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Lens Design: A New Approach 1 

Orestes N. Sta vroudis 
(F ebruary 18, 1959) 

This p ap er describes a new m ethod of definin g the total a berra tio ns of a n op tical sys tem 
:l.nd its a ppli catio n to lens design. A system of p a rtia l d iff erent ia l equatio ns defi n ing optical 
im age fo rmation is ' \Titte n in t he form of 4 by 4 matri ce a nd is ap plied to t he de ri vat ion 
of le ns aberrations . It is shown th at the form of the matrices fa cili tates the co mpu tatio n 
of t hese a berra tions and t hat equatio ns of co ndition on Lhe Je lls paramete rs can be d eri ved. 
The use of this meth od is illustrated thro ugh its " ppli ca t ion to a simp le, well-known problem. 

1. Introduction 

In th e cow 'se of desig ilin g a lens, one invariably computes aberra tio n IU ll ctio ns w hose 
m agni tudes r efl ect CJ uali tatively a nd q ua ntitatively t he performancc of a n o pt ieal sys tem. 
U nforlull3 tely these quantities ar e ra ther difficul t to calcul ate, usually req ulring a long progr am 
of r ay tracing, a nil, m or e impor tantly , ar e not r eadily eon 'elated wi th Li LO lens param eters. 
Usnally a lClls designer mus t rely on his ex perience when determinin g w ltether a cllange in 
a certain c llJ"vatw'e, thiekness, or i ndcx of rdract io n w ill aO'ec t a give n aberration. 

In Ihis papcr a m ethod of a tLaek lVill b e described which will a t least mi t igate t he r di f
ficultics. Th c a ppl icat io n of t llis method resul ts in t be defini t ion of a set of aberrations lo
gether with a systema tic sehcm e for t llerr eomp utat ion ('x pressed as equa tio ns i n whieh the 
system paramete rs appear . Y et the m ethod is sufficiently flex ible to m eet the s pecial r eq uire
m ents o f ~LIl."l e n s . Fo r example, o ne sys tem of aberrations ca n b e defin ed for usc wit h a co py 
lens a nd a scco nd sys tem can be co ns tru ctecl fo r a pplica t io ll to a ll aIocal system. 

C'o n~i d(' r a n opt ical system co nsis t ing of a sys tem of lenses a nd fi xNI r efcrcn(\e pla lll' s i ll 
obj aet a nd illl age space ,,"hi ch a rt' noL necessarily object alld image plan es . R ight- ha nded 
coorclin a t r sys tems are chosc n in obj r ct and image s paec, the eoord ill a tes of which ar e des ig
nated x, y , Z, a lld -:1"', y' , z' , r espec tively. , Ve take th e posit ive z and z' axes i ll the ge neral 
direction of r ay propagation a nd J:-y pl ane a lld x' -y' pla ne coincident wit lt t he obj ec t a lld 
image rcfe l'cll ee pla nt'S. Le t th e r ed uced d irection cosines of a ra." ill ob jcc t a nd image space 
b e ~ , 1) , ~ a,net (, 1) ' , \" where e+ 21) + ~2=N2, e2 1) ,2 + \,l= N'2, Nand N ' bring t lte iudice of 
refrac ti on of ob jed alld im age spa.nl' . 

Associa ted with each ra.\" p assing through the op t ical s\ stem are two sets of foUl" independ
en t coordinates, x, y , ~, 1) , and x' , y ' , ( , 'Y} ' ; for a given op tical s.vs tem eith er set completely 
determines a r a.'-. In an obvious way a g iven op t ical system ca n be said to defm e x' , y' , ( , and 
'Y}' as funetions of x, y , ~, and 1). In what follows we tacitly assume that in any o ptical s.vs tem 
these four funetions a re eon tinuous and possess con tinuous firs t-parti al derivatives . 

