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The best-known theoretical works on boundary-layer problems, especially in the case
of compressible flow without or with heat transfer, are related to the laminar boundary
layer, although the turbulent boundary layer is, in practice, often more interesting. The
laminar boundary layer is more easily accessible to theoretical treatment because clearly
defined relations exist between the viscosity u and the shear stresses r. In the turbulent
case, empirical relations must be introduced. Therefore, attempts to get exact solutions
are not worthwhile, while efforts to obtain approximate solutions, based for instance on
the von Karman-Pohlhausen principle (Z. Angew. Math. u. Mech. 1, 233 and 252, 1921)
of utilizing integral conditions, appear to be appropriate to this problem. In the last few
years the accuracy of such approximate solutions for the incompressible ease was notice-
ably improved by the application of a new energy integral condition in connection with
a new empirical law for the dissipation in turbulent boundary layers, stated by J. Rotta
(Imgr-Arch. 20, 195, 1952) and E. Truckenbrodt (Ingr-Arch. 20, 212, 1952). The empirical
laws for dissipation and for turbulent wall friction, which are needed in the present approxi-
mate theory, are formulated on the basis of available measurements for incompressible flow.
Generalization to the compressible flow with heat transfer is made from physical considera-
tions. Calculated results agree satisfactorily with available experimental data. Some pos-
sibilities for improving as well as for simplifying the approximation theory are outlined.

1. Introduction

In prineiple, problems of compressible laminar boundary layers may be solved by using
the partial differential equations for the velocity and temperature fields, and the thermodynamie
relations between viscosity u, density p, pressure p, and temperature 7. Exact solutions for
special cases have been worked out by several authors [5, 6, 7, 8.2 Nevertheless, approximate
theories of the von Karman-Pohlhausen type have been successful because of their easy adapt-
ability to the most general case of flows with arbitrary pressure gradient in flow direction
[9 through 16].

An example is the case of a compressible turbulent boundary layer, which is more important
in practice because the controlling viscosity is no longer a material property, such as the molec-
ular viscosity, w; rather, it is like so-called “apparent viscosity,” u, which is essentially
determined by the empirical laws of turbulent mixing motions. In view of the empirical
character of these laws, attempts of exact solutions of Prandtl’s boundary layer equations
are indeed inappropriate. Hence, approximation theories of the von Karman-Pohlhausen
type are indeed the only ones which are well adapted to the problem of calculating turbulent
boundary layers.

The first solution was given by E. Gruschwitz [17] in 1931. He introduced a one-parameter
family of empirical turbulent velocity profiles with parameter 77, and, as the second param-
eter of the problem, the boundary-layer momentum-loss thickness §,. Gruschwitz then
derived an empirical energy law. This was used together with the known von Karman integral
condition for the momentum within the -boundary layer, to determine the two parameters
I and 6, as functions of z for a given pressure gradient.

The so-called Gruschwitz energy law could not be verified in a general manner and appears
therefore somewhat doubtful. Moreover, it is restricted to the incompressible case. A definite
improvement of the approximate theory for turbulent boundary layers was accomplished

1 This work was supported by the U.S. Air Force, through the Office of Scientific Research of the Air Research and Development Command.
2 Figures in brackets indicate the literature references at the end of this paper.
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when several authors [9 through 15] independently (between 1935 and 1946) showed that
an integral condition of the energy within the boundary layer may be derived from the Prandtl
boundary-layer equation in the similar way as for the momentum. Some years later (1950)
J. Rotta [3] derived from measurements the empirical law for the dissipation within the turbulent
boundary layer, which was needed for the applications of the new integral energy condition.
At about the same time the empirical law for the turbulent wall friction occurring in the mo-
mentum condition was improved by new accurate measurements of Ludwieg and Tillmann
[18], such that it may be generally valid for positive and negative pressure gradients in flow
direction.

Now, on the basis of the momentum and energy integral conditions on the one hand
and the two empirical laws for the turbulent wall friction and dissipation on the other hand,
a two-variable method approximate theory of boundary layer could be developed, similar
to that formerly worked out by several authors for laminar boundary layers [9 through 16].

For the incompressible case, the integration method of E. Truckenbrodt [4] (1952) (similar
to that developed by A. Walz [19] in 1941 for the laminar case) appears to be the simplest.
However, applications to compressible turbulent boundary layer failed, because the semi-
empirical laws for wall friction and dissipation could not be set up, since before that time
measurements of turbulent boundary layers at high Mach numbers were not available in
sufficient generality.

Basing his analysis upon simple physical facts about the turbulence mechanism the
author was able to derive a generalization of the empirical laws for wall friction and dissipation
to include compressibility, [26, 27].

The inclusion of the case of heat transfer, however, implies a new difficulty insofar as the
integral energy condition derived from Prandtl’s equation considers only an energy flux along
the body surface but does not relate to an energy flux through the wall. 1In the latter general
case we must start from the general differential equation for the temperature field. In addition
it must be checked whether the above compressible considerations would include heat transfer
at the wall.

As suggested by L. E. Kalikhman [13] for the case of laminar boundary layers the partial
differential equation for the temperature field can be transformed by partial integrations into
an infinite system of ordinary differential equations similar to that obtained by partial integra-
tion of Prandtl’s boundary layer equation.

Henee, two infinite systems of ordinary differential equations with a twice infinite number of
unknowns are available which appear to be completely equivalent to the two partial differential
equations for the velocity and temperature field.

Some general properties of these systems, which had not yet been outlined in the literature,
will be discussed.

As a first step of evaluation of the possibilities involved in these systems of equations, a
“two-equation, two-unknown’” method is investigated. This is about as simple as the known
methods for the incompressible case [4, 19]. Nevertheless results obtained are of sufficient
accuracy for engineering purposes.

