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Expansions of solut ions of t he differential equat ion 

a re sought for la rge values of IILI, which a re uniformly valid wi th respect Lo a rg IL and un 
restricted va lues of the complex variable t. Two types of expa nsion are found . Those of 
the first type are in terms of elementary func t ions and are valid outside t he neighborhoods 
of t he poi nts t= ± 1, t he t urning poin ts of t he differe nt ial equation . The second a re in 
terms of Airy functions and hold in unbounded regions co ntaining one of t he t urnin g poin ts. 

The special forms of t he expansions when t he va riab les are real a rc considered in detail , 
and asymp to tic ex pans ions for t he ze ros of solu t ions of t he different ia l equation a re found 
by reversion. N umerical examples are in cluded . 

Contents 

Page Page 
Part 1. In troduction __ ______________________ 131 8. Identifi cation of solut ions ____________ 151 

1. Int.roduction a nd ge neral summ ary ____ 131 
2. Relevant propert ies of para bolic cyli nder 

funct ions a nd the gamma funct ion ___ 132 
Part 2. Expansions in terms of elementary 

fun ctions _________________________ 135 
3. Asy mptot ic solutions of t he differential 

equation __________________________ 135 
4. Ident. ifi cation of so lu t ions _____________ 140 
5. Use of co nn ection formulas __ _________ HI 
6. Summary of expa ns ions in t.e rms of 

eleme ntar y fun ct ions ______________ 146 
Part 3. Expa ns ions in terms of Airy funct ions __ 14 

7. A s~' mptotic solution s of t he diifCl'e ntia l 
rquat ion __________________________ J 4· 

9. Use of co nnect ion formul as _________ _ 153 
10. Summary of expansions in t erm s of Airy 

fun etions ________________________ 155 
Part 4. Results for real var ia hles _ _ __ _ _ _ _ _ _ _ _ _ 156 

11. The equation w" = (h2+ a)w _________ 156 
12. The equat ion w" = (a - tx2)w _________ 15!) 
1:3. Numeri cal exa mp les ________________ 162 

Part 5. Zeros a ndassoeiat.ed val ues __________ 164 
14. Zeros of U(a, z) , U'(a,z), U(a, z), a nd 

U' (a, z) _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 164 
15. Zeros of lV(a,x) and 1V'(a,x) __________ 166 
16. N umerical exa mples ______________ __ ]68 

Refc rences ________________________________ 169 

Fart l. Introduction 

1. Introduction and G eneral Summary 

The purpose of thi s paper is to determine asymptotic expansions of soluLions of the differ
ential equation 

(1.1) 

for large values of the complex parameter fJ. which are uniformly valid \\riLh respect Lo arg fJ. 

and the complex variable t. 
The immediate reason for this investigation is that the solutions of eq (1.1) are basic 

funcLions in the theory of the asymptotic solution of the differential equation 

(1.2) 

for large values of IMI in a region in which p et) has two simple zeros, just as Airy functions ar e 

' Presen t address: National Physical L aboratory, Teddington, Middlesex, England. 
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basic functions in the theory of eq (1.2) in a region containing one simple zero of p (t). A 
knowledge of the uniform asymptotic behavior of the solutions of (1.1) is required in developing 
the asymptotic theory of (1.2). 

Equation (1.1) is of interest, however, in other connections, for example in the study of 
wave motion ins ide or outside parabolic cylinders, and wave propagation in an inhomogeneous 
atmosphere. H ermite polynomials of order n are expressible in terms of the solu tions of the 
equation when f.L2=2n+ 1. Accordingly, for the sake of completeness many results are derived 
in this paper which go beyond those needed for the immediate purpose stated in the preceding 
paragraph. 

The desired asymptotic expansions are obtained by application of the general theory of 
the asymptotic solution of linear differential equations of the second order as developed by the 
present writer in [9].1 From the standpoint of the general theory, eq (1.1) is characterized 
by having turning points at t= ± 1. Asymptotic expansions in terms of elementary functions 
can be found in any region bounded away from these points and expansions of this kind are 
obtained in part 2 by application of theorem A of [9]. 

In order to determine the behavior neal' the turning points, expansions in terms of Airy 
functions need to be used. In part 3 these expansions are obtained by application of theorem 
B of [9]; they are valid in unbounded t-regions which include one (but not both) of the turning 
points. All combinations of J.I. and t are covered. 

When the variables are real, eq (1.1) has important special solutions. Expansions of 
these solutions are derived in part 4 from the results of parts 2 and 3. Also included in part 4 
are numerical examples illustrating the powerful nature of the expansions. 

In part 5 uniform asymptotic expansions for the zeros and associated values are obtained 
by reversion and illustrated by numerical examples. Much of the analysis of this part and 
some in earlier parts is similar to that used in [8] in the theory of B essel functions of large 
order, and advantage is taken of this analogy whenever possible. 

Investigations of the asymptotic solutIOn of eq (1.1) for large If.L I have been made by 
several writers . Their work on expansions in terms of elementary functIOns is described in 
section 6 of part 2, and on expansions in terms of Airy functions in section 10 of part 3. At 
this stage it suffices to remar]':: that the expansions obtained in this paper include practically 
all of the earlier results and extend them in various ways. 

2. Relevant Properties of Parabolic Cylinder Functions and the Gamma Function 

A comprehensive account of thf\ properties of parabolic cylinder functlOns is given by 
M iller in the Introduction to [4] . For the purpose of reference we collect here the properties 
which will be required in this paper. We use Miller's notation rather than that of Whittaker 
[13] and adopt Miller's choice of solutions when the variables are real. 

The standa.rd form of differential equation for the parabolic cylinder functions is 

(2. 1) 

The principal solution U(a,z) is determined by the condition 

as Z-i>+ DO. (2.2) 

It is an integral (entire) function of z and an integral function of a. In terms of Whittaker's 
notation D n(z) for parabolic cylinder functions and W k.m(z) for the confluent hypergeometric 
function , we have 

(2 .3) 

1 Figures in brackets indicate the literature references at the end of this paper. 
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Other solutions of (2.1) are U(a,- z ), U(-a,iz) and U(- a,-iz) . The eonnecLion 
formulas arc 

U(a, ± z) = (2'7Tr t r G-a){ e-'1I'(ta+t)U( - a, ± i z )+e i1l'(ta+t)U( - a, =Fiz) }. (2.5) 

For fixed a and large Iz l 

(2.6) 

where 2 the 0 is uniform with respect to argo z. Here and elsewhere E denotes an arbitrary 
positive number which is independent of all other variables. From (2.4) and (2 .6 ), we obtain 

valid wh en -i7r+ E ~arg Z~t 7r- E. The same result with the sign of i changed holds when 
-t 7r + E ~arg Z~i 7r- E; the apparent discrepancy between the formulas in thei.r common 
region of validi ty is merely an example of the Stokes phenomenon. 

Let Lhe z-plane be divided into four sectors Mo, M I , Mz, a ll d M 3, defined by larg z l ~t 7r , 
h ~aI'g z ~i 7r , larg (- z) 1 ~t 7r and - i 7r ~arg z~- i 7r , respectively. Then eq (2.6 ) shows 
that for large Izl, U(a,z) is expo nentially small in Mo and expo nentially large in M I and M 3. 

EquaLion (2 .7 ) shows that U(a, z) is also exponentially large in M z, unless a has one of t he 
values - t, -j-, - %, ... , 111 which case it is exponentially small. In fact ill this event 

U( - n - t, -z)= (- )nu( - n - t, z ) (n= O, 1,2, ... ). (2.8) 

The solutions U(a, ± z) , U( -a, ± i z) clearly form a numerically satisfactory set in the 
complex plane, because in each sector M j one of the solutions is exponen tially small and at 
least two others exponentially large. Accordingly, we may expect that a knowledge of the 
asymptoLie behavior of U(a,z) for large la l in the sec tor larg zl ~t7r , or even the half-plane 
larg zl ~1'7r, will enabl e us to determine Lbe behavior of any solution of (2.1) over the whole 
z-plun e by usc of connection formulas. 

Solutions when the vaTiables al'e real. There are two forms of eq (2.1) of importance when 
the variables are real, namely 

(2.9) 

and 

(2 .10) 

in which a and x are real. Equation (2.10) is obtained from (2 .1 ) by etting z= xe-{ 1I'i and 
replacing a by ia. 

R eal solu tions of (2 .9) are U(a,x) and U(a,-x) but they do not form a satisfactory pair 
for all valu es of a; in particular they are linearly dependen t when a= -1', -j-, -%, . . . . 
The fundamental solu tions are taken to be U(a,x) and l1(a,x) , where 

V(a,x) = (l / 7r) rG+a )sin 7ra· U(a,x) + U(a, - x) }. (2 .11 ) 

2 Miller [4, p. 271. who is more concerned with asymptotic expansions fulfilling the ulliqueness conditions of Watson [Il l th an the Poincare 
co ndition , gives the range larg ,1<111'. The validity, in Poincares sCllse, for the wider range is established in [14, p. 347J. 
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For all values of a, U(a,x) and V (a,x) are linearly independen t. vVhen a is negative it is often 
convenien t to usc in place of V (a,x) its multiple fJ(a,x), given by 

U(a,x) = rG-a )V(a,x) = tan 7fa· U (a,x) + sec 7fa· U(a,-x) . 

When a+t is a positive in teger U(a, x) is infini te. 
·Wronskian r ela tions for these solutions ar e 

1f/ {U(a,x), V (a,x)} = (2j7r)t, 

The H ermi te polynomials 

1f/{U (a,x),U (a,x) } = (2j7r) t r G-a)' 
2 dn 2 

H n(x) = (- )neX axn e- X 

are related to the ilmction U(a,x) by 

H n(x) = 2tne"x2U ( -n-~,x"\/2). 

(2.1 2) 

(2.13) 

(2.14) 

(2.15) 

For eq (2.10) , the fundamen tal pair of real solutions is taken to be W (a,x) and l'V (a,- x), 
defined by 

(2. 16) 

(2. 17) 

where 

(2. 18) 

The value of arg r (~+ia) here is not the principal one but is determined by the conditions tha t 
it is a continuous fun ction of a and equals a In a- a+ O(a- 1) as a -i>+ co . 

The Wronskian relation is 
fI{ W (a,x) ,TV(a,- x) }=l. (2. 19) 

Gamma Junction expansions. We shall need the asymptotic expansion of the function 

r(~+z) and its reciprocal for large Izl. From Stirling 's series [5, chapter 9], we have 

In rG+z )=~ In 27r+z In z-z+Z (z), (2.20) 

where 
Z (z ", """-,,,,"", B 2S (-~ ) _1 _=_~ ~ _7_ l_~l 

) ~ 2s(2s- 1) Z2s- 1- 24 z + 2880 Z3 40320 Z5 + •• . 
(I arg z 1'::::; 7r- e) (2.21 ) 

uniformly with r espect to arg z, B2s denoting the Bernoulli polynomial of degree 2s. H en ce 

(2.22) 

where the constants are determined by the asymp totic identity 

00 'Y 
:z:::: -1 '" exp {Z (z)}, 
8= 0 Z 

(2.23) 

or equivalen tly , 

(2.24) 
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~ umerical calculation yields 

1'0 = 1, 
1003 

')'3= 414720' 

Since Z (z) i an odd function of z, it follows from (2.23) thai 

{:t ')'~ } {:t (_)8 ~} "'1, 
S~O z 8~ 0 Z 

identically, and hence that 

4027 
')'4=- :398 1. 120' 

1 '" eZz-: :t (_) 8 ')'~ 
r(t+z) (271')2 S~O z 

(l arg zl':::; 71' - e). 

Fart 2. Expansions in Terms of Elementary Functions 

3 . Asymptotic Solutions of the Differential Equation 

-------

(2.25) 

(2.26) 

(2.27) 

In ordcr to bring the differential eq (1.1) into the standard form rcquired for the applica
tion of theorem A of [9], we take new variables ~=W) and W (not the n -(a,x) of sec. 2), defined 
by 

(3. 1) 

(cf. [7] sec. 2). Equation (l.1) then becomes 

(3.2) 

where 

(3.3) 

For convenience we prescribe that ~= O when t= J. From the first of eqs (3.1 ) we then 
obtain 

(3.4) 

and on expansion 

(It l>1)· (3.5) 

T emporarily we suppose that the branches of the many-valued functions occurring in (3 .4) and 
(3.5) are positive when t> 1 and determined by continuity elsewhere. "fhe relation 

(3.6) 

follows immediately from (3.5) when Itl> l , and thence by analytic continuation throughou t 
the t-plane cut along the join of t= - 1 and t= + l. 

