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Zeros of Certain Polynomials
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Let P be a real parameter.

1. Introduction.
Integer.

Let n be a fixed non-negative
The following problem will be solved:
g

ProBreM. Find the set S, of all values of the real
parameter P for which all roots of

ntl_,“n+1)40
lie in the open unit disk |z|<1.

In view of the substantial literature relating the
coefficients of a polynomial to the locations of its
zeros,! one would expect that some standard
algorithm could be applied to so specific a problem.
This seems to be only partly true; the appropriate
algorithm is that given by the Schur-Cohen Criterion ?
which yields only an implicit characterization of S,
as the solution-set of a system of n+41 polynomial
inequalities in /. It appears nontrivial to derive
from this an explicit characterization of S,, and so
we give instead an elementary self-contained solu-
tion. The result is the

={P| 0<P<2 sinw/(4n+2)}.

The problem arose in connection with the gen-
erating function ?

(1)

TaroreEM. S, =

prs"(1—ps)

\+(l*]))])" 41

of the recurrence times for runs of n successes in a
sequence of Bernoulli trials with “success probabil-
ity” p. Rigorous justification of the usual probability
theory manipulations of the power series for F(s) 1s
easy 1f F(s) has no singularities for |s| <1, and this is
in fact true and is equivalent (upon setting z=1/s) to
the assertion that all roots of z*™'—z"+(1—p)p"=0
lie in |z|<1 for 0<p<1. The last statement shows
that S, includes the interval { P| 0<<P<n"/(n+1)""},
and it was natural to inquire whether this expression
cave S, exactly. It follows from our theorem that
S,, is larger than this interval for all 2>>0, and is
approxinmtoly byme ~4.27 times as long for large n.
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It is proved that all roots of zn+l—zn4 P=
unit disk, if and only if 0< P<2 sin =/(4n-+2).

0 lie in the open

2. Solution. In this section z, », and 6 denote real
rariables obeying >0, 0 <0< 2r. Since the theo-
rem stated above is obviously true for n=0, it is
assumed that n >0 in what follows. It is convenient
to define

f(6) =sin"nf sin 6/sin™'(n-1)80,
A= =g | || 2l

B={6] 0<0<m, sinnf>sin (n41)0>0},
O={f(0)| 6 in B}.

We can omit the easy proof of

if moas even,

of moas odd.

Lemma 1. A={P| P<L0or P>2}

A={P| P<0}
Lemma 2. C={P| P>2 sin w/(4n-+2)}.

Proor. (a) From the formula

sin”~1 nf[(nsin  —sin n6)’+2n sinf sin nd(1—cos(n-+1)0)]
sinnt2 (n+ 1)6

fre=

we conclude that f(0) is increasing on each sub-
interval of B.

(b) Suppose sin(n+1)0*=0 at a left endpoint 6*
of some maximal subinterval of B. If sin nf*#0,
then sin %0 and so f(0*+)=(+ =), contradicting
(a). If sin n6*=0, then 6*=0, contradicting the
requirement that

sin n(0*+6) >sin(n-+1)(6*49)

for all sufficiently small 6>0. Thus the supposition
is untenable. )
(¢) We next apply the identity

. . 1
sin nf—sin(n—+1)f= —2 sin 50 cos -—(‘771+1)0
to obtain

sin(n-1)6 >0,

B=1{6] 0<0<r, (‘os%(2n+l)0§0}.



Consider now any left endpoint 6* of a maximal
subinterval of B. According to (b), we must have

(2)
3)

In fact, the conditions determining such an endpoint
are, in addition to (2) and 0<6*<x, that

sin (nf*)=sin(n-+1)6%*,
so that
f(6%)=sin@*/sin(n-+1)6*.

sin(n+1)6* >0 and sin n(8*-+46) >sin(n-+1)(6%+46),

for all sufficiently small §>0.

Cquivalently, 6* is
such an endpoint if and only if

cos %(27}—}—1)0*:0, (4)

cos %(2n+1)(0*+6)<0, (6 as above)  (5)
sin(n+1)8%* >0, (6)

0<0*< . (7)

The points obeying (4), (5), and (7) are precisely
the points

9,=(4j+1)w/(2n+1) (0<25<2n);

these points also satisfy (6), since

sin(n+1)6;=cos(4j+1)r/(4n-+2)
(45+1<4n+-2), (8)

and so the 6,’s are precisely the left endpoints of the
maximal subintervals of B. From (3) and (8) we
have

J(0,)=2 sin(4j+1)7/(4n+2);

together with (a), this shows that f(8) reaches its
minimum on B at §=6,==/(2n-+1), this minimum
being

min C=2 sin «/(4n+2).

(d) Finally, we seek the right endpoint  of that
maximal subinterval of B of which 6, is the left end-

. 1 .
point. After 6,, cos 5 (2n+1)8 first changes sign at

22

3w/(2n+-1), but sin(n+1)8 changes sign earlier, at
w/(n+1). Thus 6==/(n-+1), and so f(6—)=(+ =).
This fact, together with (a) and the results of (¢),
completes the proof.

Our final lemma gives the motivation for lemmas
1 and 2; the three lemmas together immediately
imply the theorem stated in the introduction.

Luvma 3. S, is the complement of AUC.

Proor. (a) Clearly eq (1) has a real root outside
the disk |z|<1 if and only if P is in A.

(b) Next we observe that z=r exp(i6) is a nonreal
root of eq (1) if and only if

™ sin nf—r"*! sin(n+-1)0=0, 9)
sin 870, (10)
7" cos nf—r"tt cos(n+1)8=P. (11)

Now (9) and (10) are equivalent to
sin n@/sin(n—+1)0=r, (12)

and (11) and (12) are equivalent to
=~ (13)

Thus eq (1) has a nonreal root outside the disk |z[<1
if and only if P lies in the set

{f(0)| sin nb/sin (n+1) 6>1},

which (by considering the change 6—27—8) is readily
seen to be identical with the set

{f(6)| sin nf>sin (n+1)8>0}.
(¢) By (a) and (b), S, is the complement of
AU{f(6)| sin nf>sin (n+1) 6>0}.
Bl e im0 e dont el brtis
AU{f(6)| sin nb=sin (n+1) 620, f(6)>0},
which (by the form of f(#)) is just AUC.
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