The application of the new method is illustrated in some examples. Directions for improve-
ment as well as for further simplifications are indicated.

2. Partial Integration of Prandtl’s Boundary-Layer Eqimtion for a Compressible
Two-Dimensional Steady State Flow Along an Insulated Wall

2.1. Derivation of an Infinite System of Ordinary Differential Equations

As proposed by Leibenson [9], Golubew [10], Sutton [11], K. Weighardt [12], and E. Truck-
enbrodt [4], Prandtl’s system of partial differential equations for a compressible two-dimen-
sional flow along an insulated wall may be transformed into an infinite system of ordinary
differential equations by partial integrations. We will give here a new derivation of this
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system which is appropriate for our purposes.

Let x, y be the coordinates, the z-direction being taken everywhere tangent to the wall.
Further « and » are the components of the velocity vector, respecting in the z and y directions,
w the viscosity coefficient, 6 the density coefficient. Then Prandtl’s boundary-layer equations

may be written as:
< bu>
ou ou (I"u.; bz/

=7 PP 1
1+PL oy pitts (lr L
pM—}—D@:O (continuity equation). (2)
ox oy '

Here the subscript 6 denotes that the quantity is referred to the edge of the boundary layer.
We note that this system is valid even for turbulent boundary layers, if the velocities u and »
as well as p are considered to be the mean values over time and if uis the effective value u=pu,,
which consists of the molecular viscosity w, the apparent viscosity u,. Thus,

=g - (3)

For simplicity, however, we prefer to use in both cases, laminar and turbulent, the same symbols
v, p, and g, knowing that in the turbulent case we have pu= pu,.
First we multiply eq (1) by % and add to it eq (2) multiplied by w™/(»+1).
Partial integration from y=0 to y= « then yields after elementary transformations,

1 g ']"’I“I/‘QJF -0  (»=0,1,2,...,®)23 (4)
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Herein the following notations are used:
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o U eu (1 7
= (H—l)lj” l:p,sua ué):lr/r/ (7)

= g—; . (8)
From the structure of the integral terms (5) through (7) we see that for practical purposes it
will not be necessary to extend the integration process beyond a certain distance y=45, for
which we have w=u;, p=ps; 7=0, because for y>6 all integrands became practically zero.
The layer thickness ¢ is somewhat vague in view of the asymptotic behavior of u(y) at the
outer edge. For approximate theories, however, it is very useful and may be defined as wall
distance v at which u reaches the value u. with an accuracy better than 99 percent. Hence
we put

0.99u ., <u;< . (9)

2.2. Discussion of the Infinite System of Equations

Putting »=0 we obtain the usual momentum integral condition of von Karman-Pohlhausen,
for »=1 we have Weighardt’s energy integral condition. Only these two cases have been
considered up to the present, but it is clear that all other remaining integral conditions of the

#» may have also values between —« and 4, even nonintegers as 0.1, 0.2, . . . and so on.
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infinite system (4), the so-called higher momentum conditions (v=2, 3, 4, . . . ,»), would be
important too, since only the complete system is equivalent to Prandtl’s equations.

Let us first investigate the meaning of the equations of order », higher than unity.

First eq (4) is rewritten in a more convenient form. At the outer edge =46 of the boundary
layer, we may assume adiabatic conditions of state. According to the basic laws of gas dy-
namics we have between the density of p;, the velocity u;s, and the Mach number Ms=us/as
(as=local sound velocity) the following relations (see, for instance, R. Sauer [20]):

1 @_ L (ZU/5 2,
pddr  wé dxr ° (10)
Substitution of (10) into (4) gives
;L Us 2 Ir
fit i o | 24— M3+ [ra=0 (1)
U fv

where the prime denotes differentiation with respect to x.

The integral terms e,, f,, g, represent the unknowns of the system. They contain the
velocity and density distributions u(x,y)/us(x) and p(x,y)/ps(x), respectively, which are indeed
the real unknowns of the problem.

The only way to obtain a solution of the problem was to introduce approximations for
u/us and p/p; according to von Karman-Pohlhausen’s idea, for instance by means of a one-
parameter family of experimental curves. In the incompressible case (p/p;=1) the problem
was indeed solved in this way by taking two equations from system (11) (for »=0 and v=1)*
using as unknowns the boundary layer thickness & or one of the functions e,, f,, ¢,, and, as the
second unknown, a shape parameter H of the velocity profile. 1In this case the ratios e,/s,

fv/6, gv/s, as well as ¢,/f, and ¢,/f,, are only functions of the shape parameter H.

The compressible case involves new variables p and 7" which are related by

o T; ;
ps T” (13)
since 0p/0y=0. Additional equations will be needed to make the problem determinate.
This is done for the thermal boundary layer. While we will return to this problem in section
3 of this report, let us first discuss the principal properties of the infinite system (11).
The order number » may for instance be increased toward «. In this case we have from
equations (6) and (7),

[ +2—M})+g)s-o=f.(1—M}), (14)
and
TRy

—Jo paws 15
Ja Jo Pauady’ (15)

becanse

u y+2 w\” -

<&;>V_)m—<{l/;>u~)oo:0’ fOl O<EB<1’ (16)

4 The original Pohlhausen method only used the equation »=0 (momentum equation) from this system. As the second equation, Pohlhausen
introduced the so-called wall condition,
o*u dp
psy) =2 (12)
Y/ y=0 QT

which follows directly from Prandtl’s eq (1) for the point y=0. It is obvious that this condition, valid for the wall point, would be doubtful if used
for fixing the shape parameter. Indeed essentizl improvements of results were observed when this wall condition was neglected and replaced by
the equation for »=1 (see, for instance, [16]).
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whatever the functions u/u; and p/ps may be in detail.
The integral expression (e,),.,, is found to be zero as follows:

