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The bes t -known theoretica l works on boundary-layer problems, especia lly in t he case 
of compressible flow wi thout or w ith heat t ransfer, are related to the la m in a r boundary 
layer , although the turbulent bound a ry layer is, in pract ice, often more inte resting. The 
la min a r boundary layer is more ea~ ily accessible to theoretical t reatment because clearly 
defin ed r elation s exist betwee n t he v iscosity !J. a nd the shear s tresses T . In the tu rbulent 
case, empirica l relations must be in trod uced. Therefore, a ttemp ts to get exact solu t ion s 
al'e no t " 'orthwhile, while effor ts to obta in approx imate solu t ions, based for in sta nce on 
t h e von Karman-Pohlha usen princip le (Z. Angew. Math . u. i\!("ech. 1, 233 and 252, 1921) 
of util iz ing in tegra l conditions, appear to be appropriate to t his problem . In the las t few 
years the accu racy of such approximate solu t ions for the incompressible case was notice
a bly improved by the a ppli cation of a new e nergy in tegral co ndition in co nnectio n wi th 
a new emp irical law for the dissipat ion in tu rbulent bounda ry layers, stated by J . Rotta 
(Ing r-Arch. 20, 195, 1952) a nd E. Tru cke nbrod t (Ingr-Arch. 20, 212, 1952). The emp irical 
laws for dissipa t ion a nd for t urbul ent wall fri ction , which a re needed in th e p resent approx i
m ate theory, are formu lated on the bas is of av a ila bl e m easurem e nts fo r in co mpressible flow. 
Generalization to th e compressib le flow with h eat t ra nsfer is m a de from physical co nsidera 
t io ns. Calculated results agree sat isfacto ri ly wi th availa ble experim ental data. Some pos
s ibi li t ies for improving as well as fo r simplify ing the approximat io n theory a re outlined. 

1. Introduction 

In principle, problems of compressible laminar boundary layers may be solved by using 
the partial differential equations for the velocity and temperatur e fields, and the thermodyn amic 
relations between viscosity }J. , density p, pressure p , and temperature T. Exact olu tions for 
special cases have been worked out by several au thors [5,6, 7,8).2 Nevertheless, approximate 
theories of the vo n Karman-Pohlhauscn type have been successful because of their easy adapt
abili ty to the most general case of flows lvith arb itrary pressure gradient in flow direc tion 
[9 through 16]. 

An example is the case of a compressible turbulent boundary layer , which is more important 
in practice because the controll ing viscosity is no longer a ma terial property, such as the molec
ular viscosity, }J. ; rather, i t is lik:e so-called "apparen t viscosity," }J.a, whieh is essen tially 
determin.ed by the empirical laws of turbulen t mixing motions. In view of the empirical 
character of th ese laws, attempts of exact solu tions of Prandtl's boundary layer equations 
are indeed inappropriate. H ence, approximation theories of the von Karma n-Pohlhausen 
type are indeed the only ones which are well adapted to the problem of calculating turbulent 
boundary layers. 

The first solu tion was given by E. Gruschwi tz [17] in 1931. He introduced a one-parameter 
family of empirical tmbulent velocity profiles with parameter H , and, as t he second param
eter of the problem, the boundary-layer momentum-loss thickness 02' Gruschwi tz t hen 
derived an empiri cal ellergy law. This was used together with the known von Karman in tegral 
condition for the m.ome ll tum within the boundary layer, to determine the two parameters 
Hand 02 as fun ctions of x for a given pI' ssure gradient. 

The so-call ed Gruschwitz energy law could not be verified in a general mann er a nd appears 
therefore somewhat doubtful. Moreover, it is restri cted to the incompressible case. A definite 
improvement of t he approximate theory for turbulent boundary layers was accom.plished 

I This work was supported by the U.S. Air Force, through the Office of Scientific Research of t he Air Research and D evelopment Command. 
2 Figures in brackets indi cate the literature references at the end of this paper. 

53 



when several authors [9 through 15] independently (between 1935 and 1946) showed that 
an integral condition of the energy within the 'boundary layer may be derived from the Prandtl 
boundar:v-Iayer equation in the similar way as for the momentum. Some years la ter (1950) 
J. Rotta [3] derivcd from measurements the empirical law for the dissipation within the turbulent 
boundary layer, which was needed for the applications of the new integral energy condition. 
At about the same time the empirical law for the turbulent wall friction occurring in the mo
mentum cOJJdition was improved by new accurate measurements of Ludwieg and Tillmann 
[18], such that it may be generally valid for positive and negative pressure gradients in flow 
direction. 

K ow, on the basis of the momentum and energy integral condi tions on the one hand 
and the two empirical laws for the turbulent wall friction and dissipation on the other hand, 
a two-variable method approximate theory of boundary layer could be developed, similar 
to that formed)T worked out by several authors for laminar boundary layers [9 through 16]. 

For the incompressible case, the integration method of E. Truckenbrodt [4] (1952) (similar 
to that developed by A. Walz [19] in 1941 for the laminar case) appears to be the simplest. 
However, applications to compressible turbulent boundary layer failed, because the semi
empirical laws for wall friction and dissipation could not be set up, sin.ce before that time 
measurements of turbulent boundary layers at high Mach numbers were not available in 
sufficient generality. 

Basing his analysis upon simple physical facts about the turbulence mechanism the 
author was able to derive a generalization of the empirical laws for wall fri ction and dissipation 
to include compressibility, [26, 27]. 

~I 

The inclusion of the case of heat transfet' , however, implies a new difficulty insofar as the J 
integral energ~- co ndition cierived from PrandLI's equation considers only an energy flux along 
the bocl~ ' surface but does not relate to an energy flux through the wall. In the latter general 
case \\'e must start from the general differential equation for the temperature field. In addition 
it must be checked whether the above compressible considerations would include heat transfer 
at the wall. 

As suggested by L. E. Kalikhman [13] for the case of laminar boundary layers the partial 
differential equation for the temperature field can be transformed by partial integrations into 
an infinit e system of ordinary differential equations similar to that obtained by partial integra
tion of Pranotl 's boundary la~Ter equation. 

IIence, two infinite systems oj ordinary differential equations with a twice infinite number oj 
unknowns are available which appear to be completely equivalent to the two partial differential 
equations jar the velocity and temperature field. 

Some general properties of these systems, which had not yet been ou tlined in the li terature, 
,,-ill be discussed. 

As a first step of evaluation of the possibilities involved in these systems of equations, a 
" two-equation, two-unknown" method is investigated. This is about as simple as the known 
methods for the incompressible case [4 , 19]. Nevertheless results obtained are of sufficient 
aCCUl"ac~- for engineering purposes. 

The application of the new method is illustrated in some examples. Direction.s for improve
men t as well as for further simplifications arc indicated . 