Suppose every r a.'- emanating from a n obj ect point converges to a single poin t on t lte image 
plane. Th en x' and y', conside red as functions of the obj ect space va riables , a rc una ffected by 
a ch ange of ~ and 1) . Thus x' and y' are independen t of ~ and 'Y} and 

(1) 

where the s Llbscrip ts denote par tia l derivatives. The converse is also true; if ther e exists a p air 
of values for x and y for wili elt (1) is sa tisfi ed , then all rays em anating from th e point (x, y ) in 
obj ect space con verge to a s ingle p oin t (x' , y' ) in image space. Thus the four equations of (1) 

I 'J" his paper cont.ains work done at Lhe Imperia l College of Science and rr cchnology and included in a thesiS submitted to the U ni\7 ers it y oC 
'Lond on in part ial [u lfi llment o[ Lhe req u irements [or t he P h . D . degree. The work was supported in part by t he U,S. Air Force. 
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provide a necessary and sufficient condition for a point to be imaged perfectly. By a similar 
argument it can be seen that in a region where (1) is satisfied a necessary and sufficient condition 
for a lens to be free from distortion is that 

(2) 

where m is a constant and represents the magnification of the system. 
These two sets of equations provide conditions assuring perfect, distortion-.free image 

formation . By the same tokcn tbey may be taken as measures of the failure of an optical system 
to achieve perfection ; that is t.o say, they are measures of the aberrations of the system_ What 
follows is an elaboration of this basic idea. 

2. The Fundamental Optical Invariant 

The functional relationship described in the preceding section is a general transformation 
of which optical image formation is a special case. It is desirable therefore to impose restric
tions on the fun ctions; to exclude from our attention tbose relationships that do not apply to 
optical systems. There are several ways in which this can be done. For the purposes of this 
study the most convenient method is through the use of H erzberger' s fundamen tal optical 
invariant . This leads to a system of p artial differential equations which must be satisfied by 
the functions x', y' , f, and 'rJ' if they are to describe the image formation of an optical system . 
Following H erzberger [1] these are written, 

(3) 

It is par ticularly convenient to express these in matrix form as 

XJX= J , (4) 
whflrfl [ , I 

x~ 
I 

1 
Xx Xy x~ 

y~ 
I I I yy y, y~ 

X = 
~~ J ~~ ~~ ~~ 

I I I 

'rJ x 'rJ 1/ 17 , 17 

J~[ : 
0 1 

~J 0 0 

- 1 0 0 

0 - 1 0 

and X represents the transpose of X. 
It is importan t to note that X is a Jacobian matrix. An interesLing corollary to (4) is that 

/X/= l , (5) 

or, in words, the Jacobian of the transformation representing optical imago forma tion is equal 
to unity. 
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It is interesting to note that this corollary is equivalent to a theorem proven by Straubel [2J 
as long ago as 1902. H e applied this to several problems including pho tometry. More r ecently 
Toraldo di Francia [3] used this theorem in describing a generalization of geometric optics . 

The X-matrix is particularly useful. Firs t of all its elements consist of the partial dOJ·iva
tives of image space variables with respect to object space variables and therefore can be said Lo 
represent t he geometrical aberrations of an optical system. N[oreover , it appears as an indeLer
minate in the equations derived from the fundamental optical invariant. Finally it can be de
composed into a product of X-matrices each representing a component of the lens. Thus, i f we 
consider an optical system consisting of two lenses arranged so that the image plane of the 
first coincides with the object plane of the second then 

(6 ) 

where XI is the X-matrix of the first lens, X 2 of the second and X that of the composite op
tical system. 

The proof of (6) follows at once from the properties of Jacobian maLrices and the rules for 
differentia ting a function of a fun ction. Let the first lens be defined by t he four func tions X, y, 
~; and -;; of x, y, ~, and 7J and let the second be defined by x', y' , r, and r,' of X, y, .I, and -;;. T llO 
composite lens is then defin ed by x', y', (, and 71' as functions of x, y , t 71 . Then differen tiating 

Then 

r' Xx 

y~ 

X=l ~~ 
I 

71 2 

Clearly this can be extended to lenses consisting of any number of componenLs. 

3 . Transformation of the X-Matrix 

So far we have been dealing with the variables X, y , ~, and.\. lL is co nvenient Lo apply 
a transformation, T, mapping these variables into a Hew system of coordinates, say £x, {3, 1', a nd 
0, given formally by writing the latter as continuously differentiable functions of the fonner. 
The same transformation I S applied to both the obj ect and image space vari ables. 

If we d esIgnate the .L11-matnx by 

then 

where 
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A' r epresents the same matrix but in image-space variables. Applying (.his transformation 
to equation (4) we haye 

which reduces to 

(8) 

If the transformatlOn, T, I S restricted by the equations 

AJA= J , A' JA' = J , (9) 

then (8) becomes 
1.1;[ J 1\1£= J , (10) 

which is identical in form to (4) except that the variables arc changed from x, y, t, and 71 to 
iX , f3, "I, and o. Thus we can change our variables in any way that IS co nvenient , provided 
that (9) is satisfied, without adding to the complexity of the fundamental optical invariant. 

