value of n, 

(i , j = 2, .. . t ). (27) 

4.4. Complex Matrices Similar to Real Matrices 

A = (A i}) where each block is n 2X 2 mnLrix defined 
as fo llows : 

(i= 1, ... , lc). 

(W e usc .J- l in Lead of to avo id confusion with 
Lhe subscrip L.) 

A ij= ( al J 
: i) 

b'j 'J 

(1",j = I ,2, . .. , Ie; i± j ) 

( aij bi j
) A ij= 

au bij 
(i = I ,2, ... , k; j = k+ l , .. . , t ) 

eiJ 
aii) A ij= 

bij bij 
(i= k+ l , ... , t; j = I , . . . , Ie) 

and A ij an arbiLrary r cal matrix (i,j = Ie+ I , .. . ,t) . 
'1'he11 , 

1-.,/_1] 
2 

] +,,1-1 
2 

(i= J,2, " " ", Ie), 

r hold for each Ok a s defined above. (i = le+ l , .. . , n). 

I So if A = (Aij) where th e blocks A ij arc all tri­
diagonal, 

these blocks can b e simulLaneously reduced to 1 

t . 1 f . t1 L ' f h t' t' P iA ijP j = A i1> Tlangu ar "orm u smg 1e rna nx 0 c arac "en s "l C 

vec Lors (25), sin ce th ese arc independent of th e 
elem enLs atj . Thus, according to a theorem by P iA ij= A Ij 
Williamson / the root of A arc those of the n 
matrices, Ll P i A 

I: ij j = Ii 

(a iJ+ 2 cos (7r/ n+ l », ... , 

(a ij+ 2 cos (n7r/n + l » . (26) 
5 D . E. Rutherford, Some continuant detcrm inanis aris ing in ph YSics and 

cbemistr y, 11, Proc. Hoy. Soc. E dinburgh 63 , Hl (1952). 
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Since 

(i= l , ... , Ie), 

(i,j= l , ... , Ie;), 

(i= l , . .. , Ie , j = le= l , ... , t ), 

(i= Ie + I , ... , t; j = I , ... lc), 

(28) 



has the same elements as A except in the 2 X 2 blocks 
on the diagonal for i = l , 2, . . . , k, and the elements 
in these blocks are real. (Matrices of this type also 
arose from an applied problem at the National 
Bureau of Standards. ) 

5 . Applications to Determinants and 
Systems of Equations 

The transformations given here for a partitioned 
matrix A = (A /i) can obviously be applied to finding 
the determinant of such a matrix since if 

(29) 

IAI=IAI=IBI·ICI· 
These transformations could also be profitably 

applied to the solution of a system of linear equations 
with coefficient matrix A; i.e., the system of equa­
tions 

.AX= K (30) 

is , by (29), the same as 

or 

where 

and 

(:3 1 ) 

Then if X = X 1+ X 2 and K=K1+K2 are partitioned 
to correspond with the dimensions of Band C, we 
can fu'st solve the system 

(32) 

and then the system 

(33) 

So, solving these two sys tems of linear equations 
and the comparatively simple system (3 1) (which 
can be partitioned as P is partitioned), we have the 
solu tion of (29). 

Such a transformation would be especially valuable 
in solving a large system on an electronic computer, 
where the length of t ime for solution goes up on 
the order of n3 • Thus, if we cut the dimensions in 
half by transformation (29), systems (32) and (33) 
would each take one-eighth as long to solve as the 
original system, and if we assumed only that P 
could be partitioned into two parts the total solution 
time would be at most one-half that of the original 
system. In many cases the time could be cut to 
approximately one-fourth or less. 

WASHINGTON, D .C. (Paper 63B2- 9) 
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