The mapping of the t-plane, cu t along the real axis from - co to + 1, i illustrated in figure 1. 
The center diagram corresponds to the upper half of the t-plane and the right-hand diagram 
to the lower half. They are of course conjugate to each other. Features of the mapping are 
that the upper ide of the real t-axis is mapped on three straight line BA (Im ~= O , R e ~2::0), 
AE (R e ~= O , 0 2:: Im ~2:: -~71') , ED (Im ~=-~71' , R e ~2::0), and that the positive imaginary 
t-axi i mapped on the straight line 00 (Im ~= -t71', Re~':::; 0) . 

Next, we make the ubstitutions (cf. [9], sec. 1) 

O= arg f.l , (3.7) 
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FIGURE 1. Mapping of the function Ht). 

(the x here is not to be confused with the real variable of sec. 2 ). Then (3 .2) becomes 

which has the form of eq (2.1) of [9]. The relationship between land t is given by 

x= x(t) = e2iOHt ) = e2ioi t W-l)!clt; (3 .9) 

the x-map of the t-plane is obtained from the ~-map by rotation through an angle 20. The 
function ff is expressed in terms of t by (3.3). For large Ix l we deduce from (3.3) and (3.5 ) that 

(3.10) 

umformly with respect to bounded arg x and bounded o. 
In consequence of the last result we could, if we wished , take the x-domain D (O) of [9], 

section 2 to be the map of the t-plane cut along the real axis from - co to + 1 with the circles 
It± l l<o' removed, 0' being a fixed small positive number. The preliminary conditlOn (2.2) 
of [9] would then be satisfied with 0- = 1. Greater regions of validity in the desired expansions 
will r esult however, if we arrange that the boundaries of D (O) are parallel to the positive imag
inary x-axis where possible. Accordingly, we shall now investigate what we shall call the 
pTincipal CUTves in the t-plane, namely the t-maps of the straight lines in the ~-plane passing 
tw:ough A (~= O ) and E (~= =t= ii7l") and inclined at an angle - 20 to the imaginary ~-axis . 
In other words, the principal curves are the level CUl'ves of the function ex(t) which pass through 
t= ± 1. 

Near t= 1 we find from (3.9) that 

Hence three principal CUl'ves emanate from t= 1, and have as tangents the rays 

1 4 
aro·(t - l )= ±-7I" - - 0 

b 3 3 ' 
4 

71" - - 0 3 . 

Equation (3.6) shows that three principal CUl'ves also emanate from t= - 1. 
For large It I we have from (3.5) 

136 

(3.11) 

(3.12) 



H ence the six principal ClU'ves are asymptotic to t he fOlli' rays arg t= ±t n- O, ±t7r- O. 
Figure 2 illustrates the prin ci-pal ClU'ves when 0 ~ O< 7r. Those through A are the continuou 

ClU'ves AP, AQ, AS when 0< 0< ! 7r, and AP, AQ, AR when ! 7r< 0< 7r. When 0= 0, AQ 
degenerates into the curve EQ plus the join AE, and when 0={-7r, AS, AR degenerate in to 
AE + ES, AE + ER, respectively. The principal curves through E are the images in the origin 
of those through A; this can be verified by using the conLinuaLion formula (3.6) . 

We can now define the branch of the many-valued function W) which will be the most 
convenient for our purposes. 'When 0 ~ 0< 7r we cut the t-plane along Lhe principal curves 
AQ and ER and select the branch of Ht) which is con tinuous in Lhe cu t plane and for which 

H O- Oi )= ~i7r (0= 0). (3.13) 

Q 
p 

p 

( 0 )8=0 

R 

R R 
., I 

Q 

B 

s 

s p 

FIGUR E 2. t-plane: princi pal curves and domains S (0). 
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When - 7r< e.::;o the cuts are taken to be the conjugates of those for -e, and the branch is 
fixed by 

(3.14) 

It is evident from (3.6) that (3.13) and (3.14) are consistent when e=o. Henceforth we under
stand ~ and W) to denote this branch. For a given value of e (- 7r< e< 7r), W) is a single
valued function of t defined everywhere in the t-plane except when e=o and t lies in the shaded 
region to the left of ER + EQ in figure 2(a). When t> l, ~(t) is positive provided that lel<t 7r ; 
this result is false if t 7r< lei < 7r for the cut AQ passes across the real axis as e passes through t 7r. 

Let x=x(t) now denote the branch e2i 8W). We then take the x-domain D (e) of [9], 
section 2 to be the map of the function x(t) from which circles surrounding the points A and E 
and ofradius t 0 have been removed, 0 being a fixed small positive number. 

The map of x(t) h as two sheets when e=o and three sheets when o<lel<7r. It is illustrated 
in figure 3 for e=o and O<o<t 7r. The passage from one sheet to another takes place across 
the positive real axis and, when O<O<t7r, the join AE. The heavy lines correspond to the 
cuts in the t-plane and are boundaries of D (e). 

p 

A .' • 1 ___ _ _ 

E: -i 7T/2 

, 
8 

o 
8=0 (i) 

A 

, 
. , 

p 

o 

0<8< -'--7T(i) 
2 

R 

R 2 : 

E : 

: . 

s 

o<e< +7T(ii) 

FIGURE 3. x-plane: domains D (O) and G (O). 
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The map of x(t) is clearly a single unbounded domain. In order to ensure that D (O) i a 
single domain we have to impose the restriction 101.:::; ?r - e, omit sheet (iii) when Itl l< e and make 
8= 0(e) small enough. Otherwise, for example, the circle cen ter E radiu s to would in tersect 
the boundary AQ. 

Next, we defin e the x-domain G(O) required by [9], sec Lion 2 Lo be Lhat part of the map of 
x(t) which r emains after removing all poinLs at a distance less than 8 from its boundarie . 
Sheet (iii) is again to be omitted when 101< e. The boundaries of G(O) ar c Lhe do tted lines and 
circular arcs of figure 3; their t-maps are the do tted curves of fig ure 2. Clearly when 101':::; ?r - e, 
G (O) is a single domain if o= o(e) is small enough. We readily show that conditions (i) and 
(ii) of [9], section 2 are fulfilled (cf. [9], sec. 3 (i». 

Following [9], section 2 further , we take a2(0) to be the point at infinity on the posi tive 
real axis. We then find tha t H2 (0) = G (0) . From theorem A i t now follows th a t there exis ts a 
solution W2 of eq (3.S) such that for large positive values of u 

W2"' e- ux ~ (_)8 ~01: (~,x) 
8= 0 u 

(xe G(O), 101':::; ?r- e), (3.1 5) 

uniformly wiLh respect to x and O. Th e coeffi cients arc given by the reCUlTCJ1 C'e rclaLion 

-"'* (0 ) - 1 d -4*(0 o)+ lj' -410 ore -2iO) --"'*( )d 
,9/ ,+1 ,X - - '2dx "ws , x '2 e of e .c ..l<1l s O, X X, 

the path of integration ly ing in D (O). 
If we now r estor e the variables J1- and ~ by mcans of eqs (3.7) , fwd lct 

.#.w = (- )8e2SiO .s#:(0, x), 

the relations (3.15) and (3 .]6) become 

as 1J1- 1-'7 co, where 

(3.16) 

(3.1 7) 

(3.1S) 

(3.19) 

H ere S(arg J1-) = S (O) denotes Lhe i-map of G (O) ; its boundarics arc Lhe do ttcd curvcs of figure 2. 
It is of some interest to detenuine the asymptotic behavior of the boundarics of S (O). 

Consider, for example, the do tted curve AQl' ILs equation may be writ ten 

(3.20) 

where the real parameter y ranges from 0 to + co. R eversion of (3.5) yields 

(3.2 1) 

When y is large, we luay substitute (3.20) in (3.21) and thence obtain 

. _ 3 O+cos 20 In Sy+cos 20+ (20 - tn-) sin 20- 48+ 0 {(ln y)2} arg t - - rr - ---- -- . 
4 S Y Sy Y 

(3.22) 

The corresponding equation of the principal cmve AQ is of com se obtained on setting 0= 0 
in this result. Clearly the principal curve AQ and the dotted curve AQI ultimately always lie 
on the same side of their common asymptote, except when O= t rr, in which event AQ is i ts own 
asymptote. 
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4 . Identification of Solutions 

The substitutions 

(4.1) 

transform eq (2.1) into (1.1) . This result and the second of eqs (3.1) show that 

W (t2-1)iU ( -~ p,2,p,t-J2) (4.2) 

is a solution of (3.2). Equation (2.2) shows that when p, is fixed and t-7ooe- iarg ~ this solution 
becomes exponentially small. The same is true of the solution liV2 introduced in section 3, 
provided that 1p,1 is sufficiently large and larg p,1 :S7r - E; this can be seen from (3.18) and (3.5). 
Since all solutions which are linearly independent of (4 .2) are exponentially large in the same 
circumstances, we see immediately that the solution (4.2) is a multiple of W2 • 

Hence we have 

(4.3) 

1 
as 1p, I-7oo, uniformly with respect to t and arg p,. The branch of (t2- 1)4 here and elsewhere is 
understood to be continuous in S(arg p,) and to be asymptotic to the principal value of "It as 

1 
t -7 00 e-iargl'. Similarly for the branch of (t2- 1)2 used later. The function g(p,) is independent of t. 
Its asymptotic expansion for large ip, 1 can be found from the limiting form of the ratio of the 
two sides of the relation (4.3) as t -7 00 e- i arg~. Thus with the aid of (2.2) and (3 .5) we find that 

(4.4) 

as 1,u1-7 00 , uniformly with respect to arg,u. Here 

gs= lim dsW as ~-7roe-2iarg ". (4.5) 

That this limit exists and is independent of arg ,u can be seen from the lemma of [9], section 5. 
The gs are not determined however until the arbitrary constants in the recurrence relation 
(3. 19) have been fixed , and we now consider how to do this in the most advantageous manner. 

From (3. 19) , (3.3) and the first of (3. 1), we obtain 

(4.6) 

Taking .#0= 1, we find 

(4.7) 

A convenien t value for this constant is zero, then ..Wt has the form of a polynomial in t divided 
s 

by (t2_l)'~. 
The eq (4.7) suggests the substitution 

38 
~=us(t) / (t2- 1)2 

in (4.6). This leads to the recurrence relation 

where 

Srs(t) = (3 t2 + 2)us(t) - 12 (8+ l )trs- l (t) + 4(t2 - 1)r;_1 (t). 
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vVe can satisfy this relation by taking u s(t) to be a polynomial in t of degree 38 which is an odd 
01' even function of t according as 8 is odd or even. All the coefficien ts ar e determined au to
matically if 8 is odd, but there is a degrce of freedom jf 8 is even, sincc the left of eq (4.9) 
van ishes when Us is a multiple of ( t2_ 1) ~8. ,iVe remove Lhis by making the coeffici n L of Lhe 
highest power of t vanish. 

Thus we prescribe that u s(t) is a polynomial in t of degree 38 (s odd), 38-2 ( even, 8~ 2). 
vVith uo(t)= l this condition determines the coeffi cients completely. Numeri cal calculaLion 
based on (4.9) and (4.10) yields 

H ence 

uo(t)= l , Ul(t )= (t3- 6t )/24 , U2(t )=(-9t4+249t2+ 145) /1152, } 

u3(t )=(-4042t9+ 18189t7- 28287t5- 1 51995t3- 2 59290t )/4 14720. 

(8= 1, 2, .. . ), go= l , 
2021 

g3= - 2 07360' 

(4.11) 

(4.12) 

An independent method of calculating the asymptotic expansion of g(}l) for large }l will be 
given in section 5. 