For 0<Z—<1 it yields
)
Lo+ ()]

Since furthermore the shear stress 7 and its derivative 07/0y are vanishing at y=06 (u=wu;) for
arbitrary velocity profile u/u;, we have

(E))E=>0" (17)

Hence in the limiting case of y=, system (11) reduces to
, 2y Us
Sl (1_2‘15)776:0‘ (18)

This equation may be called the mass-flow equation and is nothing less than an averaged form
of the continuity equation. With the aid of (10) it can immediately be integrated to

fopstts= (6—106,)psus;=—const. (19)

61—J <]—E dy (20)

is known as the displacement thickness. This relation has not previously been used in approxi-
mate boundary layer theories. It expresses that the mass flow between the stream lines y=2¢
and y=4, must be constant. We have not ascertained whether relation (19) will be very
useful in practice. But it is clear that if the velocity and density profiles are once determined
in the inner part of the boundary layer (thereby determining the value 6,), the total boundary
layer thickness 6 is determined also by relation (19).

We have found that if the two-equation system »=0, =1 with two unknowns is used, this
relation is mostly violated. Nevertheless the essential properties of the boundary layer, for
example, wall friction and separation behavior, appear to be correctly described.

From this consideration about the mass-flow equation as limiting case for =, we may
learn that the higher the order », the less details of the velocity profile will be included in the
corresponding equation, because the term e, which contains the shearing stress (and with
this the entire boundary layer effect), approaches zero, with y—o.

It is therefore not surprising that equations corresponding to low order, for example the
equation for =0 and v=1, still give a very good description of the properties of the boundary
layer if a rather physically reasonable family of velocity profiles is introduced into the equations.
A good way in principle as suggested for the incompressible laminar boundary layers a long time
ago by several authors [9,10,11,12], would be to restrict to a finite number of equations of the
system, preferably to those of low order, say up to »=>5 or 10, and to introduce a polynomial
expression for the velocity profile

where

u_u
Uy 3y (x)

Y I (2), (), Hy(@)...., H, <z>] 1)

with » coefficients /7. Then »+1 ordinary differential equations will allow the determination
of the » coefficients 77, and §, as functions of . In this case no detailed assumption about the
velocity profile, except some trivial boundary conditions, must be made.

It appears worthwhile to study this problem with new efforts, because its solution will
be to a large extent equivalent to the solution of Prar.dtl’s boundary layer equation, but needs
no restrictions as to the preseribed pressure distribution p(r), and will in principle be applicable
to the more important case of turbulent boundary layers too. Since we want to include the
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compressible case with heat transfer at the wall, we must simultaneously consider the temper-
ature boundary layer.

The infinite system of equations derived from Prandtl’s equation contains no terms which
take into account an energy flux through the wall. Therefore, only the momentum equation
y=0 and the mass-flow equation r=ow of this system can be used in connection with heat
transfer problems. All other equations are worthless in this respect. The essential step to
get out of this difficulty is to include the partial differential equation for the temperature field
in this problem by transforming it into an infinite system of ordinary differential equations
similar to that obtained from Prandtl’s equation.

3. Derivation of Integral Conditions From the Partial Differential Equation for
the Temperature Field

The general partial differential equation for the temperature field in a two-dimensional
steady state flow may be written as follows, if the enthalpy ¢=¢,7 is introduced:
o . 2 J »

i u o /N 01
S e P (SU) 42 (221, (22)
or 01/ “d r dy. a Y \¢, Oy
Here X denotes the heat conductivity (kcal/m sec ° K), ¢, the specific heat at constant pressure,
u, » must satisfy the continuity equation

olpu) | 9(pv) _

.
s (23)

Now, if we multiply eq (22) by 7, and eq (23) by "*'/v+1 and add the multiplied equations,

we obtam
d(puir™) | dlpvitl) dus ., bu) AN b?).y} o
5 T o =0+1) 4 —upsuts "+ (a’/ +Ou ¢, o) (24)

By partial integration of eq (24) with respect to ¥ from y=0 to y=« and by substitution for
v from eq (23) we have

- { o o @ ) -
([r [J (pui”™ —psusiy? ')r]yjl—{—i; [(psusizth)o]—ast! %.1: [j (pu—psus)d 7/]—1 1 — [p5?155]

—(v+]){ pw,; I J (ur”—us15)dy— p5115 / 115156—’;—] 1/[—)\7—Q]+J uz”(b >(1J} (25)

The terms with the factor 6 vanish because of the following known relation in gas dynamics.

L dig  u3 1 ds

l.,; dr 1.5 Us dr

=0, (26)

which follows after a short intermediate calculation from

P=(e—1)M, k=2, 27)
a v
and
2
M? Al—c_+_1 - 7511167; -\[*—@ a*=-critical sound velocity (28)
17— 7\["'

k—
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1 dM, 1 dus (. k=1, ‘
M; dr  wuy dx <1+”§"”rs)' (29)

Using notations for the integral terms:
[ - t=]

J |:< pa> ](17/~J I: (pa :Ir/_)/fw#, (30)
0 Pls 0 Pslls

(e can be replaced by é, because the integrand is almost vanishing for =45)

J <p’5> ::El“ (31)
o ué

‘“6&;"0 ‘ra(l/[ - )

JO <p> Ou[ru o(u/us) :I(]u - (32)

with
o}
=0 Or |: a;;:l o 'up” P,=constant Prandtl number, B3
and
[ ; \
7]7':3?1"]5:%*(1)0( ause g%;:(),)v (34)
equation (25) may be rewritten as follows:
e 3\
do, dus 1 —M7 _ o ~y
s ] T 7“7. 2 v - QR
B I TR S M g et PSP o
\

