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Relations Between Summation Methods and Integral 
Transformations 1 

Werner Greub 2 

(M ay 12. 1959) 

R elat ions between t he Loto tsky method of summation and t hose of Borel, Euler, a nd 
Knopp a re ob tained by associa ting an in tegra l transformation wit h t he series t r ansformation. 

1. Introduction 

In a r ecen t paper , R . P . Agnew [1] 3 es tablishes re
lations between the Lo totsky method of summation 
for divergen t series and the classical summations of 
Borel , Euler , and Knopp. 

It is the purpose of t his paper to show that these 
relations can be ob tained in a very natural way if the 
series tra nsforma tion is associated with an integral 
transforma t ion . The following scheme describcs 
the connections between the series and the in tegral 
transforma tion : 

original series ~ I L auren t expansion 

analy tic fun ction ~ 

transformed seri es 

1 T aylor expansion 

in tegral transform 
of t be function 

In sec tion 2 i t is shown that und er cer tain con
di tions a regular seri es tran sform ati on can be 
ass igned to every in tegral transforma tion , and con
versely. As an example, the in tegral transformation 
corresponding to the Loto tsky seri es transformation 
(L-transformation) is cons tr ucted . This integral 
transformation is used in section 3 for the discussion 
of the relation betwcen the Lo totsky and th e Borel 
integral methods. The ou tcome of this disc ussion is 
that L-summability con tains Borel integra l-summa
bihty (BI-summabili ty) but docs not contain a 
modified Borel sllmmabili ty (BI*-summabili ty as 
denoted in [1]). It is shown that the L-method can 
be ext ended to a summation method which is equiva
lent to the BI*-method . 

In section 4 i t is proved that a power series is 
L -summable in all in terior poin ts of the Borel polygon 
of t he corresponding analytic funct ion but no t 
L-sllmmable in all the exterior points. This proof 
is based on the relationship between the L-meth od 

1 a nd the BI-methocl. 
In section 5 the Lototsky method is compared 

with t he method of Euler-lCn opp . 
In the last section the in verse of the L-in tegral 

transform is constru cted and Llsed to obtain the 
inverse m atrix of the Lo totsky series transforma tion. 

1 'r h is wo rk was carried ou t in part under a National B ureau of S tandards 
contract wit h T h e America n Universit y. 

2 P resent add ress: U n ivers it.y of Ztir"ich, Zur ich , Swi t zerlan d. 
3 Figures in brackets ind icate the literature references a t t he end of th is paper. 
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2. General Relations Between Series and 
Integral Transforms 

Let an, (n ,v= 1,2, ... ) be an infinite ma trLx whose 
clemen ts arc complex and subj ect to th e condition 

lim ·~/ l anvl= O (n= 1, 2, . .. ) . (1) 
.->'" 

W e consider a llO t necessa rily convergen t infini te 
senes 

'" 
~ U. (2) 
. =1 

wi th the proper ty 

(3) 

This cOlldi tioH assUl'C's tha L Lite rad illS 0 f convergence 
of the po wer series 

±U. 
. =1 Z, 

is positive. 
Und er cO:lldi tiolls (J ) and (3) all the series 

00 

Un=~ anvuv 
. =1 

arc convergen t, as can readily be seen with th e help 
of the roo t tes t. Ther efore, we can say that lInd er 
those conditions the matrix (an.) defines the series 
tl'ansfol'ma tion 

'" 
U n---'7U n= ~ anvuv • 

v= 1 
(4) 

W e will show now th a t one can associa te witlt thi s 
ser ies transforma tion a certain integral transforma
tion b etween the analy tic functions 

'" u 
f(z) =~ ,; 

v= 1 Z 
(5) 

and 
00 

¢ (a)=~ U nan. 
n= l 



To obtain the kernel of this transformation we 
define the functions P ,, (z) by 

co 

p ,Jz) = L::; an V+ IZ ' 
n ~O 

(n = l , 2, . .. ). 

Because of (1 ) these series are convergent for every 
z and thus P ,, (z) are entire functions of z. 

It follows from (3) that the functionj( z) is regular 
outside of a certain circle, Izl= p. Now we integrate 
the product, P n(z)j( z) along a circle Izl=R (R> p), 
and obtain 

t/>P,,(z)J (z) dz=rh L::; a"V+ luvz'~dz J V,jl 

= 27r'i ~ an~11~= 27r'iUn ' 
I' ~ l 

UndeI' the h)'pothcsis that the function 

K(z, a)= ~ P n(z )an 
n ~ l 

(6) 

is regular III th e domain Izl< oo, la l< l , we derive 
from (6) 

Hence, ddilling the function t/>(a) for la l< l by 

t/>(a) = ~ unan, 
n ~ J 

we obtain thc integral transformation 4 

</> (a)=2~i ~ K(z, a)J(z )dz , (7) 

which maps every function j( z) which is regular 
outside of a certain circle into a function </>( a) 
which is regular within the unit circle. 