Expansion jar the derivative . Theorem A of [9] shows that the asymptotic series (4.3) 
may be differentiated term by term wi th respect to t . With the aid of the first of eqs (3. 1) 
we dedu ce that 

(t ~ S(arg }l) , Jarg}lJ ~ 7T- ~ ) (4.13) 

as Jf.L J-l> <Xl, uniformly with respect to t and arg f.L . H ere, in the notation of :Miller , 

U' (a,z) == oU(a, z)/oz. 
The coefficien ts arc given by 

88.W =vs( t)/(t2- 1 )~S, (4.14) 
where 

1 
v8 (t ) = u s(t ) +2 tUS- 1 (t ) - rS- 2 (t ) . (4.15) 

The first four vs(t) arc 

vo( t )= l , Vl( t )=(t3+ 6t )/24 , v2( t )=(15t4-327t2- 143)/1152, } 

v3(t )=(-4042t9+ 18189f- 36387t5+ 2 38425t3 + 2 59290t )/4 14720. 
(4.16) 

5 . Use of Connection Formulas 

In this section we seek expansions which hold in the complement of the domain S(arg }l), 
Since U(a, z) is an integral function of a it will clearly suffice to obtain a set of expansions which , 
together with (4.3), cover the whole t-plane (except of course the neighborhoods of the poin ts 
t= ± 1) when iarg }l i ~ t 7T. 

For convenience we introduce the notation Uj == Uj (8) (j = O, 1, 2, 3, 4) for the closed 
domains into which the t-plane is divided by the principal curves defined in section 3. Figure 4 
show's the enumeration of these regions when 0 ~ 8< 7T. When - 7T< 8 ~ 0 we define 

Uj (8) = W( - 8) (j= 0,2,4), (5 .1 ) 

where the star denotes the conjugate region . Then the boundaries of each region U j(e) vary 
continuously with 8 in the interval (- 7r,7T) . 
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The followill g r elations, sugges ted by fi gure 4, are easily v erified : 

V2 

\ 
I , 
\ 
\ , , , , , 

Uo(8+~7r) = U3(8), UI ( 8+ ~7r) = Uo(8), U2( 8+~7r) = UI (8), 1 
r 
J 

UO(8+ 7r)= U2(8), UI (8+ 7r)= U3(8), U2 (8+ 7r)= Uo(8), l 

, .. 
:. A , , 
I , 
I , , 
• , 
• , 

\ 
\ 

U3 (8+ 7r)= UI (8), U4 (8+ 7r)= U4(8) . J 

.. --
FI GUR E 5. l- plane 

a 

U, 

(5.2) 

(5 .3) 

The r egion formed by adding to Ui (8) points whose x-maps (cL fig . 3) are at a distance 
less than 0 from th e x-map of the boundary of Ui(8) we shall denote by Vj (8) or Vi' Figure 5 
illustrates for example Vo(8), V2 (8), and C {VO(8) UV2 (8) }, the complement of the union of Vo(8) 
and V2(8), when O< 8< ! 7r. The boundaries ar e of the same character as the do t ted curves 
of figure 2. 

The firs t connection formula we use is 

u( -~ /1- 2, /1-t -v2 )= (27r) -tr (~+~ /1-2) { ei"(-{1'2H) U G /1-2,-i/1-t -V2 )+ei 'd{1'2_t ) u G /1-2, i /1-t -v2 ) } , 

(5.4) 
ob tained from (2.5). R eplacing /1- by =f i /1- in (4.3), we have 

(5.5) 

142 



3 1) - - 7r + e<e< - 7r- e 2 - -2 ' (5.6) 

and from (4.4) and (4 .12), 

{ 
-! 7r+ e <e< ~ 7r- e} 2 --2 

(5.7) 

-~ 7r+ e <e< ! 7r - e 2 --2 

When lei:::; t 7r - e, we can substitu te (5.5) and (5 .6) in (5.4) . Care is required, however, because 

at any given point in the i-plane the branches of ~= Hi) and (t2 _ 1) t may not be th e same in 
the two formulas. 

'When 0:::; e:::; t 7r - e, 8(e- t 7r) is the complement of the region enclosed by "dotted curves" 
surrounding the principal curves AS and ER of figures 2(a) and 2(b); 8(e+ t7r) is the comple
ment of the r egion enclosed by dotted curves surrounding AP and EQ. To the right of 

AP + AS, i.e. , in Uo(e), the branches of W) and (t2-1) t are the same in (5.5) and (5. 6) . Sub
stitution of these formulas in (5.4) leads to a nugatory r esult, however, as we would expect, 
since (3!'2t is exponent ially large here whereas U( - tJ,/,2, J.1-t..j2) is exponentially small . 

In the central r egion between AP + AS and EQ + ER, i.e ., in O(UOUU2) , the two branches 
of W) have opposite signs. Let 

~= -i7J in (5 .5), ~=i7J in (5.6). (5 .8) 

Then 7J is real and positive when - 1 < t< 1; from (3.4) we find 

(5 .9) 

The appropriate branches of (t2 - 1) t and J61. W in (5 .5) are given by 

(5.10) 

(d. (4.8» , in which (1- t2)t and ( 1 - t2) ~8 have their principal values when - l < t< 1. For 
(5 .6) we change the sign of i. 

Carrying out the substitution, we obtain 

on substituting for r(t + tJ.1-2) by mlans of (2.22) . 

(l ei :::;t7r- e), 

(5.12) 

The expansion (5 .11 ) is one of the required formulas . Before leaving it we shall show that 
g(J.1-) = g(J.1- ) , and in the process obtain a new derivation of the coefficients in the asymptotic 
expansion (4.4) for l /g(J.1-). 

When e:::;e:::;t7r- e the prin cipal eurve AQ is included in the region of validity of (5.11); 
this is easily proved by considering the x-map. On this curve J.1-27J is positive. Let us set 

(5.13) 
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• 

where m is a positive integer. Then (5.11 ) reduces to 

(5.14) 

where tm is the value of t correspondmg to 7J = 7J m-
N ow keep J.i. fixed and let m ----7C1J. Then tm ----7C1J ei(i1l"-0l, and so from (2.7) 

(5.15) 

From (3.5) and the first of (5.8) 

~ t;"-~ In 2tm=-i7Jm+~+O( l tml-2). (5.16) 

Hence 

and substituting these results in (5.15) , we obtain 

(5.17) 

as the limiting form of the left-hand side of (5. 14). 
On the right of (5.14) we have 

(cf. (5.10), (4.5) and (4 .12» . Comparing the two sides we see that 

(5.18) 

where we use the symbol ~ to mean that the two sides of this relation have the same asymp
totic expansion for large 1J.i. 1. 

We now substitute (2.27) , with z=-t J.i. 2, in (5.18 ) and obtain 

(5.19) 

Although this r esult has been proved on the assumption that e::::; e::::;-! 7l' - e, comparison with 
(5.12) shows immediately that it holds in the range lei ::::;t 7l' - e, and that 

1+1~ "'18 {~'Y8 }{ ~g2S+1 } -1 
'5 2- L....J (1. 2) 8 '" L....J (1. 2)8 1- L....J 48+2 ' 
~ 8~ O 2J.i. 8~O 2J.i. 8~ O J.i. 

(5.20) 

Identically. Thence using (2.26) and changing the sign of J.i.2, we find 

{ '" g28+1} { 1 1 '" "'18 } 1+~ 48+2 2-+2-~ ( 1. 2)8 ",1. 
8~ O f.L 8 ~O 2J.i. 

(5.21) 

Multiplying this identity wIth (5.19), and comparing the result with (4.4) (remembering that 
g28= 0 if 8~ 1 ), we see that we can take 

(5.22) 
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in the expansion (5. 11 ), as stated earlier. 
We can express the coefficients g2s+1 in terms of "fs, by equating coefficients in (5.21): thus 

on using (2.25). These values agree with those given in (4 .12). 
The expansion (5. 11 ) is the first of oW" expansions for U(-t p,2, J1.t-/2 ) in regions comple

mentary to S (II) . The corresponding expansion for the derivative is 

U' ( 12 12) ~2 ()(1 2)1, [ . (2 1)';' (-)'V?s(t) 
-'ilJ. , !J.t-y "'p,-y:!,g J1, - t 4 sm J1, '1/-471" ~ (1_ t2)3Sp,4S 

valid under the same conditIOns as (5 .11 ); the coefficients vs(t) are given oy (4. 15) and (4. 16). 
A fmther expansion can be found by substituting (5.5) and (5 .6) in (5.4) when t lies in the 

regIOn (U2 ) to the left of EQ + ER. We shall no t carry out this substitution however, because 
the expansion so obtained is contained in a more general result (5.28), which W E:' hall no,,; derive. 
As a preliminary we record the following relations in wInch the symbol ~ has the same meaning 
as in (5.18). 

(5.24) 

(5.25) 

' Ve use the connection formula 

U ( 1 2 12)- .,,(_1,1'2+') U ( 1 2 12) (271")1e- i"dI'2+t) u(l 2 • I?) ( 26) -2 J1, ,-p,t y -e 2 2 -2 p, , J1,tv + r (t-t!J.2) 2 J1, ,-~J1.tv ~ ' 5. 

obtained from (2.4). We may substitute the expansions (4.3) and (5.5) wh en 

- h + € ~ 1I ~ 7I"- € . 

The branches of Ht) are the samc in bo th cxpansions when 

(5.27) 

Using (5 .25) we obtain immediately 

U ( 1 2 / ) g(p,) [ ( . 1 2' 1 2) - 2, ~ s:fsW - -2P,, - J1,h2 ", ' 1, Sln -271"J1, + ~coS? 7I"p, e I' L.J ~ 
(tZ- 1) 4 ~ 8=0 P, 

+? 1 2 1'21; ~ ( ) ' <#SW ] ~ cos? 7I"J1, ·e L.J - - 2-, -
~ 8=0 J1, 

(5.28) 
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and 

(5.29) 

The last r esul t m ay be expressed in a form more pertinent to the range 11:I 1':::;! 7r by r eplacing 
p. by }.Lei1r and using (5.24). This gives 

u (_l p.2, }.Lt.,J2) ,....., g(p.) 1. [ e - 1'21; :t d.2~~) -il!; :t (_) S d;PJI 
2 (f- 1) < 8= 0 J.!. 8= 0 P- ~ 

(5.30) 

t £ C(Vu U VI) (-~ 7r':::;0 ':::; - ~). J 
T lu 'ee further formulas, (5. 28*), (5.29 *) , and (5.30*), can be derived immed iately from 

(5 .28) , (5.29), and (5.30) , respectively, merely by changing the sign of i. They are valid with 
the conditions 

t £ C(VIUV2UV4) (-~ 7r+ ~ ':::; 0 ':::; 0} 
} fo, (5.28'), 

t ~ C(V1UV2) (0 ':::; 1:1 ':::; ~ 7r - _) 

t ~ C(V1UV2) ( -7r+~ ':::; 0 ':::;-~7r} }fO' (5.29' ), 
t ~ C(V1UV2UV4) ( -~7r ':::; 0 ':::;- ~} 

t ~ C(VOUV3) (~ ':::; 0 ':::; ~7r} for (5.30*) . 

6 . Summary of Expansions in Terms of Elementary Functions 

The principal expansion of th~s kind is (4.3). It is valid for large IJ.!. I uniformly with r espect 
to arg w"= O and t when - 7r+ ~ ':::; 0':::; 7r- ~ and t lies in the unbounded domain S (O) , th e bound
aries of which are th e dotted curves illustrated in figure 2. The function Ht) is given by (3 .4), 
that branch b eing chosen which is continuous in S (O) and takes the value (3. 13) or (3 .14) at 
the origin . The branch of (t2_ l) t in (4 .3) is continuous in S (O) and is asymp totic t o the prin
cipal v al ue of "It as t -'i> 00 e- i6 Bo th W) and (t2_ l)t are posi tive when t> l and 10/<-17r . The 
coefficients ..w.W are given by (4 .8) and (4 .11), the branch of (t2_ 1)ts being defined similarly. 
The function g( J.!. ) is calculable from eith er of the asympto tic expansions 

_ 1 ,,2 _ 1 _ 1 ,,2 1,,2_1 { 1 '" 'V } g( ) ,....., 2 .~ 4: .~ ,.~ ,. 1+- " _ 'S_ 
• P. e J.!. 2 L.J (.1 2) 8 ' 

8= 1 2 P-

both of whi ch are uniformly valid with respec t to arg J.!. in the in terval (- 7r + £, 7r- ~) . 
gI , ga ar e given by (4. 12); 1'1, 1'2, 1'3, 1'4 by (2.25). 
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Eo pansions valid in regions complcmenLal'Y Lo S (O) are (5. 11 ), (5.28), (5 .29 ), (5.30), 
(5 .2 *), (5.29*), and (5 .30*) . When o::::;e ::::;~ 7r the expansions (5.28) and (5.29) between them 
cover the principal cmve ER of figm'e 2; expan Lons (5.28*) and (5.3 0*) cover the principal 
e m've AQ, except when 0::::;0 ::::; e and Re t?:. - ] - 0'. The region of validi ty of (5. ll ) however 
includes tha t part of AQ to the right of R e t ?:. - 1+ 0' when O::::;O::::; e. H ence the expansion 
we have obtained cover the whole t-plane (except of com'se the neighborhoods of the poin Ls 
t= ± 1) when 0::::; 0::::; ~ 7r , and similarly also when -~7r::::; 0::::; O. 