2 . Partial Integration of Prandtl's Boundary-Layer Equation for a Compressible 
Two-Dimensional Steady State Flow Along an Insulated Wall 

2 .1. Derivation of an Infinite System of Ordinary Differential Equations 

As proposed by Leibenson [9], Golubew [10], Sutton [ll], K. Weighardt [12], and E . Truck
enbroclt [4], Prandtl's system. of partial differential equations for a compressible two-dimen
sional fio'\- along an insulated wall may be transformed in to an infinite system of ordinar.,
differential equations by partial integrations. We will give here a new derivation of this 
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system which is app ropri ate for our purposes. 
Let x, y be t he coordin ates, t he x-direction being take n everywhere tangent to ti le wall. 

F urther u and v are the compo nents of t he veloci ty vecLor , respeet ing in th e x and y directions, 
f.1. t lte viscosit~" coefficicnt , 0 the den sit~T coeffLcient. Th e n Pranclll 's bou ncla r.v-lay er equat ions 
may be written as: 

a( au) 
ou+ au _ duo + f.1.()Jj 

pu A pv A - PoUo I A ' 
u X u y G X u y 

(1 ) 

(contillllit\" ee["uaLion)" (2) 

Here t he subscript 0 denotes that the quantity is referred to t he edge of the bOllllCintT 1a.\"('l". 
v'lTe note that t his system is valid eve n for turbulent bou nd a!"y laye rs, if t he veloc i ti es u a nd /} 
a.s well a.s p ar e co nsidered to b e t he mean valu es over t ime a nd if f.1. is the efl"ectlve valu e f.1. = f.1. e, 

whi ch co nsists of t he molecular viseosi t~T f.1., t he apparent v iscosi[..\" /l a. Thus, 

(3) 

For simpli city, howe ver, we p refer Lo usc in boLlI cases, lamin a r a nd tu rbulen t., t hl' same s.nnbols 
u , v, P, and /l , knowing t hat in t he turbulent case we have f.1. = /l e. 

First we mul tiply eq (1) by u ' a nd acid to it eq (2) mul tipli ed by u ,+I/ (v+ 1). 
Part ial in tegration f rom y = o to y = 00 then y ields after elementaLT tra nsfo rmat io ns, 

(v= 0,1, 2, .. . ,00) .3 (4) 

H erein the foll owing notations a re used: 

J'Uo (U)' 0 ( 7 ) e,= (v + 1) -- - ----z clu, 
o Uo au PoUo 

(5) 

100 [ pu P (U) '+2] j ,= - - - - dy , 
o PoUo Po Uo 

(6) 

9,=- (v+J) J ' oo [~_(3!:) '] dy, 
o PaU, Uo 

(7) 

( ) 

From th e stru cture of t he integral t erms (5) throug h (7) we see t lmt for practical purposes i t 
will llOt be n eceSSalY to ex tend the in tegration process b e.\"ond a certain cl is tance y = 0, for 
wbich we have u = uo, p= po, 7= 0, because for y>o all integrands became pra cti cally zero. 
The layer th ickll ess 0 is somewhat vague in v iew of the asymptotic behavior of 71 (Y) at t he 
ou tel' edge. For approximate theories, h owever, i t is very useful and m ay be defined as wall 
distan ce y at which u reaches the value U oo with an accuracy better than 99 percen t. Hellce 
we pllt 

(9) 

2 .2. Discussion of the Infinite System of Equations 

Putting: v= O we obtain t he usual momentum in tegral con eli t ion of von lCannan-Pohlha li sen, 
for v= l we h av e Weighardt 's enerKv integral condition. Onl~T t hese two cases haH been 
considered up to the p resent, but it is clear t hat all oLber r em aining integral conditions of the 

3 )J l11'1 Y have also \"a1u es between - (Xl and + (XI, c\'cn nonintcgcrs as 0.1 ,0.2, .. . and so on. 
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infinite system (4), the so-called high er momentum conditions (11 = 2, 3, 4, ... ,00), would be 
important too, since only the complete system is equivalent to Prandtl's equations. 

Let us first inves tigate the m eaning of the equations of order II , higher than unity. 
First eq (4) is rewritten in a more con venient form. At the ou tel' edge y = ° of th e boundary 

layer, we may assume adiabatic conditions of state. According to the basic laws of gas dy
namics we have between the density of Po, the velocity 110, and the Mach number lvlo=uo/ao 
(ao=local sound velocity) the following relations (see, for instance, R. Sauer [20]): 

(10) 

Substitution of (10) into (4) gives 

(11) 

wh ere the prime denotes differentiation with respect to x. 
The integral terms c" f" g, represent the unknowns of the system. They contain the 

velocity and density distribution s 1l (X,Y)!uo(x ) and p(x, y )/ Po (x), respectively, which are ind eed 
the real unknowns of the problem. 

The only way to obtain a solution of t he problem was to introdu ce approximations for 
u/uo and p/ Po according to von Karman-Pohlhausen 's idea, for instance by means of a one
parameter family of experimental curves. In the incompressible case (p/ Po= 1) the problem 
was indeed solved in this way by taking two equations from system (11 ) (for v= O and 11 = 1),· 
using as unknowns the boundary layer thickness ° or one of the functlOns c" f" g" and, as the 
second unknown , a shape parameter H of the velocity profile. In this case the ratios c,/o, 
fv /o, gv/o, as well as c,/J, and g,/. f" are only func t ions of th e shape parameter H. 

The compressible case involves n ew variables p a nd T which are related by 

(13) 

smce op/oy= O. Additional equation s wi.ll be needed to m ake the problem determinate. 
This is don e for the thermal boundary layer . While we will r eturn to this problem in section 
3 of this r eport, let us first discuss tb e prinCIpal properties of the infinite sys tem (11). 

The order number v may for installce be in creased toward 00 . In this case we have from 
equations (6) and (7), 

and 

becfl.\I se 

10 pU 
j ",= - dy , 

o PoUo 

( 11 ),+2 (U)' 
110 '~ '" = U o ri '" = 0, 

11 
fo1'O<-<l , 

110 

(14) 

(15) 

(16) 

• The original Pohlhausen method only used the equation ,=0 (momentum eq uation) [rom this system. As the second equa ti on, Pohlhausen 
introduced tbe so·called wall condition, 

(12) 

which follows directly from Prandtl's eq (1) for the point y=O. It is obvious that tbis condition, valid for the wall point, would be doubtful if used 
for fixing the sbape parameter. Indeed essential improvements of results were observed wben tbis wall condition was neglected and replaced by 
the eQnation for ,=1 (see, for instance, [16]). 
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whatever the functions UjUB and pj PB may be in detail. 
The integral expression (e.).--)", is found to be zero as follows: 

For O<~< l it yields 
UB 

[ (1+1') (~)'J -7 0. 
U o V--1 CO 

Since fur thermore the shear stress r and its derivative arjay are vanishing at y = o (U = UB) for 
arbitrary velocity profile UjUB, we have 

(17) 

Hence in the limiting case of I' =ro , system (11 ) redu ces to 

(18) 

This equation may be called the mass-jlow equa,tion and is nothing less than an averaged form 
of the continui ty equation . With the aiel of (10) it can immediately be in tegrated to 

(19) 
wh ere 

JOB ( PU ) 01= 1-- ely 
o PBUB 

(20) 

is Imown as the displacement thickness. This relation lias Dot previously been used in approxi
mate boundary layer theories. It expresses that the mass flow between the stream lines y = o 
and Y= OI must be constant. 'Ve have no t ascertained whether relation (19) will be very 
useful in pract ice. But it is clear that if t he velocity and density pr061es are once determined 
ill the inn er part of the boundary layer (t hereby determillillg the value 01), t he total boundary 
layer thi ckn ess 0 is determin ed also by r elation (19) . 