¢., & and vy, (with » as an arbitrary number) are an infinite number of unknowns in this infinite
system of ordinary differential equations. The real unknowns, however, are the distributions
w(xy)/us(x) and T(ey)/Ts(x) which we are trying to determine by means of the infinite number
of integral conditions as expressed in the system (35). Now, before going to the solution, let

us transform it into a somewhat more convenient form. First a new variable is introduced:

¢V

T 5y(k—1)M?’ (36)

where 6, 1s the displacement thickness, defined by

B s

pU u o~

Sy= | — 1—-)(/1 == see (11)). (37)
) J 0 Ps%s( U, y=o (s /)

It is to be remembered that », is finite when M;—0, while ¢, has the disadvantage of becoming
zero when M;—0. Furthermore,

b=1+(k—1)M3:— 1 51_J (1——~>(/J, (38)
(r+1) 259 et 5t (29)
2 ey =iy s
With those notations (35) can be rewritten as follows:
‘l"’+ q:""lj/’["ﬁr%;:o (1¥=0,1,2,. . . , ). (40)
0

39



In principle a possible way to solve tne problem of determining the distribution u(z,y)/u:(x)
and p(z,y)/ps(z) is to use polynomial expressions which fulfill the boundary conditions of the
velocity and thermal boundary layer, by choosing j coefficients which satisfy 7 equations of
the system (40). It is obvious that in the present case the procedure is more complicated
than in the case of system (11). However, it may be possible to overcome by taking the solu-
tion from the exact theory for the temperature profile 7/7 or the density profile p/p;= T35/ T.
Although the solution is exactly valid only for the special case of the flat plate (dp/dz=0), it
may be considered as a good approximation even for the more general case with dp/dz =0
(see for instance H. Schlichting [21, p. 282]).  An essential property of this solution for 7'/7% is
that it depends not upon z but only upon u/u; with the Mach numbers M; and the heat transfer
coefficient ¢, as parameters.

With reference to a paper of von Driest [23] this solution for 7'/T; for the case dp/dz=0
can be written as

T k—1
ﬁ:1+CT(f1_1)+r 9 M3(1—f,) (41)
with
u u u u\?
o) = ) —) =\ — FU, 2
A P)=t n(Lr)=(L) foros<r,<l, (42)
T _
r=T(’)—_—;’:=rocovery factor, (43)
cT=T’;—T—"‘=hoat, transfer parameter. (44)
)

Thus the temperature and density profiles occurring in the integral conditions (36) to (39)
are uniquely correlated to the velocity profiles u/u;, which now are the only unknown funections
in the problem. So far all considerations and derivations are valid both for the laminar and
turbulent case. For the solution of the laminar case, we have only to introduce an expression
for the velocity profiles. The viscosity, as principal painmeter of all boundary layer theories is
known to be dependent only upon the temperature 7, for instance according to Sutherland’s

law.
T LAl T>3/_)
L h e S 45
M1 T+( [1 ( )
(with C=113°K for air, 7} being a reference temperature) or to its more convenient approxi-
mation
" T)” X
gl 46
M1 71 ( )
with
& 1
Y=—1T 0T, £,

(w=0.80 for temperatures 7" between 233° and 373°K, w=0.5 for very high temperatures,
w=1.5 for very small temperatures near the zero point).

In the case of turbulent boundary layers which are mainly considered in this report, an
empirical relation for the effective viscosity (as the sum of the apparent and molecular viscosity)
must be introduced besides the assumption for the velocity profiles. Before this is done, a
simplification of the systems (11) and (40) will now be considered.
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4. Special Case of a Two-Equation System
4.1 General Considerations

As a first step of evaluation of the possibilities involved in systems (11) and (40) we will
make a so-called one-parametric representation for u/u;, viz:

L ”(i nm) (48)

Us U I')

where H(2) is the form parameter of the velocity profile (as one unknown of the problem) and
6(x) is the boundary layer thickness (as second unkown). Therefore, to be correct, the relations
(48) should be denoted as a two-parametric one.

It must be pointed out that é(z) may be replaced by another characteristic length of the
boundary layer, preferably by the momentum-loss thickness 6,(x), thus avoiding any assumption
as to the point where u/us; reaches the value 1

Since we have now decided to use only two unknowns, H(z) and 6,(x), we need only two
equations besides the empirical law for effective viscosity.

We choose the simplest equations (namely those for v=0) from both the system (11) based
upon Prandtl’s equation (1) and the system (40) based upon the general temperature field
equation (2).°

These equations are:

a. The momentum integral condition from system (11). 'This is the only equation of the
system (11) which, besides the mass-flow equation, is valid even in the case with heat transfer at
the wall.

fo+1y I:(/,()‘*’Q—‘AME >~+f’~* ’ (49)
with
Tw 5
Cal Pa“a v

1 “J(, p‘;’fﬁ [1— f] dy=5,, (51)

(/[)—J < — 7 (/z/fﬁl (52)
5?15

b. The energy integral condition from system (}0)

ny-+no® uﬁ"r\;jo 0 ‘ (53
Us 2
with
_ 1 Jo u5<1—¥>(h/ 54
M=) M2 (54)
d=1-+ (k+1) M} —— (independent of »), (55)

10 i,
pB% {JO T" >+770 } (56)

§ The value of the simple mass-flow equation (19), which may also be obtained from system (40) by putting ¥=— o, appears to be limited, but
has not yet been studied in detail.