The branches of t he functions ~, (t2- 1) ~ and .9IsW in (5.28), (5.29), (5.30), and t ile con
jugate results are the same as in (4.3), and the function g(!J.. ) again has the asymptotic expan ions 
(6.1) and (6.2). 

In (5 .ll) g(!J.. ) is identical with g(!J..) , and 'r/ = 'r/ (t ) is given by (5.9). The branch of the latter 
function is continuous in the region of validity of (5. ll ) and positive when - 1< t< 1; the same 
is true of t he branches of (1- t2) t and ( 1 - t2 ) ~ . 

The expansions for Lhe derivative U' (_ ~ !J..2, !J..f.,,/2) corresponding to (4 .3 ) and (5 .ll ) are 
(4.13 ) and (5.23 ) respectively, the coeffi cients /!2J sW and vs(t) being given by (4. 14) to (4 .16). 
The derivative expansions corres ponding to (5 .28 ) to (5.30 *) have not been r ecorded , but they 
can be deduced immediately by use of the formal iden tities 

(6.:1) 

and are valid under the same conditions as the parent formulas. 
Uniform asymptoLic expansions of solu tions of eq (1.1 ) for large I!J.. I and unbounded 

have previously been given by Watson [12], Schwid [10], and Darwin [1] . 
Watson applies the method of steepest descen ts to integral represenLaLions of 

and ohtains a set of asymptoti c expa nsions for the fun ctio n D n(2t-.,In) wh en Inl is large and 
larg nl ::::;~ 7r - e, which cover Lhe whole s-plane other than the neighborhoods of t he points 
s= ± 1. For each expansion t he s-region of validiLy IS fixed, unlike the r egions obtained 
in the present paper which are permi tted to depend on arg n. For example, the region of 
validi ty of Watson's expansion analogous to om principal expansioJl (4.3 ) is 

This is, as we would expect, the region common to S (arg !J..) as arg!J.. varies over Lhe interval 
(-h+ e, h - e). 

Schwid applies the methods of Langer for the asymptotic solution of differential equations 
and his resul ts resemble those we have obtained. The main differences are that Schwicl confines 
atten bon to the regions R e t ?:. 0 and larg !J.. I< t 7r, gives only the leading ter'ms in each expansion 
and identifies the asymptotic solutions by considering their behavior at t = O rather than t=oo . 

Schwid's results apply to the even and odd solutions of the differential equation. An 
effect of carrying ou t th e identification at t= 0 is that the errol' term in t he asymptotic repre
sentation of each of these solutions is obtained essentially in the form 

(6.4) 

in the present notation . If we try to deduce from these results the asympLotic form of the 
function U (_ ~.u2, /.tt..,f2) by means of connection formulas, the error Lerm will necessarily also 
be of the form (6.4 ). Accordingly, a nugatory result will be obtained in the region (Uo(arg !J.. )) 
in which U (_~ !J..2, !J..t ..,f2) is exponentially small for large I,u l. Indeed, the proof given on page 
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358 of Schwid's paper of the fact that the error term in the asymptotic expression for the H er
mi te polynomials is of the form e-1'2~0 ( 1 /L 1 -2) instead of (6.4) is false. The mis take is apparently 
due to overlooking the fact tha t the a 's are functions of the independent variable as well as of 
the parameter /L . 

Darwin develops series solutions of the eq (2.10), and in [4] Miller applies the same methods 
to eq (2 .1). The resul ts are typified by the sen es 

U(a,z) ={ r (!-~)}! exp { - O-! lnX + ::t (_)' d3;, } 

(2'7T)< 2 8= 1 X 
(6.5) 

for negative a and real positive z, in which 

1 J Z 0= 2- Xdz , 
2" (- a) 

and d3s is a polynomial in z of degree 38 if 8 is odd, or 8 if 8 is even. E2I.',Plicit expressions for 
d3, d6, • • • , d24 are given on page 68 of [4]. 

The series (6.5) is derived by purely formal methods from the differential equation with
out any investigation of its asymptotic nature. Applying the substi tutions a=-! ,u2 and 
z= /Lt , i2 we find that X = /L (t2- 1)!.y'2 and 0= /L2 ~ ( t ) , in the notation of sections 3 and 4. Next, 
replacing {r (!-a)} !,= {r (! + ! /L2)} ! by its asymptotic expansion for large posi tive /L (d . 
(2.22)) and expanding exp {2:: (- )'dssX -3'} in descending powers of X S, we find that the series 
(6.5) reduces to the form (4.3) . Hence (6.5) must be a uniform asymptotic expansion for 
large la l of the same character as (4.3). 

Darwin remarks that the explicit e2l.'}lressions for the coefficients dss are simpler in form 
and easier to calculate than the expressions for the coefficients in series of the form (4.3). 
T his is indeed true, but we cannot however regard the form (6.5) as being entirely superior 
to (4.3); it does not, for example, lead to convenient forms of expansion when we differentiate 
with respect to z. 

Part 3 . Expansions in Terms of Airy Functions 

7 . Asymptotic Solutions of the Differential Equation 

In this section we seek to apply theorem B of [9] to the differential eq (1.1) . The prelimi
nary step is to take new variables r= ret ) and W, defined by 

(d. [7], sec. 2). Equation (1.1) thon becomes 

d2W 
dr2 = { /L4r+ FW }W, 

where 

on reduction (cf. (3.3)) . 
The first of eqs (7.1) may be in tegrated to give 

5 (3 t2+2) ~ 
16r2 4 (t2 - 1)3 5 

2 3 ( ' 1 1 1 1 1 3' t'"= Jl (t2- 1)2dt= 2 t W - 1)2-2 1n { t+(t2- 1)2}, 

on specifying that r=O when t= l. In terms of the variable ~ of section 3, 
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An essential difference between the functions Ht) and f(t) is that the former has a braneJl 
poin t at t= l , whereas the la t ter is analytic a t this point. Bo th functions have branch points 
a t t=- 1. The branch of f(t) which will be the most convenient for our purposes depends on 
O= arg JL . We define i t to be positive when t > l and continuous in the t-plane cu t along the 
principal curve ER of figure 2 when 0< 0< 71' , along the curve conjugate to ER \vhen-?r< O< O, 
or along EQ and ER when 0= 0. This determines f( t) uniqu ely everywhere excep t in the 
region (U2 (0)) to the left of EQ+ ER when 0= 0. 

Following [9], sec tion 1, we make the fur ther subs titutions 

O=arg JL , (7.6) 

Equation (7.2) then becomes 

(7.7) 

The mapping of the t-plane on the z-plane is convenien tly carried out by using xCt) (defined 
in see. 3) as an intermedia te variable; in terms of z 

(7. ) 

In om first applica tion of theorem B to eq (7.7) we make a cu t in the z-plane along the 
part of the level curve of the function exp (~z~) which joins the point E of affix - (t?r) t e1· iO and 
corresponding to t= - l , to the point at infini ty on the negative real z-axis. Such a join can 
be made when 101:Sh (d. [7], fig. 2 ). 

FIGURE 6. z-plane: domatns 

D (II) and G (II) ( 1111 ~ ~7r -'} 

Figm e 6 illustra tes the mapping, the lettering corresponding to figUl'es 2 and 3. T he cut 
is the heavy em ve EQ. The principal curves through A are mapped on t he rays arg z= ± i?r 
and 71' ; the principal cm ves through E are mapped on the two sides of the cu t EQ and the 
r emaining part of the level curve of exp (jz-t) passing tln'ough E . Cut in t his way, t he z-plane 
is mapped on the complemen t of the domain U2 (0) (see fig. 4) in the t-plane. 

When 101 :St ?r- ~, we take the z-domain D (O) of [9], section 9, to be the cut plane with the 
cireJe center E and radius to removed, 0 being the fixed small positive number introdu ced in 
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section 3. Then F(e- 4i8z) is regular in D(O) (including z= O) , and the condition (9.2) of [9] 
is satisfied with CJ =! because 

(7.9) 

as Izl---o>oo, uniformly with respect to bounded arg z and bounded 0; this result follows from (7.3) , 
(7.5), and (3.5). 

We take the z-domain G(O) required by [9], section 9, to be the complement of the map of 
the t-domain V2 (0), defined in section 5. '1'he boundaries of G(O) are the dotted curves sur
rounding the cut EQ in figure 6. All the preliminary conditions of [9], section 9, are then 
satisfied if o =' o(~) is taken to be small enough. 

Taking the point al (0) of [9], section 9 to be at infinity on the positive real axis, we find 
HI(O)=G(O). Hence from theorem B, a solution WI of (7.7) exists, such that for large positive 
values of u 

W ",A·( i )~As(O,z)+AiI(u~z) -.0 E s(O, z) 
I 1 u Z .::.....; 28 t'::""'; 28 

8= 0 U U 8=0 U 

uniformly with respect to z and 0, the coefficients A . (O, z) and E s(O, z) being given by recurrence 
relations derived from eqs (9.12) and (9.13) of [9]. When the variables M and t are restored, 
this result becomes 

(7.10) 

as IMI---o>oo, when 

(7.11) 

where Ao(.I) = constant and 

(7.12) 

the paths of integration lying in the map of CU2(0 ). 
A second application of theorem B can be made to the differential eq (7.7) by taking the 

cut in the z-plane for the function F(e-1i8z ) to be the part of the level curve of exp (j z-fr) joining 
E to S, the point at infinity on arg z=- i1l". This join is possible if 0::::;0::::;11"; the corresponding 
t-domain is then CU3 (0). 

With similar analysis , again taking al (0) to be the point Z= + 00 , we may show that a 
solution of I:'q (7 .2) exists having the nght-hand side of (7.10) as its asymptotic expansion for 
large IMI, uniformly valid with respect to t and 0 when 

(7.13) 

The coefficients A s(t ) and E sC,\) are again given by (7.12) , the paths of integration now lying 
in the map of CU3 (0). 

By considering the limiting behavior as s ---o> oo e-4i8, we see that when ~::::; 0::::; !11"- ~, the ratio 
of the new solution to WI is independent of s and has an asymptotic expansion for large 1M/ 
identically equal to unity. Hence the expansion (7.10) for WI holds with the conditions (7.13). 
Similar analysis, or an appeal to symmetry, shows that this expansion also holds with the further 
conditions 

(7.14) 
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We can combine th e three t-regions of validity into a single region T (O), given by 

evl , CV1 UOV2, 

according as 0 lies in the respective intervals 
(7.15) 

T (O) is illustrated in figure 7 for 0':::; 0':::; 7r - e; T( - 8) is the conj ugate of T (O). The dotted curves 
are of the same character as the dotted curves of figure 2; their x-maps parallel the x-maps 
of the principal curves through E at a distance 0 away. T (O) is the unshaded domain bounded 
by the dotted curves. 

Collecting together the results of this section, we have shown that there exists a solu tion 
WI of the differential eq (7.2) whose asymptotic expansion for large 1/-1 1 is given by (7.10) and 
is uniformly valid with respect to t e T (O) and 0 in the interval (- 1r+ e,7r - e). The functions 
t(t),F(!;), A .m and Bam are given by (7.4), (7.3), and (7.12), and are regular when t e T (O). 
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S 

FI GURE 7. i-plane: domains 1' (0) . 