We have found that if t he two-eq uation system 1' = 0 , 1' = 1 with two unknowns is used, this 
relation is mostly violated. N ever t hcless the essen tial properti es of t he boundary layer , for 
example, wall friction an d separatio n behavior, appear to be correct ly described. 

From this consideration ahout the m ass-flow equation as limiting case for v = ro, we may 
learn that the higher the order v, the less details of the velocity profile will be included in the 
corresponding equation, because the term ev, which con tains the shearin g stress (and with 
this the en tire boundary layer effect), approaches zero , with v--':>ro . 

It is therefore not surprising that ef] uations corresponding to low order, for example t il e 
equation for V= O and 1' = 1, still give a very good descrip tion of the properties of the boundary 
layer if a rather physically reasolJable family of velocity profiles is in troduced into t he eq nations. 
A good way in principle as suggested for the incompressible laminar boundary layers a lon g t ime 
ago by several authors [9,10,11,12], would be to restri ct to a finite number of equat ions of the 
system, preferably to those of low order, say up to 1' = 5 or 10, and to in trodu ce a polYll omi al 
expression for the velocity profile 

U U [ Y ] -=- ;---( ),H 1(x), H 2(x), H 3 (x) .... , H .(x) 
UB UB U2 X 

(21) 

with v coefficients H . Then 1' + 1 ordinary differential equations will allow the determination 
of the J) coeffi cients H . and 02 as functions of x. In this case no detailed assumption about th e 
velocity profile, except some trivial boundary conditions, must be made. 

It appears worthwhile to study this problem with new effor ts, because its solution will 
be to a large extent equivalent to the solution of Prardtl's boundary layer equation, but needs 
no restrictions as to the pres('nbed pressure distnbution p(x), and will in principle be applicable 
to tbe more importan t case of turbulent boundary layers too . Since we want to include the 
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compressible case with heat transfer at the wall, we must simuJ taneously consider the temper
ature boundary layer. 

The infinite system of equations derivrd from Prandtl's equation contains no terms which 
take into account an energy flux through the wall. Therefore, only the momentum equation 
11 = 0 and the mass-flow equation 11 = 00 of this system can be used in connection with heat 
transfer problems. All other equations are worthless in this respect. The essential step to 
get out. of this difficulty is to include the partial differential equation for the temperature field 
in this problem by transforming it into an infinite sys tem of ordinary differential equations 
similar to that obtained from Prandtl's equation. 

3. Derivation of Integral Conditions From the Partial Differential Equation for 
the Temperature Field 

The general partial differential equation for the temperature field in a two-dimensional 
steady state flow may be written as follows, if the enthalpy i=cp T is introduced: 

(22) 

H ere A denotes the hrat conductivity (kcal/rn sec 0 K ), Cp the specific heat at constant pressure, 
u, v must satisfy the continuity equation 

(23) 

Now, if we multiply eq (22 ) by i, and eq (23) by i V+1/v+ l and add the mnltiplied equations, 
we obtam 

( ) { duo. (OU)". + ° (A oi) . } v+ 1 -upouo - '/,v+ J..L - '/,V - -. - tV . 
dx oy oy e" oy 

(24) 

By partial integration of eq (24) with respect to y from y= O to y =oo and by substltution for 
v from eq (23) we have 

Gll [ r OO (PUiV+l_ pouoi'i+l)cly] + tel [(Pouoi"o +l) o] -i"o+ l lel [ r oo (pu- poUo)dy] -i"o+l_td- [P ouoo] 
ex Jo ex ex Jo ex 

{ dUoJ oo .. duo . J O. [A Oi ] J' oo . (0'11)2 "I =(11+ 1) -Pouo-d (u'/,v-Uo'/,"o)dy - pouo -,- Uo'/,"oo+ '/,vd --~ + J..L '/,v ~ dy r ' 
x 0 C x 0 cp uy 0 U '/, .J 

(25) 

The terms with the factor 0 vanish because of the following kno\\'n rela t ion in gas dynamics: 

(26) 

which follows after a short intermediate calculation from 

2 

~0=(k- 1 )Ml, 
to 

(27) 

and 

a* = eritical sound nlocity (28) 
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------ -- -------

~ dlv!,= J..... dv, (1+ k- l JI![2). 
M , dx v, dx 2 ' 

(29) 

Using notations for the integral terms: 

- l - -.i dy = - 1- -.i dy= ¢v f '" pu [ ( P )V+l] J" pU [ (p )V+l] 
o p,uo p 0 p,uo p 

(:30) 

(co can be replaced by 0, because the integrand is almost vanishin g for ?J ~o) 

f l(p,)V T (U) 
o P TW d U , = Ev , 

(:3 1 ) 

f "h(P')V ~ [~ O( T /T ') ] dU = yv 
o P OU T w o (u /uo) , 

(:32) 

with 

T = }J. ~u, T 1O= [}J. ~U] , }J.~7J=Pr=constant Prandtl num bel' , 
uy uy II ~ O f\ 

(33) 

and 
T i ps ( - OP) 

T .=-:-=-= because :;;-= 0 , 
_ u ~ p uy 

(:34) 

equation (25) may be rewri( ten as follows: 

(:35) 

cp ,., Ev and Y v (with )I as an arbitrary number) are an infinite numbcr of unknowns in tltis infinite 
system of ordinary clitrcrclltial cquations. The real unknowns, howevcr, are tlte dist ributions 
u(x,y )/u ,(x) and T (x, y )/T s(x) which we are trying to determine by means of tile infinite number 
of in tegra1 conditions as expmssecl in the system (35). N ow, before going to t lte solution, let 
us transform it in to a somewhat more convcnient form. Firs t a new variable is introducecl: 

(36) 

where 02 is the displacemcnt th ickness, defined by 

f o pU ( u) 02= - 1- - dY= io 
o p,us Us 

(see (11)). 