61



Cr Tr_Tu' 1 -
=7——= = ) (57)
g T Bl

1/ 2 \Pr-! /u
s zPrJ <*> d (v*)’rv"l),. (for [),:0, 8tol). (58)
0 Tw Us

For the practical application of the two systems (49) and (53) it was found to be very
helpful to evaluate once for all the universal functions 6, 8, n, ®, and ¥, for the interesting
range of the parameters /1, M;, and 6 (or ¢;). Such an evaluation will be based upon a certain
physically reasonable assumption about the velocity profile, as represented by (48). These
assumptions for u/us; must of course be different in the laminar and turbulent cases. In the

turbulent case, the empirical laws for the wall friction 7, and the dissipation integral TOU
0

must also be introduced. The evaluation for the laminar boundary layer contains no diffi-
culties, and will be dealt with in a separate report. Only the more complicated case of the
turbulent boundary layer, which needs some special considerations will be treated in this report.

4.2. Two-Equation Method for Turbulent Boundary Layers

We now consider: a) A suitable expression for empirical turbulent velocity profiles,
b) an empirical law for the wall friction in a compressible turbulent boundary layer with heat
transfer, ¢) an empirical law for the dissipation in a compressible turbulent boundary layer
with heat transfer, and d) a method of solution of the system of equations (49) and (53).

a. The Turbulent Velocity Profile

Detailed investigations of many authors [23, 24, 3| have shown that the turbulent boundary
layer can be divided into several (usually into two) regions with respect to the direction normal
to wall, in each one of which different laws for the influence of the outer pressure distribution
and the Reynolds number are valid. Thus a general representation for the velocity profile
requires a somewhat complicated formula. If only mean properties (integral quantities) of
the boundary layer are considered and put into correlation as in our case, it will be sufficient to
have an expression which contains less details but includes the whole range of the boundary.

Such a formula, which is proved valid even at high Mach numbers, 1s

k(H)

%”—:2!5— (59)

where £ is the form parameter with values approximately 0.1 and 0.7, and is a unique function
of anv H to be chosen.

A disadvantage of (59) is of course that at the wall y=0 the value (0u/dy),-¢ is infinite for
all 0<k< 1 and that furthermore, at y/6=1, ou/0y does not vanish as is physically required.
But we have shown in previous publication [26, 27] that these facts do not essentially influence
the integral terms of the approximate theory, since the wall-friction law and the relation between
the velocity profile u/u; and the shear stress profile 7/7, are separately introduced as semi-
empirical laws.

As an example of the suitability of this power law even for Mach numbers up to about 7
and with heat transfer at the wall, we refer to figure 1 which is drawn from experiments of R. E.
Wilson [25].  This simple power law is very adequate to the purpose of this approximate theory
with regard to the possibility of closed evaluation of the integral terms. Figure 2 shows the
order of magnitude of the errors in the ratio (9s/9,); plotted against (0,/0s),

(e [ L))
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Comparison of experiments (according to J. Rotta and

u
K. Weighardt) with approximation power law —=
(g);uu)-

:aused by the approximation of the experimental velocity profiles with the power law calculated
for the incompressible case.  We see that the maximum error is about 1 percent. The neglect
of a certain influence of the Reynolds number on the velocity profile causes errors less than 1
percent. Therefore, the use of the power law (59) for our approximate theory appears to be
justified.

Some improvement at the outer edge region of the boundary layer can be reached without
much complication by taking the following form:

gztanh [b log (14-ay)], (60)
5

where a and b are two form-parameters, comparable to 77, and 71,. a may be used for the pur-
poses of the adjustment of scales in the one-parametric theory, and the adjustment of wall
friction in the two-parametric theory. The relation (60) avoids the use of § which is physically
vague, and yields automatically an asymptotic behavior near the edge of the boundary layer.
At the same time it prevents an infinite slope 0u/oy at y=0.

Investigations of the practical importance of expressions (60) (which of course, excludes
the possibility of closed integrations) are in progress.

b. The Wall Friction Law

For this we may refer to the author’s publications dealing with the case of compressible
turbulent boundary layers without heat transfer [26, 27].  We now have only to investigate to
what extent the relations found there will be influenced by heat transfer at the wall.

As a summary of these earlier investigations we can state that the laws for turbulent mixing
motion found for the incompressible case, are valid in the compressible case, provided that the
fluctuation velocity is less than the sound velocity, in other words, if the velocity fluctuations
are not accompanied by density fluctuations. Now, since the turbulent fluctuation velocity
in boundary layers is found to be small, say 10 percent or 20 percent of the main velocity u;
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at the outer edge of the boundary layer, Jl.sﬁ may be increased to about 10 or 5, respectively

until the fluctation motion becomes compr es51b]e in character. Therefore we conclude that up
to about Mach number M=10 or 5, respectively, the laws for incompressible fluctuation may
be considered as valid to a first approximation. Only the flow medium properties x and p are
changed. These, however, are taken into account by a suitably chosen Reynolds number.

As to the effect of heat transfer at the wall, this will change only the flow medium properties
and therefore can be included in the compressibility effect and in the Reynolds number, which
itself plays a decisive role in the wall friction and dissipation law.f

The momentum law (=0 from system (11)) contains the term 7,/psu; which is the
ratio of the wall friction 7, to twice the stagnation pressure. This ratio can be rewritten
as follows:

> [a U/us):l l:b(ﬂ/ua)

/oy _Lw_ LO(Y/(82):)_Lw J'Bu u

e Ma P — S HM0), ()= [ (1= Yy 61
Bw

A definition of a Reynolds number

Ry ==tstishs (62)
P

is suggested which contains the viscosity u, at the wall and, by means of the integral term
8y, an averaged inertia term p;usd;. Indeed the momentum integral condition (49) brings into
relationship the wall friction and the averaged inertia forces. The pressure forces are not
of interest in this connection. Any other definition of the Reynolds number appears to be not
suitable in the present problem. In the mcompressible case these detailed considerations are
of course not necessary.