8. Identification of Solutions 

From (4.1 ) and the second of eqs (7.1 ), we see that 

R 

. 
P ~" 
~ 0 

Q 

A 

p 

( .1) 

satisfies the differential eq (7.2). When /-I is fixed and t -7 ooe-iarg", this solu tion becomes ex
ponentially small. If 1/-11 is sufficiently large and larg /-I I':::; 7r - e, the solution WI of section 7 is 
also e)'."ponentially small in the same circumstances, for from (7.4) we have t,,-,(!) t t t , and 

4 
so /-I3t-7+ 00 . H ence the two solutions are linearly dependent. Accordingly, 

u(-~ 2 t '2)"-'1 ( ) ( _ t_ )l[A' (h) -.0 A aW+Ai I (/-Itt) -.0 Bam ] 
2 jJ. , jJ. -v /, jJ. t 2 1 1 /-I ~ L-J 4. li L-J 4a 

- 8= 0 jJ. /-I~ 8= 0 /-I 
(8.2) 

as 1/-1 1-7 00, uniformly with respect to t e T (arg /-I) and arg /-I in the interval (- 7r + e, 1r- e) . 

This is the fundamental expansion in terms of Airy functions. In order to determine the 
function h(/-I) , we first flX the arbitrary constants of integration in the recurrence relations 
(7.12) by specifying the conditions 

AoW = l, lim Aa(t) = O (8 = 1, 2," .. ). 
IrH'" 
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We now examine the limiting form of the ratio of the two sides of the relation (R.2) as t ---'? <Xl e- i Rrgll' 

With the aid of (2.2), (3 .5), (7.5), (S.3), and the asymptotic forms 

(d. [S], appendix), we find that l /h (p. ) has the asymptotic e}..'"Pansion 

(S.4) 

as ip.1 ---'?<Xl , uniformly valid with respect to arg p., where 

(S.5) 

An alternative form of e~-pansion, not involving the quantities h", may be found as follows. 

Suppose that E~O~ h - t. The principal curve AQ is then included in the domain T (O). 
On this curve p. t .\ is negative (d. fig. 6). Let us set 

.\= .\m =p.-ta~, (S.6) 

where a:" is the mth negative zero of the function Ai'. Then (S.2) becomes 

(S.7) 

in which t Tl! denotes the value of t corresponding to .\= .\".. Now keep p. fixed and let m---'?<Xl, 

so that t---'?<Xl ei(tr - e). Then from [S], appendix, we have 

a~=- { i1l' (4m - 3) } j {l + O(m- 2) }, 

and from (7.5) and (3.5) 

(S.9) 

Substituting in (2. 7) by means of these equa tions, we find that the limiting form of the left
hand side of (S.7) is minus the expression (5.17), with tin defined of course as in the present sec
tion. On the other hand, the limi ting form of the right of (S.7) is 

h() p. 3"am .. ( )m- l _.:h( , ) _1 ( )m- l _.:h i!!. _1 h( )t-! ( 
_4 , ) ' 

p. -- - 11' 2 - a • '" - 'IT' 2e' p. 3 P. t;'- l m m 

(d. (8.3) and (S.S» . Comparing the two sides we find that t 11'-! p.- ! h(p.) has the same asymp
totic expansion for large 1p.1 as the right-hand side of the relation (5.1S). Hence we obtain 

(S.lO) 

where g (p. ), (J(p. ) are defined in sections 4 and 5; g(p. ) has the asymptotic expansions (6.1) and 
(6.2) for large 1p.1. Although (S.lO) has been proved on the assumption that E ~arg P. ~h- E, 
(S.4) shows that l /h(p.), and hence also h(p. ), possesses a single asymptotic expansion over the 
range larg p.1 ~1I'- E. Therefore (S.lO) must also hold over this wider range of arg p.. 

Substituting (S.lO) in (S.2), we obtain the final form of the fundamental expansion, given by 

u (_! 2 t 12)",') ! ! g ( ) (_t_) ~" [ Ai ( h ) ~ A sW+!ll' (p.4.1) -.0 B sW ] 
2 p. ,p. "V ~11' P. P. t2 1 p. ~ L..J 48 8 L..J 48 

- S~ O P. p.... S~O P. 

as 1p. 1---'?<Xl , uniformly with respect to t E T (arg p. ), arg p. in the interval (-1I'+ E, 1I'- E). 
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The coefficients A s(1) and B .(r) appearing in (8.11 ) are determined by the recurrence 
relations (7.12) and the conditions (8.3 ). Explicit expressions can be fOWld by the method 
used in [8], section 6 for the determination of the coefficients in the uniform expansions of B essel 
fun ctions of large ordor. W e take r to be fixed and positive, and le t J.L-i>+co . The Airy fUll c
tions appearing in (8.11 ) can th en b e expanded in tll eir asymptotic series for large positive 
argument,s and the result comparecl with (4.3 ). Thus we derive th e expressions 

(cf. [8], (6.6)), where dm(~) is defined in section 4, ao= l and 

(2m + 1) (2m + 3) ... (6m - 1) 
am m! (144)'" ' 

Analy tic continuation shows that eqs (8.]2) bold. for all values of r. 
W e note from (8.10), (8.4), and (6.1) t hat 

hs== lim{ r tB sw }=-gzS+l 
l r l~'" 

where gs is given by (4.12) and (S.21 ). 

(s= O,l , ... ), 

( .12) 

(8.13) 

(8.14) 

Expansion jor the derivative. The expansion (8.11 ) may be difl'el'entiated term by term wi th 
respect to t; this is a consequence of theorem B. With the aid of the fir st of eqs (7.1), we find 
that 

(8. 1S) 

as 1J.L I-i>CO, uniformly with respect to t ~ T (arg J.L ) and arg J.L in tbe interval (- 71' + ~, 71'- ~ ). 
Here we have used the notation 

( r )t (dt)t ¢ (r) == t 2 - 1 = dr . ( .16) 

The coefficients Os(r) and Ds(r) are expressed in terms of A s(1) and B .(r) by th e equations 

Os W =xWAsW +A~W + rB. (r), 

(cf. [8], (6.10)), where 

Explicitly, 
1 28+1 3 

r-"20 sW=-~ bmr-'1m~2s_m+l(~)' 
",= 0 

(cf. [S], (6.12)), where ~rn(~ ) is given by (4.14) to (4.16), and am, bm by (8.13) . 

9. Use of Connection Formulas 

(S.17) 

(S.l S) 

(S.19) 

In this section we seek expansions which hold in t-regions complementary to T (arg J.L ) when 
larg J.L 1.::;t 71' (d. sec S). 

In (S.ll ) r eplace J.L by J.Lei .-. Then using (S.24 ) we obtain 

(9.1) 
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when 
t ET(0+ 7I"). (9.2) 

In particular, we see from (7.15) and (5.3) that (9.1) holds when 

1 
-'- 71"<0< - E 2 - - , (9.3) 

Similarly, 

when 

(9.5) 

The expansions (9.1) and (9.4) are of course the expansions for U(_tjJ.2, jJ.t-v2) in terms 
of Airy functions valid at the turning point t= - 1. Combined with (8.11) they cover the 
whole of the t-plane when E:S 101:S t 71". 

When 101:S E we cannot expect to be able to represent the function U( -tjJ.2, jJ.t-V2) in 
V2(0) = CT(O) by means of a single Airy function, because as It l-?oo in this region U (-t,u2, ,ut-v2) 
becomes exponentially small or exponentially large according as jJ.2 is or is not an odd positive 
integer (cf. (2.7)). 

To deal with this remaining case we use the connection formula 

U ( -~ ,u2, - ,ut-v2 )-sin ~7I",u2.U ( -~ jJ.2, ,ut-v2 )=(~y ~-;;:::~~ UG ,u2,-i,ut-v2) 

( 71")1- ei1r (1-1'2+{l (1 2' ) + 2" r Ct- t,u2) U 2",u, ~,ut-v2 , (9.6) 

obtained in an obvious manner from (5.26). Replacing jJ. by ,ue-!;1r in (8. 11 ) and using the :first 
of eqs (5.25), we find 

We substitute this result and its conjugate form on the right of (9.6 ), and on the left we sub
stitute (8 .11 ). Using the eq [3] 

and its differentiated form, we obtain 

This is valid when 10!:St7l"-E in the t-region common to the domains T (O), T(O-t 71"), and 
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T (e+ t 7r). Using (7.15 ) and (5 .2 ), we sec that this means (9. 7) is valid when 

(9 .8) 

This is the required result. We note that when !.J.2 is an odd integ-er the terms in Bi , Bi' 
in (9 .7) vanish, as we require from a consideration of the behavior of U (- t !.J.2, !.J.t.../2) as I t l~ O) 
in the sector V2(e). We may also verify wi thout difficulty that (9.7) agrees with (9.1) and 
(9.4) in their common t-regions of validity when - i 7r + c':::; e.:::; - E a nd E':::; e ':::;~- 7r- E, respectively. 

10. Summary of Expansions in Terms of Airy Functions 

The fundamental expansion of this kind is (8 .11). It is valid for large I!.J. I uniformly 
with respect to e ==arg !.J. and t, when - 7r+ E.:::;e ':::; 7r - c and t lies in the domain T (e), defined 
by (7.15) and illustrated in figure 7. The function g(!.J. ) is calculable from either of the asymp
totic expansions (6.1 ) and (6.2). The function ~(t) is given by (7.4), that branch being chosen 
which is continuous in T (e) and positive when t> l ; similarly the branch of {l!(t2- 1) }t is con
tinuous in T(e) and positive when t> 1. The coeffi cients A sm and Bs (~) are given by eqs 
(8.12); they satisfy the recurrence relations (7.12) and the eqs (8.3). They are regular func
tions of ~ in the I-map of T (e) and real when I lies on the real axis to thc right of the point 
of affix - (h)~- . 

Other asymptotic expansions for U(_j !.J.2, IJ.t-,,/2) are (9.1) , (9.4), and (9.7); they are 
valid with the conditions (9 .3) , (9.5) , and (9.8) , respectively. The combination of these 
expansions and (8. 11) covers the whole t-plane when lel.:::;j 7r . 

The expansion for the derivative U'( - h 2, !.J.t·";2) corresponding to (8. 11) is (8. 15), and 
holds under the same conditions. The coefficients Cs(r) and D s(1) are given by (8 .17) and 
(8. 19). The derivative expansions corresponding to (9. 1), (9.4) , and (9.7) are not recorded, 
but they can be obtained immediately by analogy with (8. 15) . They are valid under the 
same conditions as the parent formulas. 

Approximations for parabolic cylinder functions of large orders which hold in regions 
containing one of the t urning points have been given by Watson ([1 2], sec. 17) , Schwid ([10], 
sec. 6), Erdelyi, Kennedy, and McGregor [2 ], and Kazannoff [15]. 

Watson derives asymptotic expansions in terms of elemen tary functions for the functions 
D n (z±2"';n) == U( - n - j , z± 2·";n) as I n l~O) , with the condi tions larg n l< t 7r and z= O( ln l- i ). 
In the present no tation these condi tions correspond to larg IJ. I< t 7r and t =f 1 = 0(1!.J. 1-*) . Watson 's 
expansions are analogous to Meissel's expansions for Be sel functions of large order and may 
be obtained from the present uniform expansions by suitable re-expansion (cf. [8], sec. 6) . 

Schwid gives approximations in terms of Bessel functions of order one-third (Airy func
tions) which are valid in the neighborhood [ - 1 = 0 (1!.J. 1-2) as I !.J. I~ O) , using the presen t notation . 
This neighborhood is complemen tary to the region of validity of Schwid's approximations 
in terms of elem entary fun ctions, described in section 6. No investigation is made of the 
validity of the Bessel function approximations outside the neighborhood . 

The approach of Erdelyi, K enn edy, and McGregor is similar to the one we have used. 
These writers obtain a set of asymptotic approximations in terms of Airy functions, to solu
tions of eq (1.1) when !.J. and t are both complex (using the present no tation) . The results 
are contained in those given in the present paper ; the principal ways in which they have been 
extended and improved upon are as follows. 

First, the approximations apply to fixed values of arg !.J. , no investigation is made of their 
uniform val id ity with respect to arg !.J. . 