It is to be remembered that 1Jv is finite when A1,-70, while ¢v has the disadvantage of becoming 
zero \\·hen A1,-70. Furthermore, 

(38) 

(::9) 

With those notations (35) can be rewritten as follows: 

(1'= 0, 1, 2, ... ,co). (40) 
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In principle a possible way to solve tile problem of determining the distribution u(x,y) /u .(x) 
and p(x, y )/p,(x) is to use polynomial expressions which fulfill the boundary conditions of the 

velocity and thermal boundary layer, by choosing j coefficients which satisfy j equations of 

the system (40). It is obvious that in the present case the procedure is more complicated 

than in the case of system (ll ) . However , it may be possible to overcome by taking the solu

tion from the exact theory for the temperature profile T/T, or the density profile p/p,= To/T. 
Although the solu tion is exactly valid only for the special case of the fiat. plate (dp /dx= O), it 

may be considered as a good approximation even for the more general case with dp/dx~O 

(see for instance H. Schlich ting [21 , p. 282]) . An essentia l property of this solu tion for T/To is 

that it depends not upon x but only upon u/uo with the .Mach numbers 1.110 and the heat transfer 

coefficient C7' as parameters. 

With reference to a paper of von Driest [23] this solu tion for T/To for the case dp/dx= O 
can be written as 

(41) 

with 

(42) 

T - T, 
r = - ' --= recovery factor 

To- T, ' 
(43) 

Tr- Tw h f 
CT= eat trans er parameter. T, (44) 

Thus the temperature and density profiles oecurring in the integntl conditions (36) to (39) 
are uniquely correlated to the velocity profiles u/uo, which now are the only unknown functions 
ill the problem. So far all considerations and derivations are valid both for the lamin ar and 
t urbulent case. For the solution of the laminar case, we have only to introduce an expression 
for the velocity profiles. The viscosity, as principal pal ",meter of all boundary layer theories is 
known to be dependent only upon the temperature T, for instance aecording to Sutherland's 
law. 

(45) 

(with C= 113°K for air, Tl being a reference temperature) or to its more convenient approxi
mation 

M (T)W ;;= Tl (46) 

with 

(47) 

(w"" 0.80 for temperatures T between 233° and 373°K, w= 0.5 for very high temperatures, 
w= 1.5 for very small temperatures near the zero point). 

In the case of turbulent boundary layers which are mainly considered in this report, an 
empirical relation for the efl'ective viscosity (as the sum of the apparent and moleeular viscosity) 
must be introduced besides the assumption for the velocity profiles. Before this is don e, a 
simplification of the systems (11 ) and (40) will now be considered. 
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4. Special Case of a Two-Equation System 

4.1 General Considerations 

As a first step of evaluation of tbe possibilities involved in systems (11 ) and (40) we will 
make a so-called one-parametric representation for 11 /U" viz: 

- = -- - , H (x) , U U ( Y ) 
U , u, o(x) 

(48) 

wh ere J-1 (J.) is the form parameter of the velocity protile (as one unknown of t he problem) and 
o(x) is the boundary layer thickness (as second unkown). Therefore , to be correct, t he r elations 
(48) should be denoted as a two-parametric on e. 

It must be pointed out that o(x ) may b e replaced by another characteristic length of th e 
boundar.v layer, preferably by th e momentum-loss thiclmess 02(X) , thu s avoiding any assumptioll 
as to the point wbere u /u, reach es tIl e valu e 1. 

Since we have now decid ed to li se only two unknowns, H (x) and 02(X), we need only two 
equations besides the empirical law for effective viscos iLy . 

W e choose the simplest equations (namely those for v= O) from both the system (11 ) based 
upon Pralldtl 's eq uation (1 ) and the system. (40) based upon the general temperature fi eld 
eq uation (2).5 

These eq uations are: 
a. The momentum integral condition from system (11). This is the only equation of tbe 

system (11 ) which , besides the mass-flow equation, is valid even in tbe case with heat transfer at 
the wall . 

with 

with 

Tw 
eO=- - 2 ' 

p,U , 

90= ( '(l-~)dy=ol' J 0 p,U, 

b. The energy integral condition from system (40) 

I u~ 'lio 
7)0+ 7) 0<]) - + -;-= 0 

U , U2 

( ' U (l-~)dy ] J 0 u, p, 
7) 0= - (k - 1) M~ 02 ' 

(indepe ndent of v), 

'liO= --2 - d - + 7)0--- ) Tw {51 T (U) 10} 
Pou , OTw Uo 2 s 

(49) 

(50) 

(51) 

(52) 

(53) 

(54) 

(55) 

(56) 

• T he value of the simplemass·flow equatiou (10), which maya!so be obtained from system (40) by putting p = - 00 , a ppears to be limited. btl! 

hos not yet been studied ill detail. 
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e Cr 
(57) 

(for PT= O, 8 to 1) . (58) 

For the practical application of the two systems (49) and (53 ) it was found to be very 
helpful to evaluate once for all the universal functions 01 , 02, 770, <P , and \]10 for the interesting 
rallge of the parameters H, Alo, and e (or C1')' Such an evaluation will be based upon a certain 
physically reasonable assumption about the velocity profile, as represented by (48). These 
assumptions for u/uo must of course be different in the laminar and turbulent cases. In th e l U. 
turbulent case, the empirical laws for the wall friction T w and the dissipation integral 0 TOU 

must also be introduced. The evaluation for the laminar boundary layer contains no diffi
culties, and will be dealt with in a separate report. Only the more complicatcd case of the 
turbulent boundary layer, which needs some special co nsiderations will be treated in this report. 

4.2. Two-Equation Method for Turbulent Boundary Layers 

lY e now consider: a) A suitable expression for empirical turbulent velocit.\- profile", 
b ) an empirical law for the wall friction in a compressible turbulent boundary layer with heat 
transfer, c) an empirical law for the dissipation in a compressible turbulent boundary layer 
with heat transfer, and d ) a method of solution of the system of eq uations (49 ) and (53). 

Q. The Turbulent Velocity Profile 

D etailed investigations of many authors [23, 24, 31 have shown that the turbulent boundar.'
layer can be divided into several (usually into two) regions with respect to the direction normal 
to wall , in each one of which different laws for the influence of the outer pressure distribution 
and the Reynolds number are valid . Thus a general representation for the velocity profile 
requires a somewhat complicated formula. If only mean properties (integral quantities ) of 
the boundary layer are considered and put into correlation as in our case, it will be sufficient to 
have an expression which contains less details but includes the whole range of the boundary. 

Such a formula, which is proved valid even at high 11ach numbers, is 

(59) 

where k is the form parameter with valu es approximately 0.1 and 0.7, anti is a unique function 
of an~- H to be chosen. 

A disadvantage of (59) is of course that at the wall y = O the value (ou/oY)v=o is infinite for 
all O< k< l and that furthermore, at y/8= l, ou/oy does not vanish as is physically required. 
But we ha ve shown in previous publication [26, 27] that these facts do not essentially influence 
the integral terms of the approximate theory, since the wall-friction law and the relation between 
the velocity profile u/uo and the shear stress profile T/ T 1» are separa~ely introduced as semi
empirical laws. 