In the numerator of eq (61) we have the dimensionless slope of u(y) at y=0. As scale for
the length % the value () peompr. = (62): as a wholly geometrical quantity, thus concentrating
all influences of Mach number and heat transfer in the universal function 6,/(6,);. This fune-
tion is theoretically given, when expressions for u/u; and p/ps, (48) and (41), are fixed. Next

the following term is considered:
0 (u/us) ] ( T > -
63
[t ), ~Ga), e

of eq (61) as the wall friction law for incompressible flow. For turbulent boundary layers the

slope [0(u/us)/0y/d5):].. depends itself on the Reynolds number 725 in such a manner that

kion
(y/l({ii)i w:al(i) <pau5 64)
with n=0.268 (according to Ludwieg-Tillman [18]) and
a(H)=0.123.10 068 @1/3); (65)

as an empirical function, which expresses the influence of shape of wu/u;.
Therefore, we can finally write

6 A certain confirmation for these considerations may be seen in figure 1, which shows that the velocity distribution and therefore the related
shear stress distribution 7/7» too, is the same as in the incompressible case.
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c. The Dissipation Law

A generalization similar to that found for the wall friction can be derived for the dissipation
in a compressible turbulent flow with heat transfer. The energy integral condition (53) con-
tains the term

> U
J rdu=D (dissipation). (67)

0

Written in dimensionless form,

D Tw Tu -
3T % - e (68)
palUs  pPslls Jo Tu ué 5“6 Tw Ué ‘ _)

The term (7,/psus?); is given with eq (64). The remaining integral term is found empirically
by T. Rotta [3] and E. Truckenbrodt [4] to be

o u\  B(H) 2, \
.jo ;:r(/(Ua) a(H) (69)

so that it finally vields

) B(H) R 6 BUH) b o
* ) (82); 13, (8y); (70)

with

( D\ _B(H) _0.0052

parila I'E(g*ié' Im 168 (71)
2

as the part which represents the dissipation law for the incompressible flow. To be quite
correct, a detailed consideration must be made on the definition of the Reynolds number
used in eq (69). By definition the dissipation integral expresses the amount of energy dis-
sipated by the viscosity into heat (with the intermediary of turbulence). The related Reynolds
number should be more exactly defined with a mean viscosity  instead of w,, because the
energy transfer by viscosity occurs within the whole boundary layer, although mostly near
the wall.
Therefore eq (69) should correctly be written as

L u ﬁB(II) ,“Lu )()l ~9)
—d(—)= (72)
0 Tw Us, a(I{)
when the definition (62) for the Reynolds number is used. This correction, however, was
proved to be in general so small that it is not essential in the scope of this approximate theory.

d. Simplfied Representation for the Wall Friction and Dissipation Law

The expressions for the incompressible wall friction and for the dissipation law were
given by E. Truckenbrodt [4], who evaluated some semiempirical relations found by T. Rotta [3].
The results of the evaluation of E. Truckenbrodt are given in his two figures 3 and 4
which we have reproduced in the present figures 3 and 4. These have been presented in
order to investigate whether or not it will be possible to find a new suitable fitting for these
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two empirical laws which permits the use (for the sake of simplification) of only one power
of the Reynolds number instead of two (0.268 and 0.168).

We find that if we take the power 0.2 in both cases the fitting of the experimental result
in the most important range between R;=10% and 10° will be rather satisfactory. The laws
(66) and (70) may then be written as

7w _0.0636- 10705, (73
oy RET (61 -

D 0.00761 3,

pss®  RG (8).

(74)

This simplification prevents the universal function ¥, of equation (56), from being dependent
upon [y besides H, M; and 6. Thus an important simphfication in the representation of
this function seems possible without noticable loss of accuracy. Detailed investigations on
the reliability of this simplification are now in progress.

This simplification will be important if the use of higher momentum equations
(»=2,3,4, . .. )is made. In this case all empirical parts of the wall friction and dissipation
law are concentrated in the term r,/p;u3, and the integrals of type

1 v *u,
f <&> T d <£> and J 5<86) v are LT/TB):I 4
o \p/ Tw Us, 0o \p ou | 7, O(u/us)

are dependent only upon the shape parameter 74, the Mach number M;, and the heat transfer
parameter #. Therefore they can be evaluated, when the family of velocity profiles is chosen.
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4.3. Evaluation of the Universal Functions of the Two-Equation Method for
Laminar and Turbulent Boundary Layers

The evaluation of the universal functions occurring in the two-equation method as described
in section 4 has already been made in the author’s publications [26, 27] for the case of an insu-
lating wall.

The evaluation of these functions for the case with heat transfer, as suggested by the
author, 1s now under way at the DVL Institute for Applied Mathematics and Mechanics,
Freiburg/Br, by considering first the turbulent boundary layer.

A preliminary evaluation for this case with slide rule accuracy has been available for
about one year and was used for calculating some illustrating examples which will be discussed
in the following section.