Secondly, the approximations are established with the condition larg !.J. I':::; t 7r; outside this 
interval connection formulas are to b e used . This leads to complexity in the number of results; 
eleven are given compared with the four we have found to be sufficient. 

F i.nally, only the leading terms of the asymptotic expansions are found ; no terms involving 
the first derivative of the Airy fun ctions appear in the approximations. An effect of this is 
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to exclude regions in the t-plane containing the zeros of the Airy functions . No special treat
ment of such regions is r equired in the present theory. 

Kazarinofl"s paper (which has appeared since the pres en t paper was written) contains 
a brief investigation of the extension of the r esul ts of Erdelyi, K ennedy, and McGregor to 
include uniformity with r espect to arg J.L and higher terms in the asymptotic expansions. The 
results are ratber more complicated and less complete than those given here. 

Fart 4 . Results for Real Variables 

In this part we suppose J.L , t , a, and x to denote r eal variables except where otherwise indi
cated ; J.L is always large and positive. The variable x is not to be confused with the complex 
function x(t) introduced in parts 2 and 3. 

11. The Equation w" = (-!- x2 + a) w 

The principal solu tions of this equation are U(a ,x), U(a,-x), V(a ,x), ancl U(a ,x), defined 
in section 2. 

(i) a positive. ·When a -? + 00 the differential equation has no turning points on the 
real x-axis. The expansions of greatest interest are therefore those in terms of elem entary 
functions, and we shall not consider the forms of the Airy cxpansions. 

In (4.3) replace J.L ,t by i J.L , - i t , respcctively. Then using (4.8), we obtain 

(1 ) e~2t(-il) '" " ' ( '; t ) 1 U 2 t 12 1,i.. s " s -" 2 J.L , J.L, '" 9 (J.Le - ) ( 2 1) I ~ (-) ( 2 1)' S 2s -t - "4 8-0 - t - "2" J.L 
(11.1) 

as J.L -? + 00. In the complex plane the r egion of validity of this expansion is e~hS (t7r), and 
from figure 2(c) i t is clear that this region includes the whole of the real t-axis. 

W e have now to interpret the branches of the various fun ctions. 
From (6.1 ) and (6.2) we derive 

where the function g(J.L ) is r eal and has the expansions 

as J.L -? +00. Compariso n of (11.4) with (2.27) shows incidentally that 

!2-iJl2-f -tJi 2 tJi 2-! 
- ( )'-""2iJi2-i tJL2 _!Ji2_!+'1r e J.L 
9 J.L - e J.L r (~ + ! J.L2)' 

where the symbol ~ is defined in section 5. 

(11.2) 

(11.3) 

(1] .4) 

(11.5) 

Next, when t lies on the negative imaginary axis of figure 2(c), W) lies 011 tlte straight- line 
O'C' shown in the third diagram of figure 1. H ence 

(11.6) 

where ~ (t ) is posi tive when t> O. From (3.4 ) we find 

~ (t)= it W+l)tdt=~ t(t2+ 1)t+~ In {t+( t2+ 1)jj, (11. 7) 

the branches here baving their principal values. 
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Lastly, we have 

(- t 2- 1) t=e- i '7T( t 2+ 1) t, (11.8) 

where the functions on the right have their principal values. 
Substituting in (11.1) by means of (11.2), (11.6), (1l.8), and the relation 

u s( t) =isus( -it), (11.9) 

we obtain the required resul t in real form, given by 

(11.10) 

uniformly with respect to t. Explicit expressions for the coefficients 'lis(t ), obtained from (4.11 ), 
are 

u o(t)= 1, ul (t ) = ( - t3- 6t)/24 , u 2(t) = (9t4+ 249t2- 145 )/1152, } 

u 3(t )=(4042t9+ 18189f+ 28287t5- 1 51995t3+ 2 592900 /414720. 
(11. 11) 

The corresponding result for the derivative is 

(11.12) 

valid with the same conditions. Here 

vs( t ) =isvs( -it ). (11.13) 

Explicitly, 

vo(t) = 1, VI(t) = (- t3+ 6l )!24, V2(t ) = (- 15t1-327t2+ 143)/1152,} 

V3(t) = (4042t9+ 18189f + 36387t5+ 2 38'125t3- 2 59290t) /4 14720, 
(11.14) 

(cf. (4.13) to (4.16)). 

Since U(a,x) and U(a, -x) comprise a satisfactory pair of solutions of the differential 
equation when a is positive, it is unnecessary to give the corresponding expansions for the 
solutions V(a,x) and U(a,x). 

(ii) a negative; expansions in terms of elementary Junctions. For t 2: 1 + 0, the e}..l)ansion of 
U( - tJ.L2, J.Lt·./2 ) is given in real form by (4.3)3. In this expansion g(p. ) is calculable from (6.1 ), 
(6.2), or the relation 

(11 .15) 

and~, .9/.W, by use of (3.4), (4.8), and (4 .11 ), all frac tional pow'ers now taking their principal 
values. 

When - 1 +o~t~l - o, the expansion of U( _ tp.2, p.l..,f2 ) is given by (5.11 ). Hereg(p.) is 
identical with g(p.) and '1/ is given by (5 .9). 

For the remaining part of the real axis we have the expansion (5.28). In the present 
circumstances the function Ht) is positive and bounded away from zero . Hence the contribu
tion of the serie i cos tn-p.2. e-~2t :8 .w. (~)p.-2S is always asymptotically negligible compared 
with that of 2 cost7rJ.L2·e~2t :8 (-y.w.(~) J.L-2S . Thus (5.28 ) reduces to 

(11.16~ 

3 For convenience tbe symbol 6' of parts 2 and 3, denoting an arbitrary fi xed positive number, is replaced here byo. 
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valid when t;:::l +o. The functions g(J.l), ~ andJ31.W are th e same as in (4.3), discussed above. 
The corresponding expansions for the second solution V(a, x) are of interest, particularly 

when x;::: O. It is not possible to obtain them trivially by substituting in the connection formula 
(2.12) the expansions we have just obtained for U(a, x) and U(a,-x), because although can
cellation of terms in the asymptotic series takes place, we cannot assert immediately that the 
remainder terms implied in these series also cancel. To put the results on a sound basis we 
substitute the expansions (5 .5 ) and (5. 6) in the formula 

D (-~ J.l2, J.lt,(2)= (27r) -t r G+~ J.l2) [ e -i".(:\+t,,2) U G J.l2,-iJ.lh/2 )+ei"'CHi,,2) U (~J.l2, iJ.lh/2)} 

(11.17) 
obtained from (2.5) and (2.12 ). 

When t;:::l + o the branches of W) and d W in both expansions are the prin cipal on es. 
With the aid of the relation 

(11.18) 

proved by use of (2 .22 ), (5.7), (5.20), and (6.2 ), we deduce that 

u (_1:. 2 t 12)"-'2 () e,,2E ~ (_)8 u,(t) ~ 
') J.l , J.l , g J.l (2 1) J. L..J (? 1) , 8 28 
~ t - .. 8~O t--"2" J.l 

(11.19) 

When - 1 + 0'::; t.::; 1-0, we interpret the branches of the many-valued functions by use 
of (5.8) and (5.10). With the aid of (11.18) we obtain on reduction 

(11.20) 

valid when - 1 + 0'::; t.::; 1- 0. 
The expansions for the derivatives corresponding to the expansions obtained in this sub

section can be written down immediately by use of (6.3), or by analogy with (5.23 ). 
(iii) a negative; expansions in terms of Airy junctions. For t;::: -· l + o the e}..rpansions of 

U(-t J.l2 ,J.lh/2) and U( - t J.l2,-J.lt-j'2) are given by (8. 11) and (9.7), respectively. In these 
expansions ./:(t) is given by (7.4) and is real when t> - 1 ; a more convenient) form of this relation 
when - l < t< l is 

(11.21) 

(d. (5.9». The coefficients A s(t) and B s(.\) are real and given by (8. 12), (8. 13), and (4.8)4. 
An expansion for the solution U(a,x) may be derived by use of (11.17), as in the case of 

the eA1lonential-type mmansions. The resul t is 

U ( _1:. 2 t 12)"-'27rt t g( )( _ .l:_ ) t [ Bi( ~r) ~As W+Bi'(J.lH) ~ B sW ] 
2J.l , J.l v J.l J.l t2 1 J.l ~ L..J 4s 8 L..J 4., ' 

- 8~O J.l In 8~O J.l 
(11.22) 

valid when t ;:::- l + o. 
The corresponding expansion for U' (-tJ.l2 ,p.t-j2) may be written down by analogy with 

(8 .15). 
(iv) H ermite polynomials of large degree. E xpansions for the Hermite polynomial H n(x) 

• More convenient expressions when -1<1<1 are given by (13.4) and (I3.5). 
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when n is large can be obtained from the l'es ults ill subsections (ii) and (iii) above by use of 
the equation 

(11.23) 

Thus (4.3) and (.5.11 ) yield expansions ,vhi ch hold uniformly in the ranges x;::: (1+ 0) (2n + l)q 
and - (1- 0) (2n+ l )!:=:;x:=:; (1 -0) (2n+ l) q, respectively . An expansion uniformly valid throu gh
out the range x;:::--(1- o)(2n+ l) q is furnished by t,he Airy expansion (8 .11 ). 

12. The Equation w"= (a-tx2)w 

(i) a positive ; expansions in terms of elementary f unctions. From (2. 16), (2 .1 7) and (2.18), 
we have 

where 

(12 .2) 

For large j.L , 

(12.3) 

1 . 
In (4 .3) replace j.L by j.Le-· 7r'. Then we ob tain 

U ( 1 . 2 -1".i t 12) (_1"'i) ei,,2~ ~'" ' s U.,(t ) 1 
- 1,j.L e • j.L '" 9 j.Le • 1, -2 ' "\ (tZ- l) t 8=0 (t2_ 1)18 j.L2S 

(12.4) 

as W--i>+ ro. The t-region of validity of this expansion, S( - t 7r), includes the segments t ;::: 1 + 0 
and - 1+ 0:=:; t :=:; 1-0 of the real axis (d. fig. 2(b)) . 

When W"-"'+ ro, we have from (12.2) and (2.22) 

}i¢2 _1;,,2 (1 2) 1;,,2 [~ Ys ] ~I~ 'Ys I-~ e 2 "'-' e '.J - J..L 4. L...J -( 1 . 2 s L..J ( 1' 2) s ' 
2 8=0 z '/,J.L ) 8=0 z1, j.L 

the choice of ambiguous sign on taking the square root being resolved by use of (12.3). 
(6.1) 

where the symbol L denotes the asymptotic series 

Further from (5.21 ), with j.L replaced by j.Let .. i , we have 

± 'Ys 2 1_ I +iL 
8=0 (t i j.L2)S "'1 -iL - - l -iL' 

Introducing a flmction l ( j.L ) , defined by 

. ( 1 1. 2 ,'( 1 "," 1. ) ( 1 " l j.L) = 2'es"''' e ,'1'2-11'" 9 j.Le- ·"'), 

and using (12.5), (12.6) and (12.8), we find that 

2 t (1 +iL)qI1+iL I- t 1 21 1 
l (j.L) '" j.L t 1-iL 1-iL l +iL '" j.Lq (l + D )t' 
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From 

(12.6) 

(12.7) 

(12.8) 

(12.9) 

(12.10) 



Thus l(f.L) is a real function, having an asymptotic expansion of the form 

(12.11) 

From (12.10), (12.7), and (4.12), we find 

lo= l, l 121 
1=-2 g1= -1152' (12.12) 

We are now in a position to combine (12.1) with (12.4). When t~l + o each of the func
tions W), (t2 _ I) t and (t2 _ I) !8 is positive. Substituting by means of (12.9) and the first of 
(12.3), and equating real and imaginary parts, we find 

(12.13) 

W(.! 2 _ t (2) ",2t et 7l"1'2l(f.L)[sin( 2~+ .! 1T)-0 (- YU28(t) +cos ( 2~+.!1T)-0 (_ )8U28+1(t) ] , 
2f.L , f.L"\ (t2 - 1) t f.L 4 ~ (t2 _ 1) 38f.L4S f.L 4 ~ (t2_ 1)38+!f.L48+2 

(12.14) 

uniformly with respect to t when t ~ 1+ 0. The function l (f.L ) is calculable from (12.11 ). 
When - 1+ 0:S t :S 1- 0 the appropriate branches of ~ and (t2_1)t are given by ~= -i1] and 

(t2 - 1)t = e1<'(1 - t2 ) t , where 1] is the realfunction (5.9) and ( l - t2)t is positive. Hence we derive 

( 1 ) l(f.L ) e~2~ '" (-) Su,(t) 1 
W 2f.L2 ' f.Lt~2 '" 2t e-t"1'2 (l - t2 )-t ~ (l_t2)~8 f.L2 8 

(12.15) 

The expansions for the derivatives corresponding to (12.13), (12.14), and (12.15) may be 
obtained by term-by-term differentiation with respect to t (cf. (5.23) and (4. 13». 