4 . Rotational Symmetric Systems 

In the case of rotationally symmetric systems we are in a position to make a part icularly 
advantageous choice of one of the new variables. In such a system the skewness invarian t 
holds and 

p = x'71' - yT = X71 - yt· 

By lett ing 'Y= X71-Y~=P) and "I' =X'71' - yT , the M -matrix degenerates to 

·Whcn this is substituted ill to (10) we obtain the transformed fundamental op tical invariant 

(X~= I + f3~o~-f3~o; "'If 
a~= f3~o~- f3~o ~ 

a~ = f3~o;- f3; O ;J 

(11) 

(12) 

We may consider the first two equa tions of (12) as a linear, homogeneous, simultaneous 
algebraic system in f3~ and o~. A necessary and sufficient condition for a non-trivial solu tion 
to exist is that the determinant of coefficients must vanish identically. However , the third 
equation of (12) sho,"vs that this determinant is identical to a non-zero constant. We conclude 
that [3~= o~= O. Therefore the first equation of (11) reduces to a~= l. The remaining equa
tions of the transformed fundamental optical invariant become 

(13) 

34 



and 

Solvin g (13) for {3; and 0;, using (14), we obtain equivalent ei..rpres ions 

Thus, under the assumption of rotational symmeLry the M-matrix l'educes to 

r1 a~ 
o {3~ 

M=lo 0 

o o~ 

;~ ;~l 
1 0 . 

0;, o~ 

B y appl)' ill g (15) this can be factored into 

.'M.= [~ :~ : {3~ l [~ o 0 0 0 

o o ~ 0 o~ 0 

, :; "~l 0'(3 

1 

0 1 0 

0 -a~ l 

5" Further Simplification 

(14) 

(15) 

(16) 

Suppose we have a roLationally-s~'mme (l'ic optical sys tem defined by Lh e functions a', 
{3' and 0' of a, {3, p and 0, cons isti ng- of two components, th e first defined by a', {3', and 0' of 
a. {3, 15, and "6 and the second by (X , "{3, and ;S o r a , {3, p and o. Of course p and 15 are iden tical 
llumcri ca.ll:v but p]a~' differen t logicall'oles whi ch mus t be kept di s t inct" As indicated in (6), 

(17) 

B y interchanging the two right columns and the two bottom rows of each matrix in (17) we 
obtain 

(18) 

D ' =(~f} 
,,"ith A, If, 0, j} ancl A, H, 0 , J) defined s imilar}\". Then , by partiti oning the matrices of 
(18) we obtain 
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[: 
A' 

B' ] [ 
A n [; A 

~] 0' ~' = ~ C 0 

f .f f 

where e=(~) and j = (0,0). Then from (19) we can obtain 

O'=CO 
or 

e~ 
0' /3 

~:)=(~~ 
0, 0"[J 

~~) (~~ 
o-g 0/3 

~} 
0, 

It has been shown that a consequence of (ll) is that a' a = 1, whence 

a' = a+ X'(B,p, 0). 

Applying this relation to the two components of the system under consideration, 

Thus 

a' =;+ };(~, p, B) 

a =a+A(~, p, 0). 

(19) 

(20) 

(21) 

(22) 

Thus the geometrical properties of a rotationally-symmetric optical system can be described 
completely by the system of equations 

and 

( ~~ 
0' /3 

n 
a' - a= 2:: Ai 

; = 1 
(23) 

(24) 

where A i+ 1 is a function of ~i , p and Ot, where ~' = ~n' a' = 0", and where ~= ~o, 0= 00' This 
is a system of five scalar equations of which four are independent by (14). 

If we replace the left members of these equations by functions representing a perfect 
optical system we are left with equations of condition on the parameter occurring in each of the 
components of the system. Alternatively a measure of the failure of the equations to be 
satisfied can be taken as a measure of the aberrations of the optical system. 

6 . Functions for a Perfect Optical System. 

A possible choice for the variables, suitable for work with an optical system witb object 
and image planes located a finite distance from the lens is 

a = arctan Y/X'l 
~=1/x2+y2, 

0- x~+ y1']. J 
- ~X2+y2 

It can be verified that these satisfy (9) when 'Y = p. 