This preliminary evaluation showed that the effect of heat transfer on all universal func-
tions can be linearized in a rather good approximation, such that they may be represented
in the form

F,(H,M;$) ~ F,(H,M0)+6-G(H, M;). (75)
This result will be checked after the completion of the final evaluation.
4.4. Examples—Flat Plate

For the sake of completeness we present here again an important result obtained for
the laminar case with insulated wall, figures 5 and 6. Pohlhausen’s method based only upon
the momentum integral condition (49) and the wall condition (13) gives H=1.572=const.,
for the case of dp/dz=0 at each Mach number. The consideration of the energy integral
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PLATE | I T [ WENDT
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Laminar Separation ! J
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Ficure 6. Friction coefficient ralios cylcy, (local at the
Fiavre 5. Shape parameter H of the laminar velocily same Reynolds number R;) and cslc;, (averaged) as a
profile at a flat plate as a function of the Mach function of the Mach number 31:.
number “16 . Laminar boundary layer.

o . e . . . . . > % .
condition (53) instead of eq (13) gives a variation of // with M and a corresponding change
in the behavior of the friction coefficients ¢//c,; (local at same values Rs,) and (%/Cr; (averaged)

with the Mach number M.

It is very interesting that the new behavior of ¢/ /e, (M) is
almost coincident with the results of an exact theory of H. Wendt [8].
the effectiveness of the energy integral condition.

This result shows
The related results for the compressible

turbulent boundary layer with and without heat transfer -are plotted in figures 7 and 8.
The agreement with available experimental data is seen to be good.

Figures 9 and 10 are concerned with the quéstion of how the turbulent separation point
. r
i a retarded flow ofithe type

us _ MF
u, M%

=1—10a/!
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is influenced by the Mach number and by heat transfer. From figure 9 it is seen that the

separation point (x/l)., 1s almost independent of variation in the Mach number between
* ) ¢ 5

M =0 to 240 (M.=0 to 12). Figure 10 shows that by cooling the wall in such a way

. /0 oy
that the wall temperature 7', is kept equal to 7 (;:1) the separation is completely prevented

even for the high value M* =240 (M.,=12). On the contrary, heating of the wall moves
the separation point upstream. For the theroetical results of the figures 9 and 10, no experi-
mental confirmation is yet available.

5. Conclusions

A survey of approximation theories for compressible laminar and turbulent boundary
layers with heat transfer at the wall and arbitrary pressure gradient in the flow direction
shows that only a two-equation method has been used up to the present, although an infinite
number of equations is available. A new derivation for the two infinite systems of integral
conditions based upon the partial differential equations for the velocity and temperature
field is given.

An investigation of the significance of the equations with higher order shows that their
property of describing typical boundary effects vanishes more and more with increasing number
v. Hence, it is not surprising that the results obtained from the two-equation method with
=0 in both the systems (11) and (40) are good. However, the consideration of one or two
equations more would be desirable, at least for a check of the results of the two-equation
method in important special cases.

Preliminary investigations have to show how the higher v-order integral terms containmg
the shear stress distribution 7/7, can be evaluated in the case of compressible turbulent
boundary layers with heat transfer. It has been found that this is possible if the power of
the Reynolds number is chosen to be equal for both the wall friction and dissipation law.
We have chosen 0.2.  In spite of this simplification in these two empirical laws, they still fit
the data rather well. Further work on this matter is in progress.

This two-equation method now available with preliminary evaluated universal integral
terms has been applied to the study of the dependence of the friction coefficient on compres-
sibility and heat transfer. Good agreement with experimental data has been found.
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Selected Abstracts

Mechanized computation of thermodynamic tables
at the National Bureau of Standards, J. Hilsenrath
and J. H. Wegstein, Thermodynam. Properties of
Fluids, London, July 10-12, 1957, Proc. Inst. of
Mech. Engrs. (London) (1958).

A high speed computing routine is described which computes
the chemical composition and certain thermodynamic prop-
erties of homogeneous gaseous systems containing up to 5
elements. The procedure, which is applicable over a wide
temperature range in which both dissociation and ionization
effects are allowed for, permits the computation of mole
fractions, compressibility factor, internal energy, enthalpy
and entropy of the equilibrium mixtures at specified tempera-
tures and at specified densities or pressure intervals. Auxil-
iary routines for the IBM 704 are used to compute the
specific heats, specific heat ratios, isentropic expansion
coefficient and the sound velocity. A brief deseription is
given of the library of thermodynamic tables that provides
the input data for these calculations. An appendix to this
paper gives an indexed bibliography of existing thermody-
namic funections for the products of a wide variety of combus-
tion reactions.

Further identities and congruences for the coefficients
of modular forms, M. Newman, Can. J. Math. 10,

o777 (1968).
Let p, (n) be the coefficient of z* in TI(1—z7)r. Let r be odd,
0<r<24. Suppose p is a prime such that p >3 when(r,3) =1

and p>2 when 3|r. Then it is shown that for all integral n,

pr(np?+rv) —vap.(n) +p2p, 1;2]"’) =

rv—mn) ‘
where 'yn:=c~(*f~——'— pir=3/2 q
P

and ¢ and a are certain

constants.

A fractional factorial experiment of the mixed 273"
series, W. S. Connor, Proc. 1/th Ann. Clin. Rochester
Soc. for Quality Control (Feb. 1958).

The paper is concerned with a fractional factorial design for
three factors each of which has two levels and two factors
each of which has three levels. The complete factorial
consists of 72 treatment combinations but the fractional
factorial of only 36 treatment combinations. An example is
worked out.

A note on confid ence intervals in regression problems
J. Mandel, Ann. Math. Statist. No. 3, 29, 892 (Sept.
1958).

A method is presented for the construction of jointly valid
confidence intervals for arbitrary real functions of the
coeflicients of a multiple linear regression. In the case of a
single independent variable, x, the problem of constructing
jointly valid confidence intervals for the x-values correspond-
ing to a set of ‘‘future’” measurements of the dependent
variable is also discussed.

Harmonic generation with ideal rectifiers, C. H.
Page, Proc. I.R.E., No. 10, 46, 1738 (Oct. 1958).