It may be noted that (12.13 ), (12.14) , and (12.15) are respectively equivalent to the formal 
series (3 17), (3 1R) and (324) given on pages 84 and 85 of [4] (cf. sec. 6). 

(ii) a positive; expansions in terms of Airy functions. In (8.11 ) replace f.L by f.Le- i "' . Then 
we obtain 

(12.16) 

The t-region of validity of this expansion, T ( - t 1T) , includes the segment t ~ - 1 + 8 (cf. fig. 
7(b». Now from [3] 

(12.17) 

Hence substituting (12.16) in (12.1) and equating real parts, we find, with the aid of (12.9) 
and the first of (12.3), 

valid when t~ - 1+ 0. The corresponding expansion for the derivative is 
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(d. (8. 15)). 
The expansion for the second solu tion may be obtained by eq uati ng imaginary parts. 

This gives 

we! fJ.2,-fJ.t-./2)'" 7r!~t l~fJ.) 2 (+-)1 [AiC - fJ.t .i") f:- (_ )S As~f) + Ai' (~ fJ.t .l) f:- (_)S Bs~f) J . 
2 2-2e-4"" t - 1 8~O fJ. fJ.""3: 8~O fJ. 

(12.20) 

However, this result is only proved in this way for t ~ 1, i.e. , non-negative value of.\. This 
is because the error term on truncating the series inside the square brackets at the mth terms i 

When .i" is negative the term in Bi and Bi' cannot be absorbed in the terms in Ai and Ai' be
cause they are exponentially larger. 

That (12.20) is valid in the wider range t '2 - 1 + 5 can be proved as follows. In (8.11) 
replace fJ. by /Let "i. Then we obtain 

valid when t E T (! 7r)and so including t'2-1 + 5 (d. fig . 7). Equation (12.1), with t replaced 
by - t, shows that the left-hand side equals 

(12.22) 

Also from (6.1) and (12.7) we derive 

(12.23) 

(d. (12.6) and (12.9)). The expansion (12.20) may now be obtained by substituting (12.22) 
and (12.23) in (12.21), eqnating real parts and using the first of (12.3) . 

(iii) a negative. When a is negative the differential equa tion has no turning points on the 
real axis and we may confine our attention to the exponential-type expansions. 

From (2. 16), (2. 17) and (2.18), we have 

where 

(12.25) 
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and 

e~i~2= ± { r G-~ i 1LZ) II r G-~ i 1LZ) I } ~ =eii# 2 G1L2)- ij~2 {1 + O(1L- 2) } (12.26) 

(cf. (12.2)and (12 .3». 
In (4 .3) replace 1L, t by 1Lei1rj, te-!1ri, respectively. Then we obtain 

U - - i 2 e-i1rj t /2 '" ( e11ri ) '" (-i) ' ,-" -- . ( 1 ) e -i~2tc-it ) '" u ( '; t ) 1 
2 J1- , J1- 'I g 1L ' ( t2 1) 1 L:::' (2 1) 3 S 2' - - .. 8-0 - t - "2" }1 

(12.27) 

The region of validi ty of this expansion, e!1riS (t1T), includes the whole of the real t-axis; this is 
clear from figures 2(b), 3(iii) and 1. 

Substituting (12.25), (12.26), and (12.27) in (12.24) in the manner of (i) and (ii) and 
determining the branches of the many-valued functions, we obtain finally 

. ( Z~+ l )~ (-)'U2s+1(t) ] 
-Sill 1L '41T ~ (t2+ 1 )3'+~1L4'+2 ' 

(12.28) 

uniformly when -ro<t< ro. H ere ~=~(t) and us(t ) are given by (11.7), (11.9), and (11.11), 
and Z(1L ) is calculable from (12.11). 

The corresponding expansion for the derivative is 

(12.21) 

v,(t ) being given by (11.13) and (11.14). 

13 . Numerical Examples 

H ere we illustrate the use of the Airy-type expansions by two examples. It may be 
remarked that applica tions would be greatly facilita ted by the preparation of suitable numerical 
tables of the functions g(1L), [(1L), !;(t), {!;j(t2- 1) }i and A ,(!;), E ,(!;) , O, (!;), D ,(!;) (8 = 0,1, ... ). 
In the presen t examples these functions are calcula ted direc t.ly from formulas given in this 
paper . 

I t will appear from the examples that the early coefficien ts in the expansions decrease 
in magnitude as 8 increases. This proper ty, shared with uniform asymptotic expansions for 
B essel functions of large order ([8], sec. 6), makes t he expansions well suited to numerical work. 

Exa,mpZe 1. To evaluate W (a,± x), W ' (a, ± x) for a= 8, x=7. 
We use the expansions (12.18), (12.19), and (12.20). H ere 

1L = 4, t= 7/ (4..,12) = 1.237436867. 
H ence 

and from (12.11 ), (12.12) 

Z(1L )'" (2i /2) (1- 0.00000 3391- 0.000000006 + ... )=0.59460 1538, 
so that 

Next, from (7.4) we have 

!;~=~ t(t2_1)!_~ In {t+(t2_1)! }= O. 16932 958 1. 
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Hence 
t = 0.30607 0793, t~ =0.55323 6652, { t l (t2-1) }! = 0.871225817 . (13.3) 

From (4.8) and (4.11) we compute 

do = l , soii = - 0.59504451 , .%= 2.9247970, J<'/'3= -26.482647 , 

and from (8.13) 

ao= l, 

60 =1, 

385 
O2= 4608' 

85085 
a3= 663552' 

Substitution in (8.12) yields 

Ao(t)= l , A1(t) = - 0.00649 0, Bo(t) = - 0.03637 97 , B1Ct ) = 0.01202 . 

N ext, we have J.ltt= 1.94342 840, and by interpolation in table VII of [3] 

Bi ( - J.it t) = - 0.39524090 , 

Ai( - ,tit t) = 0.26162 602, 

Bi' ( - ,ut t) = 0.32386 134, 

Ai'(-,ut t) = 0.59097966 . 

The content of the square brackets 0 11 the r ight of (12.18) is accordingly 

- 0.39524 090(1 + 0.00002535 + .. . )+ 4- t X O.32386 134(- 0.03637 97 - 0.0000470 + ... ) 
= - 0.39554 353. 

Substituting this value and (13.1), (13 .2), (13.3) in (12.18), we obtain 

W(8,7 ) 

Similarly, 

1.67296798 XO.87122 5817 X O.39554 353 - 0.14216485 X 10-5. 
4.05527 596 X 105 

W(8,-7) = 1.67296 798 X O.87122 5817 X O.26109 871 X 4.05527 596 X 105 = 1.54327 57 X I05• 

For the derivaLives, we have first 

2-~7r ~ ,u ~ l (,u) = 1.87784 306. 

From (4.14 ) and (4. 16), ,",ve compute 

,~0= 1, 381 = 1.00283 725, 382 = -3.5232659, 383 = 29.919423, 

and thence from (8.19) 

CoCt) = - 0.0783370 , C1(t) = 0.00971 , Do(t) = l , D 1(t) = 0.00760 4. 

Hence 
, 1.87784306 X O.31897 315 

W (8,7)= - 4.05527 596 X 105XO.87122 5817 - 0.16953613 X I0 - 5, 

W' (8 - 7) 1.87784 306 X O.59419 143 X 4.05527 596 X 105 519368 20 X I05 

, 0.871225817 • . 

The results of this example agree adeq uately with the entries given in [4], table 1. 
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Example 2. To evaluate the Hermite polynomial H n(x) for n = 10, x=4 by means of the 
expansion (8.11 ). 

Here (cf. (11.23 )) 

J1. = ...)21 = 4.58257 569, 

From (6.1) and (4.12) 

t= 4;"';21 = 0 .87287 1561. 

l /g(J1. ) ",25 .5e5.25(21 )-5 (1 + 0.00198 4127 - 0.000001052 + . . )=2.11580 149 X 10- 3, 

and hence 

N ext, from (11.21 ) 

H ence 

~=-O .15810 5174, (- ~) t=0.39762 4413, U /C t2- 1)} t=0.90271 123. 

When ~ is negative, real forms of equations (8. 12 ) and (4.8) are 

~ ~+1 _3m -
(-~) 2 B s (n = (- )8-1 ~ am (-~) ~ Sl!fs-m+J, (13.4) 

m=O 

where 

In th e present example we find 

~= 1, .sJ1{=- 1.63978319, Jd;= 21.1903125 , ~=-516.52363, 
and thence 

Ao(~)= l, A 1W =-0.010243 , B o(S) =-0.0431757 , B 1(n= 0.0166. 

Next, J1.t~=- 1.20344 324. Interpolation in table I of [3], yields 

Ai(J1.t O = 0.52582209, Ai' (J1.t O = 0.10920 810 . 

Substituting these results in (8. 11 ), we obtain 

U (_22\ 4"')2 )=2.78291 471 X 103 X O.90271 123 X O.52572 856 = 1.32071 865 X 103, 

a nd thence using (1 1.23) 

HlO (4 )= 25e8U( - 221, 4...)2) = 1.25984 22 X 108 . 

(13.5) 

The exact value of this polynomial, computed from explicit expressions given on page 75 
of [4], is 1259 84224. 

Fart 5 . Zeros and Associated Values 

14. Zeros of U (a, z), U' (al Z)I V (al Z)I and V' (al z) 

(i) a negative;-2(1- o)...) (- a)5:,z5:, 2...)(- a). Let the 8th real zeros, counted in de

scending order away from the point z= 2...)(- a), of the functions U(a,z), U ' (a,z), U(a, z), and 

U' (a ,z) be denoted by U a.s, u~.s, ua ,S) and u~.s, respectively. 
The expansion (8.11 ) is of exactly the same form as the expansion (4.24) of [8]. 

analysis of section 7 of that paper is therefore immediately applicable, and we find 

2 ~ [ () + Pl (a) +P2(a) + ] 
U a•s '" 2J1. Po a 7 7 ... 
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(14.2) 

as ·denoting the sLh negative zero of the fUll ction Ai and no t to be confuscd wiLh Lhe am of ( .13). 
The coefficients PT (n are given by 

Po(n = t (n, (14.3) 

where ten is the func tion inverse to nt), defmed by (11 .21) , and the O!T( S) arc given by rela
tions of the form of (7.13) of [8]. Explicitly, 

t 3 - 6t 5 
PI(!;) 24(t 2 - 1)2+ 48{ (t2_ 1).13} f (14.4) 

The corresponding expansion for the associated value U' (a,ua ,.) can be found by sub
stituting (14.1) in (8. 15). :NIore convenien t expressions for the coefficients are obtained how
ever, if we substitu te instead in t he equation 

(14.5) 

ob tained from eq (2 .15) of [6] and the second of (2. 13) in the present papel". This yields the 
required resul t in the form 

(14.6) 

where 

(14.7) 

and the coefficien ts Pr(n satisfy the asymptotic identity 

(14.8) 

Thus 

(14.9) 

Explicitly, 

(14.10) 

For the zeros of the derivaLives of the parabolic cylinder functions, we may show by 
similar analysis that 

(14. 11) 

where 

(14.12) 

and the (3r(S) are given by eq (7.22 ) of [8]. 
The equation corresponding to (14.5) is 

U(a,u~. s ) = ± (21r)i { r G-a) }! ( -a-~ u~~ sr ! ( - d~;, sr !, (14.14) 

165 



and from it we derive 

U(a,u~. s )""'" (47r) t { r(~+-21 /})}! Ai (a;) ¢«(3) [1 + :t Qr~~)J ' 
11 6 ~ r= 1 Il 

(14.15) 

in which the coefficients satisfy the identity 

(14.16) 

For th e function U(a,z), the expansions corresponding to (14 .1), (14.6), (14.11 ), and 

(14.15) are ob tained on r eplacing the symbols U, u, Ai, and as by U, u, Bi, and bs , r espectively . 
(ii) a negative; other zeros. Since th e zeros of the function Ai ar e all real and n egative, it 

follows from (8. 11 ) that for all sufficiently large positive values of the parameter Il , the zeros of 
U(_~ 1l2, Ilt-,/2) in th e t-domain T(O) (the unshaded r egion of fig. 7(a», all lie in th e in terval 
- 1 < t< l. This is also true of the zeros of th e derived function U' (-h 2,/-d-,/2). The fun c
tion U( -tIl2,llt-,/2) and its derivative however , have complex zeros in this region corresponding 
to the complex zeros of Bi and Bi' (cf. [8], appendix). 