As an example of the suitabili ty of this power law even for Mach numbers up to about 7 
and with heat transfer at the wall , we refer to figure 1 which is drawn from experiments of H. E. 
Wilson [25]. This simple power law is very adequate to the purpose of this approximate theory 
with regard to the possibility of closed evaluation of the integral terms. Figure 2 shows the 
order of magnitude of the errors in the ratio (03 /02 )£ plotted against (oJiozL, 
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Comparison of experiments (according to J. B otta and 
u 

I,. \\"cigbarc1 l) with approxi ma t ion po\\"cr la \\" u;= 
(~ )k(TI). 

caused b~- th e approximati.on of the experimen tal vclocit~- profiles wi.th Lhe power law calcula ted 
for tlte incompressible case. We see Lhat the maximum error is about 1 percent. The neglect 
of a certain influence of the Reynold s number 011 the velocit.\T profile causes errors less than 1 
percent. Therefore, the use of Lhe power law (59) for our approxima le theory appears to be 
justified. 

Some improvement at t he outer edge region of Lhe bou ndary layer can be reached without 
mu ch compli cation by taking the following form : 

u 
- = taoh [b log (l + ay)], 
u. (GO ) 

where a and b arc two form-parameters, comparable to H I alld H 2 , a may be used for t he pur
poses of the adj ustment of seales in the on e-parametric theory, and tho ad j ustment of wall 
friction in tlJC two-parametric theory. The relation (60) avoids the use of 0 whi ch is ph~Ts i cal1y 
vague, and yields automatically an asymptotic behavior near the edge of the boundary layer. 
At the same time it prevents an infinite slope aulay at y = O, 

Investigations of the practical importance of express ions (60) (which of course, ex-dlldes 
the possibility of closed integrations) are in progress. 

h . The Wall Friction Law 

For this we may refer to the author's publications dealing with Lhe rase of compressible 
turbulent boundary layers without heat transfer [26 , 27]. liVe now have 0 111 .\' to investigate to 
wh at extent the relations found there will be influenced by heat transfer at the wall. 

As a summary of th ese earlier investigations we can state that t he laws for turbulent mixing 
mo tion found for the incompressible case, are valid in Lhe compressible case, provided that the 
fluctuation velociLy is less than the sound velocity, in other words, if the velocity fluctuations 
are not accompanied by density fluctuations, Now, since the turbulent flu ctuation velocity 
in boundary layers is found to be small , say 10 percent or 20 percent of the main velocity u. 
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at the outer edge of the boundary layer, M o= Uo may be increased to abou t 10 or 5, respectively 
~ , 

until the fluctation motion becomes compressible in character. Therefore we conclude that up 
to about Mach number 1\1= 10 or 5, respectively, the laws for incompressible fluctuation may 
be considered as valid to a first approximation. Only the flow medium properties JJ. and p are 
changed . These, however, are taken into account by a suit ably chosen Reynolds number. 

As to the effec t of hea t transfer at the wall , this will change only the flow m edium properties 
and therefore can be included in the compressibility effect and in the Reynolds number , wluch 
itself plays a decisive role in the wall friction and dissipation law.6 

The momentum law (v= O from system (11» contains the term Tw/PoU~ which is tbe 
ratio of the wall friction Tw to twice the s tagnation pressure. This ratio can be rewritten 
as follows : 

JJ. W(~)w [O~~j~2o)1 
Pou~ Po'u'ooz 

(61) 

J.1- w 

A defini tion of a R eynolds number 

R o = Pou ooz 
2 JJ. w (62) 

is suggested which contains the viscosity JJ.w at the wall and, by means of t he integral term 
02, an averaged iner tia term pou ooz. Indeed the momentum integral condi tion (49) brings into 
relationship the wall friction and the averaged inertia forces. The pressure forces are not 
of in teres t in this connection. Any other defini tion of the R eynolds number appears to be not 
suitable in the presen t problem. In the lllcompressible case these detailed considerations are 
of course no t necessary. 

In the numerator of eq (61 ) we have the dimensionless slope of u(y ) at y = O. As scale for 
the length y the value (02) in comp r. = (02); as a wholly geometrical quantity , thus concentrating 
all influen ces of Mach number and heat transfer in the universal function 02/ (02) ;. This func
tion is theoretically given , when expressions for u /u o and pip" ~ (48) and (41 ), are fixed. X ext 
the following term is considered : 

of eq (61 ) as the wall friction law for incompressible flow. For turbulen t boundary layers the 
slope [o (u/u o)/OY/02)i]W depends itself on the Reynolds number R 02 in such a manner that 

with n = 0.268 (according to Ludwieg-Tillman [1 8]) and 

as an empirical function , which expresses the influence of shape of u /uo• 
Therefore, we can finally write 

(64) 

(65) 

6 A certRin confirmation for tbese considerations may be seen in fig ure I , which sbows that the velocity distribu tion and therefore the related 
shear stress distribution r !Tw too, is the same as in the incompressible case. 
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Tw a(I-J) 82 (I-J M 
- u2= R O. 268 · -« ) ,L 0,0) 
Po 0 02 Uz i 

(66) 

c. The Dissipation Law 

A generalization similar to that found for the wall friction can be derived for the dissipation 
in a compressible turbulent flow with heat transfer. The energy integral co ndition (53 ) CO Il

tains the term 

rU! J 0 Tdu= D (dissipation) . (67) 

'Vritten in dimensionless form, 

(68) 

The term (T,oIpoul) .,. is given with eq (64). The remainillg integral term is found empiricall.,
by T. RoLla [3] and E. Truckenbrodt [4] to be 

(69) 

so that iL finall y yields 

(70) 

(71) 

as the part ,,·hich represe nts the diss ipation law for the incompressible flow. To be quite 
correct, a detailed consideration must be made on the definition of the Reynolds number 
used ill CC[ (69). By definition t /lP dissipation integral expresses the amount of energy dis
sipated by tbe v iscosity in to heat (with the intermediary of turbulence). The rela ted R eynoldR 
number should be more exactl~T defined with a mean viscosity Ii- instead of !J. 1O .' because the 
energy transfer by viscosity occurs within the whole boundary layer , although mostly near 
the wall. 

Therefore eq (69) should correctly be written as 

J' I .!... d (u ) = f3(I-I) (!J.~v)O . 1 Hg. I 

o T '0 u. a (I-J) !J. 2 
(72) 

II-hen th e definition (62) for the Reynolds number is used. This correction, however , was 
proved to be in general so small that it is not eSRential in the scope of this approximate theory. 

d. SimpUied REpresentation for th'! Wall Friction and Dissipation Law 

The expressions for the incompressible wall friction and for the diss ipation law were 
given by E. Truckenbrodt [4], who evaluated some semiempirieal relations found by T. Rotta [3]. 

The results of the evaluation of E. Truckenbrod t arc given in his two figures 3 and 4 
which we have r eproduced in the present figures 3 and 4. These have been presented in. 
order to innstigate whether or not it will be possible to find a new Ruitable fitting for these 
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FIGURE~3 . 1 Vall friction law for in
compressible turbulent boundary 
layers. 

rrhick line: evaluation of experiments of 
J. RoU,a-rrruckcnbrod. 

Dashed line: evaluation cl experiments of 
Lud wicg-'rillmann . 