It is shown that the nth harmonic cannot be generated with
an efficiency exceeding 1/n2.  Of the power converted to de
and harmonics, at least 75 percent is de dissipation, and
this cannot be reduced by an arrangement of selective
circuits.
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Two forms of mathematical induction, A. Schach,
Math. Mag., No. 2, 32, 83 (Nov.—Dec. 1958).

It is shown that two principal forms of (finite) mathematical
induction:
(I) If P(1) and if, for all pos. int. n, P(n) implies P(n-+1),
then P(n) for all pos. int. n; and
(IT) If P(1) and if, for all pos. int. n, P(1)&P(2) &...&P(n)
implies P(n+1), then P(n) for all pos. int. n
are equivalent; and that any demonstration based on one of
them can be recast so that it is based on the other instead.

The evaluation of matrix inversion programs, M.
Newman and J. Todd, J. Soc. Indust. Appl. Math.,
No. 4, 6, 466 (Dec. 1958).

A set of thirteen test matrices typical of those occurring in
practice were inverted on SEAC, the 704, and various other
machines. The results were compared with the theoretical
inverses and various error estimates were computed.

Un nouveau critere d’univalence des transforma-
tions dans un R», M. A. Ostrowski, Compt. rend.
acad. sci. 248, 38 (Jan. 1959).

A criterion of univalence of an n-dimensional transformation,
given in a former communication, is generalized; the possi-
bility of further generalizations and refinements is discussed.

On the convergence of the Rayleigh quotient itera-
tion for the computation of the characteristic roots
and vectors. II, A. M. Ostrowski, Arch. Rational
Mech. Anal. No. b5, 2, 423 (1959).

Further asymptotic properties of the Rayleigh quotient
algorthm are derived, and numerical results for some special
matrices are given.

A note of the computation of z°, M. G. Natrella,
Am. Statistician, No. 1, 13, 20 (Feb. 1959).

There is a useful, but not widely-known short cut available
for computing x? for the comparison of two observed frequency
distributions with equal total counts. The advantages are
that it does not require computing the expected frequencies,
avoids problems of rounding the deviations, and requires only
one division per class instead of one division per cell. It can
be extended to three observed distributions, but loses its com-
putational advantages for more than three.

Mode expansion in the low-frequency range for
propagation through a curved stratified atmosphere,
H. Bremmer, J. Research NBS 63D, No. 1,75 (1959).

This expansion is particularly useful when considering
ionospheric propagation at low frequencies. The complex
problem dealing with two media, viz. a homogeneous earth
and a surrounding stratified atmosphere, leads to intractable
expressions. However, as the influence of the earth may
be accounted for by an approximate boundary condition at
the earth’s surface, the problem is then reduced to that
of the outer medium only. The coefficients of the mode
expansion for this simplified problem will be derived while
taking into account the earth’s curvature; however, the
latter proves to be negligible under very general conditions.
The expansion to be derived is wanted in particular when
studying the influence of a gradual transition in the electron
density with height at the lower edge of the ionosphere.



On the theory of fading properties of a fluctuating
signal imposed on a constant signal, H. Bremmer,
NBS Cire. 599 (May 1959).

This Circular is a theoretical mathematical consideration of
the varying strength of a radio signal consisting of two
components: a constant signal, and a fluctuating signal of
the same frequency which has reached the receiver by a
different path. The properties investigated for the composed
signal are the distribution functions of both the amplitude
and phase, as well as the average number of crossings for
either quantity through any given level.

The first part of this Circular deals with the idealized case,
where the fluctuating signal is considered to be ‘“random.”
The second part is a more practical consideration of the
characteristics of the composite signal when the fluctuating
signal is a ‘“quasi-random’ result of first order scattering in
a turbulent atmosphere. In the two extreme cases, where
the received signal is composed entirely of either the constant,
or line-of-sight, signal, or the fluctuating, reflected signal,
the complicated general formulas are simplified.

This Circular will be of interest to those who deal with the
various types of equipment and effects which pertain to the
fading properties of this composite signal.

The mean deviation of the Poisson distribution,
E. L. Crow, Biometrika, pts. 3 and } 45, 556-559
(Dee. 1958).

The mean deviation ofzthe Poisson distribution is easily

determined to be 2mY, where m is the mean of the distri-
bution and Y is the maximum value of the individual Poisson
probabilities. The ratio, R(m), of the mean deviation to the
standard deviation is shown to be a damped oscillation as a
function of m, converging rapidly toward the limiting normal
value v2/x. Furthermore R(m) takes on the normal value
twice between every pair of successive non-negative integers.
Thus R(m) is a poor criterion for distinguishing the Poisson
and normal distributions.

A property of additively closed families of distribu-
tions, E. L. Crow, Ann. Math. Stat. No. 3, 29, 892-897
(Sept. 1958).

Consider a one-parameter additively closed family of univari-
ate cumulative distribution functions F(xz; N\) (H. Teicher,
Ann. Math. Stat., Vol. 25 (1954), pp. 775-778). Let three
cumulants with orders in arithmetic progression exist and
be nonzero. If all three orders are even, or if the first order
is odd, it is also required that F(z; \)==0 for z<0 and F(z; \)
> 0 for « > 0. Consider linear combinations, with real,
nonzero coefficients, of a finite number of independent vari-
ables with distributions in the family. It is proved that the
only such linear combinations whose distributions are also
in the family are those with coefficients unity. The additively
closed families having this property may be called strictly
additively closed. 1t can be shown that (one-parameter) addi-
tively closed stable families of distributions (normal and
Cauchy in particular) with characteristic functions continu-
ous in N\ are not strictly additively closed, while Poisson,
generalized Poisson, binomial, and gamma families are
strictly additively closed.
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