In th e complementary r egion C T (O) the distribution of the zeros of U( - h 2,llt-,/2) can 
b e investigated by r eversion of the expansion (9.7). The situation is more complicated; the 
pattern of the zeros depends largely upon the non-in teger par t of t 1l2 . It should b e noted tha t 
expansions of zeros in the inter val - l < t< l of fixed enumera tion , counted a way from t=- l , 
come within this category. 

(iii ) a complex. The extension of th e r esults of this section to gen eral values of a presen ts 
no difficulty. W e r eadily see, for example, that when e ~ arg Il ~7T'- e the zeros of U( _tIl2, iJot-,/2) in 
th e t-domain T (arg Il) ar e asymptotically close to the principal curve AQ, illustra ted in figure 4 . 

15. Zeros of W (a,x) and W' (a,x) 

W e deno te th e sth positive zeros of the fun ctions W (a,x), Tl1'(a,x), W (a,-x ) and TV' (a,-x), 
by W a.s, w~, s, wa,s and w~,s, r espectively. 

(i) a positive. Writin g 1l = -,/(2a) and 

(15.1) 

wh ere bs and b; are the sth n egative zeros of Bi and Bi' r espect ively, we find by r eversion of 
(1 2.18) and (1 2.20) 

.. J (1.5.2) 

(15.3) 

(15 .4) 

(15.5) 

as a-i>+ CD, uniformly with r espect to s. H ere "'W, ¢ (t), Pr(S), P r(t), qr(r) a nd Qr(r) are th e 
functions defined in section 14 (i). 

Wi th IX, (3 given by (14 .2) and (14 .12) instead of (15. 1) and Bi, b r eplaced by Ai, a, th e 
right-hand sides of (15.2), (1.'5 .3), (1 5.4), and (1 5. 5) ar e the corresponding expansions of wa . ., 

- 2-!e-!.-aW '(a,-wa.s), w;,s and 2-!e-~.-aW(a,-w;,s), resp ectively. 
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(ii) a negative. Let J.L = ..j(-2a ), and 

t = 7 (~) (15.6) 

be the function inverse to '~(t), defin ed by (11 .7). Then by reversion of the expan ion (12.28), 
we find 

(15.7) 

as a-7- 00 , uniformly with respect to s. H ere 

(15.8) 

and the leading coeffi cien ts are given by the formulas 

( ) _ 5679 + 24777 + 29175- 252073 + 37807 
e2 7 - 5760(72 + 1)5 . (15.9) 

The expansion of the associated value of th e derivative can be obtain ed by substitution 
of (15. 7) in the equat ion 

, _ ~ GWa s (l )-t W (a,Wa. s) - ±7l' ds 

obtain ed from eq (2. 15) of [6] and (2.19 ). Thell cr we derive 

where 
74+ 1572-6 
48 (72 + 1)3 , 

E () 11271°+48978- 9 76-3499574+8046072- 7020. 
2 7 23040(72+ 1) 6 

In a similar manner we obtain from (12.29) 

W , "'2~ [ + .f1 (7) +.f 2( T) + ] 
a. s J.L 7 4 8 • • • , 

J.L J.L 
where now 

a nd 

{ (S-t)7l' } 
7= 7 2 ' 

J.L 

f. ( )=5679+ 247 77+ 65175+ 264073- 34207. 
• 2 7 5760(72+ 1)5 

Finally, from 
I ~ (1 ' 2 )-! (dW~.s)-~ W (Ct , W a •s ) = ± 7l' 4: W a •s - a --crs- , 

we find 

where 7 is again given by (15.14), and 

F () - 112710- 47978-142 76+ 2572574- 6750072+ 7380, 
2 7 23040 (72+ 1)6 

(15.10) 

(15.11 ) 

(15.12) 

(15.13) 

(15.14) 

(15. 15) 

(15.16) 

(15.17) 

(15.18) 

If in the right-hand sides of (15.7) and (15. 11 ) we take the value (15. 14) for 7 instead 
of (15.8), we obtain the asymptotic expansions of wa .s and - TV'(a,-wa •s), respectively. Sim
ilally the right-hand sides of (15.13) and (15. 17) with 7 given by (15.8) are the expansions 
of w~ .s and - W (a, -w~.s). 

167 



It may be noticed that some of the numerical coefficients occurring in the expresslons 
(14.4) and (14.10) for the coefficients in the reverted Airy-type expansions are the same as 
those in the expressions (15.9) and (15 .12) pertaining to the reverted exponential-type expan
sions. This is no mere coincidence; we may expect that by suitable re-expansion of the reverted 
Airy forms, and subsequent comparison with exponential-type expansions obtained by reversion 
of (5. 11), we shall obtain explicit expressions for the coefficients Pr and Pr in terms of the 
er and Er respectively, analogous to the formulas (8 .12) . Similarly for qr and Qr. 

16. Numerical Examples 

Example 1. To compute the smallest positive zero of W(10 ,x) and the corresponding 
W' (lO,x). 

We use (15.2) and (15.3) with ,u=-y'20 = 4.47213 595, 8= 1. Entering table V of [3], 
we find 

bl =-1.17371322, Bi' (b 1) = 0.60195 789. 
Hence 

S=-a=-,u- t bl = 0.159297392. 
The value of t is gi ven by 

tCf- 1)t-ln { t +( t2- 1 )t}=~ r~=0.084771864. 

Solving this equation by sLlccessive approximation, using Newton's rule, we find 

t= 1.12489 6229 = p o( -a), 
and thence from (14 .4) 

PI( - a )=0.02960 04 . 
Hence 

WlO,l,,-,2! X 4.47213 595(1.12489 6229- 0.000074001 + ... )= 7.11400 040. 

For the derivative, we compute from (14.7) and (14 .10 ) 

IN( -a)=¢( -a)=0.88019 8053, 

Substitution in (15.3) then yields 

I 2- t 7rt (20) T'"2"X O.60195789 
W (10, WIO.1) "-'- e5"'X O.880l98053 (1-0.00002356 + ... )=-1.39416 865 X I0- 1• 

By inverse and direct interpolation in table III of [4], we find 

WIO,I = 7.1l400 000, W' (lO,WIO.l) =-1.39416 86 X IO- 7. 

The discrepancy in the values of WIO.l is undoubtedly due to neglect of the third term of the 
asymptotic series. 

Example 2. To compute the fifth positive zero of W'(-IO,x ) and the corresponding 
W ( - 10,x). 

We use (15.13 ) and (15.17). From (15.14), (15.6), and (11.7) we see that the appropri
ate value of 7 satisfies 

Solving by successive approximation, we find 

7=0.69390 0720, 
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and thence from (15.15 ) 

.M1") = -0.07269508, j 2( 1") = - 0.03321. 
Thus 

W~ lo. 5""""2! X 4.47213 595(0 .693900720-0.000181738-0.000000208 + . . . ) = 4.38746276. 

From (15.18) we compute 

and thence 

111 

W(-1O,w~1O. 5) ........ - 2· (20)- ·(l.21716 8110)- '(1 + 0.00002 2980 - 0.00000 0493 + . .. ) 

= - 0.50972 3297. 

The results of this example agree with values obtained by interpolation in table III of [4]. 
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Selected Abstra cts 

Diffraction of electrOluagnetic waves by sIllooth 
obstacles for grazing angles, J. R . Wai t and A. M . 
Conda, J . Research N BS 63D, No.2, 18 (1959). 
The diffraction of electromagnet ic waves by a convex cylin
drical surface is considered . Attention is co nfined primarily 
to t he region near the light -shadow boundary. The complex
integral representation for t he field is utilized to obtain a 
correction to the Kirchoff t heory. Numerical results are 
presented which illustrate t he influence of surface curvature 
and polarization on t he diffraction pattern. Good agreement 
with t he experimental result s of Bachynski and Neugebauer 
is obtained. The effect of finite conductivity is also con
sidered . 

Path antenna gain in an exponential atIllosphere, 
W. J. Hartman and R . E. Wilkerson, J. Research 
N BS 63D, No.3, 273 (1959) . 
The problem of determin ing path antenna ga in is treated here 
in greater detail than previously . The met hod used here takes 
into account for t he first time t he exponential decrease of t he 
gradient of refractive index with height, a nd a scatte rin g cross 
section in versely proportional to t he fifth power of t he scatter
in g angle. Result s are given for a ll combin at ions of beam
widths and path geometry, assuming t hat symmetrical beams 
are used on both e nds of t he path and that atmospheric 
t urbulen ce is isotropic. The res ult appears as a fun ction of 
both of the beamwidths, in addition to other parameters , and 
t hus t he loss in gain cann ot. be determin ed independently for 
t he transmitting and receiving antennas. The values of the 
loss in gain are generally lower than t he previous estImates for 
which a comparison is possible. 

Pattern synthesis for slotted-cylinder antennas, 
J . R. Wait and J ames Householder, J . Research NBS 
63D, No.3, 303 (1959). 
The radiation from a cylinder excited by an array of axia l slots 
is discussed. A procedure for synthes izin g a given radiation 
pattern is developed wi th particular attention be in g paid t o a 
Tchebyscheff t ype pattern . Specifying t he side lobe level and 
the width of t he main beam, the required source distributions 
are computed for a number of cases. The effect of usin g a 
finite number of slot element s to approximate t he continuo us 
source di stribution is a lso considered . 

Convexity of the field of a linear transfonnation, 
A. J . Goldman and M. Marcus, Can. Math . Bul. 2, 
No.1, 15 (1959) . 
The field F(A) of a linear transformation A of unitary n-space 
Un is t he set of complex numbers Z = (Ax,x) , where x ranges 
over t he unit sphere in Un. The con vexit y of F(A) (as a 
subset of t he z-plane) is proved by a simple inductive argument 
which reduces t he essent ia l computations to t he case n = 2. 

Graphical diagnosis of interlaboratory test resu lts, 
W. J . Youden, Ind. Q:ual. Control XV, No . 11, 1 
(1959). 
This analysis of interlaboratory t est results depends upon the 
availability from a number of laboratories of a single t est 
result for each of two materials. The two results from each 
laboratory are used to plot a point us ing t he x-axis for one 
material and the y-axis fo r the other. The resulting configura
t ion of t he points from t he several laboratories permits deduc
tions on t he prevalence and extent of laboratory bias, the 
presence of sampling variation and the occurrence of blunders. 
In addition the graph provides an estimate of the precision of 
the test procedure result s . 

The calculation of the field in a homogeneous 
conductor with a wavy inte rface, J . R. Wait, PTOC. 

IRE 47, 1155 (1959). 

The fi eld at any depth in a homogeneous conductor with a 
wavy interface is calculated. For purposes of illustration, t he 
fi eld above t he int erface is take n to be a uniform plane wave 
traveling in t he horizontal direction . 

Lower bounds for eigenvalues with application to 
the heliuIll atoIll, N . W. Bazley, Proc. Nat. Acad. 
Sci. U.S. 45, No.6 , 850 (1959 ). 
Let A be a self-adjoint operator with domain D in a Hilbert 
space. Suppose A = A' + A where A is self-adjoint and A ' is 
positive definite . The eigenvalue proble m for A, whose solu 
tion we assume known, gives ro ugh lower bounds. If Ui 
(i = 1, . .. , k) are k discrete eigenvectors of A and if Pi= (a')-l 
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lower bound s. The t heory is applied to helium atom operator. 
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