D.shed-dotted line: new approximation with 
0.2 power law. 
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two empirical laws whi ch p ermits the use (for the sake of simplification) of only one po\\-er 
of the R eynolds number instead of two (0.268 and 0.168). 

W e find that if we take the power 0.2 in both cases the fitting of the experimental result 
in the most important range between R oz= 103 and 105 will b e rather satisfactory. 'fhe laws 
(66) and (70) may then be wri tten as 

0.0636 . 10- 0.665 (0102 ), 02 

R~; 20 • (02) i 
(73) 

D 0.00761 02 
P U 3= RO .20 . -(") o 0 . 0 ~ U2 i 

(74) 

This simplification prevents the universal function 'l!o of equation (56 ), from being dependent 
upon R 02 besides H , kIo and o. Thus an important simphfication in the r epresentation of 
this functlOn seems possible without noticable loss of accuracy. D etailed investigations on 
the reliability of this simplification are now in progress. 

This simplification will b e important if the use of higher momentum equations 
(v = 2, 3, 4, . . . ) is made. In this case all empirical parts of the wall friction and dissipation 
law are concentrated in the term Tw/PoU~, and the integrals of type 

i 1(po)V T (U) - - cl - and 
o p Tw Uo 

rU! (E.o) jI ~ [ ..!.... oCT/To) ] du 
Jo p au Tw o(u /uo) 

are d ependen t only upon the shape parameter H , the :Mach number ll!lo, and the heat transfer 
parameter o. Therefore they can be evaluated, when the family of velocit,y profiles is chosen. 
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4.3. Evaluation of the Universal Functions of the Two-Equation Method for 
Laminar and Turbulent Boundary Layers 

The evaluation of the universal functions occulTing in the two-equation method a de clibecl 
in ec tion 4 has already been made in the au thor's publica tions [26 , 27] for Lhe ca e of an in ll 

lat ing wall. 
The evaluation of these functions for the case with hea t transfer, as sugges ted by Lite 

au thor, is now under way at the DVL Institute for Applied MathemaLics and ~[echa nics, 

Freiburg/Br, by considering fU'st the turbulent boundary layer. 
A preliminary evaluation for this case with slide rule accuracy h as been available for 

about one year and was used for cal culating some illustrating examples which will be discu seel 
in the following section. 

This preliminary evaluation showed that the effect of heat transfer on all universal func
tions can be linearized in a rather good approximation, such tha t they may be r epre en ted 
in the form 

Fv(H ,M r; ,e) ~F.(H,MoO) + e·G(H, Jj;fo) . (75) 

This resul t \\'ill be cheeked after the completion of the final evaluation. 

4.4. Examples- Flat Plate 

For Lhe sake of completeness we present here again a n impOl'Lall t resul t obLaillecl for 
the laminar case with insulated wall, fig ures 5 and 6. Pohlhausen 's meLhod based only upon 
the momentum integral conditlOn (49) and the wall condit ion (13) gives H = 1.572= const., 
for the case of dp/dx= O a t each Mach number. The considera tion of the C'lH'rg,\T in Legral 

� .60,---------,-------,-----, 
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1.551-------!-----

/ Laminar Separation 
_J ___ ____ _ 

I 
i 

---j 
I 

1.500~-------,,~.0:--_--.,..M'";;--C2=-'.a=---~2 . 437 

(Ms= (0) 
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condition (53) instead of eq (13) gives a variation of H with il;f : and a corresponding cllange 
in the behavior of the friction coeffi cients CI / Cli (local at sam e values R oz ) and OF/ OFi (averaged) 
with the ;,1ach number jJ;f : . It is very interesting th a t t he new behavior of CI / C/i (1'\11:) is 
almost coin cident with the results of an exact theory of H . 'Vendt [8]. This res ulL shows 
the effectiveness of the energy in tegral condition. The related resul ts for the compress ible 
turbulen t boundary layer with and without heat t ransfer ·are plo tted in figures 7 and 8. 
The agr eemen t with available experimental data is een to be good. 

Figures 9 and 10 arc con cerned with the ques tion of how the turbulen t separation point 
in a retarded flow ofl the type 

U o Mt -=--= 1- lOx/l 
U", M ! 
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is influenced by the ;\ [ach number and by heat transfer. From fi gure 9 it is seen tlu1,t the 
separation poin t (J: /l)seo is almost independen t of variation in the ~Iach number between 
jJ1:=O to 2.40 (1\110,=0 to 12). Figure 10 shows tha t by cooling th e wall in SUCll a way 

that the wall temperature Tw is kept equal to T. G=l), the separat ion is completely prevented 

even for the high value M :=2.40 (1\5'00= 12). On the con trary, heating of t lte wall moves 
the separation poin t upstream. For the theroe tical results of thefigmcs 9 and 10, no experi
m ental confirmation is yet available. 

5 . Conclusions 

A survey of approximation t heories for compressible laminar a nd t u rbulen t boundary 
layers with heat transfer at the wall and arbi trary pressure gradient in the Bow d irection 
shows t hat only a two-equation method has been used up to the present;, although an infinite 
number of equa tions is available. A new derivation for the two infini te systems of integral 
conditions based upon the partial d ifferential equations for the velocity a lld temperature 
field is gi ven. 

An investigation of the significance of the equations with higher order shows t hat t iteir 
proper t.\' of describing typical boundary effects vanishes more and more with increasing number 
". Hence, i t is no t surprising that the resul ts obtained from the two-equation method with 
11 = 0 in bo th the systems (1 1) and (40) are good. However , the consideration of one 01' two 
equatioll s morR would be desirable, at least for a check of the results of the two-equation 
method in important special cases. 

Prcliminaty investigations have to show how the higher v-order integral terms containing 
tlte shear stress distribu tion T/Tw can be evaluated in the case of compressible turbulent 
bounclal'~- layers with heat t ransfer . I t has been found that this is po sible if the power of 
t he Re~' llolci s number is chosen to be equal for both the wall friction and dissipation law. 
We have chose ll 0.2 . Tn spite of this simplification in these two empirical laws, they still fit 
the data raLher well . Further work on this matter is in progress. 

This two-equation me thod now available with preliminary evaluated universal integra l 
terms has been applied to the s tudy of the dependence of t he friction coefficien t on comp res
sibility and heat t ran sfer. Good agreemen t with experimental data h as been found . 
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Publications of the National Bureau of Standards 

Selected Abstracts 

Mechanized computation of thermodynamic tables 
at the National Bureau of Standards, J. Hilsenrath 
and J. H . Wegstein, Thermodynam. Properties oj 
Fluids, London, July 10- 12, 1957, Proc. Inst . oj 
lvl ech. Engrs. (London) (1 958). 
A high speed computing rout ine is described which computes 
t he chemical composit ion and certain t hermodyna mic prop
erties of homogeneous gaseous systems containing up to 5 
elements. The procedure, which is applicable over a wide 
temperature range in which bot h dissociation and ionization 
effects are allowed for , permits t he computation of mole 
fractions, compressibilit )' factor, internal energy, ent halpy 
and entropy of t he equilibrium mixtures at specified tempera
t ures and a t speeified densit ies or pressure inter vals. Aux il
iary rout ines for t he IBM 70-1 a re used to eo mpute t he 
specific heats, specifie heat rat ios, isen tropic expansion 
coefficient and t ile sou nd velocity. A br ief descript ion is 
given of t he library of t hermody na mic tables t hat provides 
t he inpu t data for t hese calculations. An a ppendix t o t his 
paper gives an indcxed bibliogra phy of ex isting t hermody
namic funct ions fo[, t he products of a wide variety of combus
t ion reactions. 