(25) 

By integrating the equations for a perfect optical system (1) and (2), we obtain x' = mx, 
y' = my, the constant of integration being eliminated by a suitable choice of coordinate axes. 
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From this 
a'= a, and f3' = mf3, 

whence f3'fj = m and {3'. = O. Substituting this in (14) we obtain 

mD'.= l. 
Integratmg: 

o' = D/m + if;, 

where if; is an arbitrary function of {3. Thus for a pOl'fect optical system described by tlte 
variables in (25) we have 

and 

(~ 

a' -a= 2:"i= O, 
i 

o )=II (O{3 ;/O{3i- l 
11m i OO ;/ O{3i- l 

(26) 

(27) 

as our equations of condition. It can be shown that if;{3 when (3 = 0 equals the reciprocal of the 
fo cal length of the perfect lens. 

The compl0xity of the problem may be reduced somewhat by the following consideraLions. 
Suppose (27) were satisfi ed for meridian rays only. Then 

f3' = mf3+ €I ({3,D,p) 
D' = Dlm + €2( {3 ,D,p) 

where 1'1 = 1'2= 0 when p= O. If (26) is subseq uently co rrecLed for skew rays then a' {3= a' .=O, 
which by (15) implies that (3' p= o'1'= O. T hus Lhe denvatives of 1'1 and 1'2 wiLIt respect to p 
are zero. Th erefore Lhese t.wo functions are tnclepencknL of p. Since 1'1 and €2 vanish for a 
parLicular value of p, they must equal zero for all values and (27) is satisfied for sk:ew rays as 
well as meridian rays. Thus, the solution of (27) for meridian rays and the solution of (26) 
for skew rays assures Lhe correction of the opLical sysLem for skew rays. 

7. Transfer and Refraction Calculations 

The ulLimate components of an optical system will be considered he re to co nsist of (a) a 
transfer across a space between two planes and (b) a transfer from a plane (wh ich win be called 
the reference plane) to a refract ing surface, refraction across the surface and a Lransfer back 
to the reference plane. The ray tracing formulas for the transfer are 

x' = x + tVf 

y' = y + t"1 / f 

~' = ~ 

"1' = 'T] 

where t is the distance between the two planes, whence 

'_. tp ") 
a -a+arc tan {32r+ tf30' l 

= a + arc tanp/f3o - arctanp/{3'o' , 

{3' = .. / ({3 + to I rF+ (tp / {3fF , J 
0' o({3+ to/n + (tp/f3f)p /{3 

.J ({3 + to/ f r+ (tp/{3n 2' 
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For meridian rays thc latter two formulas arc 

(3'=({3+ to/t) 1 
0' = 0 I , ) 

(29) 

whcre 1;2 = N2 - 02_ Accordingly the matrix representing transfer between two planes separated 
by a distance t, in a medium with index of refraction N, is 

(
1 

mT= 0 (30) 

T he ray tracing formulas for a transfer from a plane to a refracting sm-face , refraction 
across the surface, and a transfer from the surface back to the p lane are, respectively 

:C= x+ z~/ I; 'I 

y = y+ z 7J 1;, 

e = ~+x¢ 

71' = 7J + Y¢ 

I;' = I; -{3¢/z~ 

j x' = x - zew 

y' = y -zeW, 

where z is a function of 7i denoting the refracting su rface and where 

In terms of the a, {3, 0 coordinate system, thesc arc 

- + zp 1 a= a arctan {321;+z{3o' 

~=.J ({3 +zojl;)2+ (zP/{3I;)2' 

- - o({3 + zo/l;) +(p/{3) (zp/{31;) I 
0- .J({3+zO/I;)2 + (Zp/{31;)2 ' .J 

a' =8+t~ 1 
I;' = I; - {:J¢/zp ) 

a - arctan {3~)<,+al'ctan ? .. , 
u {3o' 

{3' =.J ({3 - z8' / n 2+ (zp /(31;' )2 

o, =8: (~- ziJ' /n- (p/~) ("2p/~ n .. 
-J ({3-"2 0' / 1;' )2+ ("2 p/{3I;' ) 2 
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(33) 

(34) 

(35) 

1 
-1 

I 

I 
I 
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T h us for skew rays 

a' = a - arctan (3;Ji5 ,+al'cta n .!.~ - ar ctan l~+arctan (37). 
(315' (30 u 

7J p~ ( 8 - 8 ') ]) 
= a - arctan - ,- ,+arctan _ +arctan -

(3 0 (3 215 0 ' + ])2 (30 

(:36) 