Further identities and congruences for the coefficients 
of modular forms, M. N ewman, Oan. J . l11ath. 10, 
577 (1958). 
Let p , (n) be th e eoeffic ient of xn in n (l - x")'. Let l ' be odd, 
O< r< 2±. Suppose p is a prime sueh t hat p > 3 when(I-, 3) = 1 
and p > 2 when 31r. Then it is shown t hat for a ll in tr'gral n, 

( n - l'v ) p,(np2+ r v) -'Ynp,(n ) +V-2p, - -.,- = 0, 
p-

(rv- n ) . 
where I'n =c---- p (,-3)/2 a, a nd c and a a re eertalll 

p 
constants. 

A fractional factorial experiment of the mixed 2"'3n 

series, W. S. Oonnor, Proc. 14th A nn. Olin. Rochester 
Soc.jor Quality Oontrol (Feb. 1958) . 
T he paper is concerned wi th a fract ional factorial design for 
three factors each of which has t wo levels and t wo facto rs 
each of which h as t hree levels. The complete factoria l 
consists of 72 treatment co mbinations but t he fractional 
factoria l of only 36 t reatment combinations. An example i8 
worked ou t. 

A note on confidence intervals in regression problems 
J . Mandel, Ann . M~ath. Statist . No .3, 29, 892 (Sept . 
1958). 
A method is presented for t he construction of join tly valid 
confidence in ter vals for a rbi trar y real functions of t he 
coefficients of a mul t ipl e linear regression . In t he case of a 
single independent variable, x, t he problem of constructing 
join tly valid confi dence intervals for t he x-values correspond
ing to a set of " fu t ure" meas urements of t he dependen t 
yariable is also disc ussed . 

Harmonic generation with ideal rectifiers, O. H . 
P age, Proc. IR.E. , N o. 10, 46, 1738 (Oct. 1958). 
It is shown t hat the nth harmonic cannot be generated wi th 
an e ffi ciency exceeding 1/n2• Of t he power converted to dc 
and harmonics, at least 75 percent is dc dissipation , and 
this cannot be r educed by a n arra ngement of selective 
circu its. 

Two forms of mathematical induction, 1.. Schaeh, 
Math. lvlag., No. 2, 32, 83 (Nov.- Dec. 1958) . 
It is shown that two principal forms of (fin ite) mathe matical 
induction: 

(I ) If P (1) and if, for all p os. into n, P en) implics P (n+ 1), 
t hen p en) for all pos. in to n; and 

(II) If p el ) and if, for a ll pos. in to n, p el ) &P(2) & ... & P (n) 
implies P (n + 1), t hen p en) for all pOS. in t. n 

are equivalen t; a nd that any demonstration based on one of 
t hem ca n be r ecast so t llat it is based on t he ot her instead . 

The evaluation of matrix inversion programs, 111. 
N ew-rnan and J. Todd, J. Soc. Indust. Appl. Math ., 
No .4, 6, 466 (Dec . 1958) . 
A set of t hirteen tcst matrices typical of those OCC UlTing in 
pract ice were inver ted on SEAC, t he 704, a nd va r ious other 
mac hi nes . The results ,yere co mpared w it h t he t heoretical 
in verses a nd various error estimates were co mputed. 

Un nouveau critere d'univalence des transfonna
tions dans un R n, M . A. 0 trow-ski, Oompt. rend. 
acado sci. 248, 348 (Jan. 1959). 
A cri te rioll of univaJence of an n-dimensional t ra nsformation, 
given in a former comm unication, is ge neralized ; t he po si
bili ty of fur ther generalizat ions a nd refine men ts is discussed. 

On the convergence of the Rayleigh quotient itera
tion for the computation of the characteristic roots 
and vectors. II, A. M . Ostrowski, A rch. Rational 
M ech. Anal . No.5, 2, 423 (1959). 
F ur ther asy mptotic p roper t ies of t he Rayle igh q uotient 
a lgor t hm a re derived, and n umerical resul ts for so me special 
matri ces a rc gi\·cn. 

A note of the computation of X2, M. G. Natl'ella, 
A m. Statistician, No . 1, 13, 20 (Feb. 1959). 
T here is a use ful , but not widely-known short cu t available 
for compu t ing x2 for t he comparison of t wo observed frequency 
distribu t ions wi th equ al total co un ts. The adva ntages a re 
t hat it does no t requ ire compu ting t he expccted frequc ncies, 
a voids problems of roundi ng the dev iations, and requires only 
one divis ion per class instead of one divis ion per cell. It can 
be extended t o t hree obser ved distribu tions, bu t 10 es its com
putational adva ntages for more t han t hree. 
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Mode expansion in the low-frequency range for 
propagation through a curved stratified atmosphere, 
H. Bremmer, J. Research N BS 63D, No. 1, 75 (1959). 
This expansion is par t icula rly useful when con sidering 
ionospheric propagation at low freq uencies. T he complex 
problem dealing wit h t wo media, viz. a homogeneo us ear t h 
and a surrounding stratified a tmosphere, leads to in t ractable 
ex pressions. H owever, as t he influence of t he ear th may 
be a ccoun ted for by a ll ap proximate bounda ry condit ion a t 
t he ear t h's surface, t he problem is t hen red uced to t hat 
of the oute r medium only. Thc coeffi cients of the mode 
expa nsion for t his simpl ified problem will be derived while 
taking in to acco unt t he ear t h 's curvature; however , t he 
latter proves to be neglig ible under ve ry genera l co ndit ions. 
The expa nsion to be derived is wa nted in pa r t icular when 
stUdying t he influence of a gradual t ra nsit ion in t he electro n 
density wi t h height at t he lower edge of t he ionosphere. 



On the theory of fading properties of a fluctuating 
signal imposed on a constant signal, H. Bremmer, 
NBS Oire. 599 (May 1959). 

This Circular is a thcoretical mathematical consideration of 
the varying strength of a radio signal consisting of two 
compone nts: a constant signal, and a fluctuating signal of 
the same frequency which has reached t he receiver by a 
different path. The properties investigated for t he composed 
signal arc thc distribution function s of both the a mplitude 
and phase, as well as the average number of crossings for 
either quantity through a ny given level. 