For mer idian rays th e formulas for (3 and 0 red uce f rom those given ill (33), (34), and (3 5) 
to 

~= (3+ Zi5/S } 
15 = 0 , 

/-J' =~ } 
o' = i5 + (3cp, 

(;38) 

a nd 

(3' = § ' - Z8'/I' } 
15' = 15' , 

(9) 

B,\- cli O'cl'cntiat ill g the fi rst equat ion of (:37) with respec t to (3flncli5,recnll illg that z is a fun c t. ion 
of ~, \\"e obLain 

7§~= 1 + 2~7J~ i5/1 
{3;= 2/.1+ z~~ ;i5/ .I+ Z02/.I3 

so Llii:l t 
7J~= .\It:, 

7J;= (.lIt:, ) (N'ZI.l3) , 

where 

Thus 

C.l/t:,) (~2ZW) ) 

~)G N2;/l3
) 

:C,\" d ifferen tiat ing the equations of (38), 

\\"here t:, ' = .I' -z~8', Fl'Om th e de fini t ions of t:, a nd t:,' an d from (34) it can be shown that 
1 + i3cp (8+Z~.I)/t:,'.I= t:,n /t:,' .I, resul t ing in a s impli ficat ion of m b' 
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Again, differentiating (39) we obtain 

When these three matrices are multiplied together, we have 

(40) 

Note that the first and last factors are formally identical to mT and can therefore be combined 
conveniently with an adjoining transfer matrix. 

,Vhen the refracting surface is a sphere centered on the r eference plane 

The minus sign assures that the sphere is concave to the right when c is positive, in accordance 
with the usual convention. Then 

( 1 
1nR= 0 (41 ) 

where 

(42) 

8 . A Simple Illustration 

As an example we consider the properties of a single refracting spherical surface. Con
sider an optical system consisting of an object plane, a spherical surface separating media of 
refractive indices Nand N' and an image plane. Let the object and image planes be located 
distances t and t' from the center of the spherical surface. Figure 1 shows the case where t, 

N N' 

t' 

FI GURB 1 
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t' , and c are positive. From (27), (3 0), and (41 ) tllC eq ua Lion of condition for meridia n rfl,Ys is 

M'~6't)G Z~2! t3)G N2:/I) 

For skew rays, by (26), (28), and (36), 

a'-a= -arctan /3~' +arctan /3P.-arctan p¢ O. 
U U /30¢ + (02 +p2//32) 

Expressing (43) in scalar form we obtain four equations. 

6' t/6 ( + N' 2( t' _Z) t ¢!C2z266' t'2= m 

tI' ¢/C2z266' = if;~ 

vV' e will pa.,- particular attention to the third of these, which we wri te in th e form 

Let 

0'= 6z = /3o +zt, 

0" = 6'z = /30' +z\' = ..j 0'2 - (1/c2) (N2 - N'2). 

Also, 

\'= t+z¢, 

where ¢=-c2(0'-0") by (42) . Substituting these y ields 

This may b e written as 

If 

Then 

We th us obtain two possible cases r epresented by the two equations 

41 

(43) 

(44) 

(45) 

(46) 

(47) 

( 48) 

(49) 



z= - l /c,u = - N /c,u' = - N' /c,f = N, and ¢= c(N-N' ). 

Substituting in (48) \\"E' obtain 

Applying this to (47 ), 

N(N2- N'2 ) + N2(t - 1/c)c(N- N') = 0, 

N + N' + N(ct-l) = O, 

t=-N' /Nc . 

t' = N /N'c. 

(50) 

(5 1) 

When 73 and 8 ar e not zero, it can be shown that (50) a nd (5 1) satisf.\~ (48) for all values of 0 
provided that {3 = 0. Therefore only the axial point on th e object plane is imaged perfcctly. 
This resul t provides Lhe aplanatic poinLs of a sph ere [9] (see ng. 2) . 

FIGURlC 2 

On making th e same subst itu t ions into (49 ) we find that t= O, which when appli ed to (4 7) 
y ields t' = O. As in t.]!C p reyious casc, these are tru e for all values of 73 and 8 provided that 
(3 = 0. This illustra tes the \\~elJ-kll own fac t that the center of a sphere is imaged pcrfec tl~~ on 
itself [4] . 

The author ackllO\dcclges with thanks the help and encouragement of Dr. VV. T. vVelforcl, 
uncler whose sup ervision mu ch of this work was done at Imperial College of Science and 'l'ech
nolog~T , London. 
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