The first part of this C ircular deals with the idealized case, 
where t he fluctuating s ignal is considered to be " random ." 
The second part is a more practical consideration of the 
characteristics of the composite signal when the fluctuating 
signal is a " quasi-random" result of first order scattering in 
a t urbulent atmosphere. In the t wo extreme cases, where 
the received signal is composed entirely of either t he constant, 
or line-of-sight, signal, or the fluctuating, reflected signal, 
the complicated general formulas a re simplified. 

This Circular will be of interest to those who deal with the 
variolls types of cquipment and effects which pcrtain to the 
fading properties of this composite signal. 

The mean deviation of the Poisson distribution, 
E. L. Crow, Biometrika, pts. 3 and 4 45, 556- 559 
(Dec. 1958). 

The mcan deviation of .it he Poisson distribution is easily 

de termined to be 2m Y, where m is t he mean of t he distri
bution and Y is t he maximum value of the individual Poisson 
probabilities . The rat io, R (m), of t he m ean deviation to the 
standard deviation is shown t o be a damped oscillation as a 
func t ion of m, converging rapidly toward t he limiting normal 
value '/2/ 71". Furthermore R(m) takes on t he normal value 
twice between every pair of successive non-negative integers . 
Thus R (m) is a poor criterion for distin guishing the Poisson 
and normal distributions. 

A property of additively closed families of distribu
tions, E . L . Crow, Ann. Math. Stat. No.3, 29, 892- 897 
(Sept . 1958) . 

Consider a one-parameter addit ively closed family of univari
ate cumulative distribution functions F(x; ;\) (H. T eicher, 
Ann. Math. Stat. , Vol. 25 (1954), pp. 775- 778). Let t hree 
cumulants with orde rs in ari thmetic progress ion exist and 
be nonzero. If all t hree orders are even, or if the first order 
is odd, it is also r equired that F (x; ;\)=0 for x<O and F(x; ;\) 
> 0 for x > O. Consider linear combinations, with real, 
nonzero coefficients, of a fini te number of independent vari
ables with distributions in th.e family. It is proved that t he 
on ly such linear combinations whose distribu tions a re also 
in t he family a re those with coefficients unity . The additively 
closed families having this property may be called st1'ictly 
additively closed. It can be shown t hat (one-parameter) add i
t ively closed stable families of distributions (normal and 
Cauchy in particular) with characteristic func tions continu
ous in ;\ are not strictly additively closed, while Poisson , 
generalized Poisson, binomial, and gamma families a re 
strictly addit ively closed . 

Other NBS Publications 

Journal of Research Section A. Physics and Chemistry, 
Volume 63A, No.1, July- August 1959. 7'0 cents. Approximate 
issue date, August 1, 1959. 

D escription and analysis of the first spectrum of iodine. 
C. C. Kiess and C. H. Corliss. 

CH in the solar spectrum. Charlotte E. Moore and H erbert 
P. Broida. 

Infrared studies ill th e 1- to 15-micron region to 30,000 
atmospheres. C. E. IVeir, E. R . Lippincott, A. Van 
Valkenburg, and E . N . Bunting. 

Phosphinoborine compounds : mass spectra and pyrolysis . 
Leo A. Wall, Sidney Strauss, Roland E. F lorin , Fred L . 
Mohler, and Paul Bradt. 

Experimental and theoretical study of kinetics of bulk crystal
lization in poly (chlorotrifiuoroethylene) . John D . Hoff
man, James J. Weeks, and W. M . Murphey. 

Journal of Research Section C. Engineering and Instrumen
tation, Volume 63C, No.1, July-September 1959. 75 cents. 
Approximate issue date, August 15, 1959. 
Creep of cold-drawn nickel. William D . J enkins and Carl R. 

J ohnson. 
Frict ion and endurance of prelubricated and unlubricated ball 

bearings at high speed s and extreme temperatures. Hobart 
S. ·White. 

Effect of light and water on t he degradation of asphalt. L. R. 
Kleinsc hmidt and H. R . Rnoke. 

Current and potential relations for t he cathodic protection of 
steel in a high res istivity environment. W. J . Schwerdt
feger . 

A tilting air-lubricated piston gage for pressures below one
h alf inch of mercury. U. O. Hutton. 

Compact lIlultianvil wedge type high-pressure apparatus. 
E. C. Lloyd, U. O. Hutto n, and D. P. Johnson . 

A coulometric-titration coulometer. Stanley W. Smith and 
John K . T aylor. 

Electron beam magnetometer. L . Marton , Lewis B. Leder, 
J . W. Coleman, and D . C. Schuber t. 
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A refined X-band microwave microcalorimeter. Glenn F. 
Engen. 

Journal of Research Section D. Radio Propagation, Volume 
63D, No.1 , July- August 1959. 70 cents . fipproximate issue 
date, J uly 15, 1959. 

Preliminary results of the National Bureau of Standards 
r adio and ionospheric observations during the International 
Geophysical Year . David M. Gates. . 

Origin of [01] 5577 in the airglow and t he a urora. Franklin E. 
Roach, James W. McCaulley, and Edward Marovich. 

Comparison of absolu te intens ities of [01] 5577 in the auroral 
and subauroral zones. F. E. Roach , J . IV. McCaulley, 
and C. M . Purdy. 

Origin of " very low-frequency emissions." R. M . Gallet 
and R . A. Helli well. 

Climatology of ground-based radio ducts . Bradford R. Bea n. 
Power requirements and choice of an optimum frequency for 

a world wide standard-frequency broadcasting station . 
A. D. Watt a nd R . W. Plush. 

Meas urements of phase stability over a low-level tropospheric 
path . M. C. Thompson, J r. and H. B . J anes. 

S.vstem loss in radio wave propagation. Kenneth A. Norton. 
Mode expansion in t he low-frequ ency range for propagation 

through a curved stratified atmosphere. H. Bremmer . 
Transmissio n and reflection by a parallel wire grid. M art in 

T . Decker. 
Synoptic variation of the radio r efractive index. B. R. Bean 

and L. P . Riggs. 
Low-frequency propagation p aths in arctic areas. A. D. 

Watt, E. L . Maxwell, and E. H . Whelan. 

A property of additively closed families of distri
butions, E . L. Crow, Ann. Math. Statist. No.3, 
29 ,892 (Sept. 1958) . 

The mean deviation of the Poisson distribution, 
E. L . Crow, Biometrika 45, 556 (1958). 

U. S . GO VERNM EN T PRINTIN G OFF ICE: 1959 

I 
) 


	jresv63Bn1p_53
	jresv63Bn1p_54
	jresv63Bn1p_55
	jresv63Bn1p_56
	jresv63Bn1p_57
	jresv63Bn1p_58
	jresv63Bn1p_59
	jresv63Bn1p_60
	jresv63Bn1p_61
	jresv63Bn1p_62
	jresv63Bn1p_63
	jresv63Bn1p_64
	jresv63Bn1p_65
	jresv63Bn1p_66
	jresv63Bn1p_67
	jresv63Bn1p_68
	jresv63Bn1p_69
	jresv63Bn1p_70
	jresv63Bn1p_71
	jresv63Bn1p_72