Conversely, let (7) be an integral transformation 
whose kernel K( z, a) is regular in the domain 
Izl< 00 , !a l< l and fulfills the condition S K(z,O) = O. 
Substituting forj( z) a function6 regular for Izl> l, 

'" u 
J( z )= L::; ~, 

v~ l Z 

we obtain for t/>(a) a function which can be expanded 
into a power scries within the unit circle, 

</> (a) =~ U nan• 
n~l 

• The path of integration in the z-plane will always bc a circle Izl =R (R > I) . 
• This is not an essential restriction because it can be achieved by replacing 

K (z,a ) by K (z,a)-K (z,O) . T hen the function .p(a ) is only changed by a con
stant. 

• It is assumed that there is no constant term in the expansion ; in other words, 
t hatf( co) ~o. 

From (7) we obtain between the coefficients U v and 
Un the rela tions 

1 rf: t/>(a) ( 1 )2rf:rf: K(z ,a) 
U n= 27r'i J an+1 da= 27ri J'j an+ 1Z' j(z)dzda 

= ( _1 )2pp "K(z ,a) Uv d Z· 

2 . L..; n+l • zea. 
7r' ~ v a Z 

(8) 

Hence the integral transformation (7) defines a series 
transformation whose matrix is given by 

( 1 )2 rhrh K(z ,a) l d 
anv= 27ri 'j 'j an+1z' e Z a. 

It can be shown that under certain hypotheses about ' 
the kernel the series transformation (8) is regular in 
the following sense: If the series :L:uv is convergent, 

v 
the series L::; Un is Abelian summable (A-summable). 

n 
This means that the limit 

(a real) 

exists and the relation 

(
CO ) co lim L::; U n an = L::; 11 . 

a - H - O n~ J v ~ l 

holds. The hypotheses about the kernel are: 
(i ) K( z,a) is a regular function of z and a in the 

domain I zl < 00, I a l < 1 and therefore can be expanded 
in the form 

'" K (z ,a) = :L: an+l(a)Zn. (9) 
n~O 

(ii) For every fixed n we have 

lim an(a)=l (a real) . 
<>-71- 0 

(iii) There exists a cons tan t M not depending on ex 
such that 

co 

L::; !an+1 (a) - an (a) I ~M. 
n~ l 

, To prove the above statement we consider the trans- i 

formation 

2 

</>(a)=2~i P K (z ,a)j(z )d(z ) 

and substitute for K(z,a) and f(z) the expansions 
(9) and (5), respectively. So we obtain the series
to-function transformation 

'" 
t/> (a) = L::; u vav(a). 

v~ l 



U sin g a wcll -kn own I'cgul al'i Lv Lh eor em we concl udc 
from co nditions (ii) and (iii) Lh at this transformation 
is reg ular ; th is m cans, th c limi t lim 4>(0' ) exists pro-

a - H-O 

v idecl Lhat th c series ~u, is conver gent and the 

r elal ion 
00 

lim 4> (0') = ~ u,. (11) 
a - H - O v= l 

h old s . 
Th c statement which has just becn provcd can bc 

formulated as the following: 
TlmoR EM 1. L et K (z,a) be a function with the 

properties (i), (ii), and (iii), and let the matrix anv 

be defined by 

( 1 )2rh rh K (z ,a) 
a",= 27ri J J an+ 1zv dzela. 

Then the series tran sformation induced by this matrix 
carries every convergent sel'ies ~1L, into a11 A -summable 

v 
series ~ Un with the same sum. 

n 
It is wor th noting lha t t hc sc ri cs ~ Un n eed not 

11 

be convergent itself. Howeve r, if t he ma t ri x an, 
fulfills addit ional ill equalities of the form 

"';;-" 1 I<M L..J anv = -
v=l n 

(11= 1, 2, ... ) (12) 

wJlcr c J.1I1 is a fi xcdnumber , i t foll ows th al 

IU I< M . 
I n = 'n, 

III Lhis case wc can apply the T aubcl'ian th eorem and 
concludc that thc series ~U" is convcrgen t and 

n 

~ U,,= lim ~ (Una") . 
n a -t l - O n 

Thus , und cr th e additional h ypo thesis (12), wc gct 

for every convergent series ~uv, which m eans that 
v 

th e tran sforma tion (4) is regular. 
As an example , let us consider th e serics transfor

m ation 
1 n 

U,,=- 1 ~ Pn - l ,v- 1'Uv 11 .• = 1 
(13) 

wh ere Lbe PI/, a rc Lh e coeffi cicnts of the polynomial 

scn es ~Un is convcrgcn L rcspectivcl.\T A-summable 
n 

the origin al series ~?j" will bc call cd L- ummable , 
r cspcct ively AL-s ummabl e, and wc wri tc 

and 

lim (~ U nan) = AL (~ u ,, ). 
a~1-0 n v 

00 

For the integral kernel, K (z,a)= L. P ,,(z) a", of the 
n= l 

L-transformation , the functions 1-',,(z) JIaVC thc rol
lowing form: 

P 1(z ) =Z 

1 (_ 1) 11 (l -Z) 
P,,(z)=rJ P n- I (z)= z - 1 n (n= 2, :) , ... ) . 

(15) 

This lcads to 

K (z, a) = _ 1_ ± (_ I )" (l -Z) a,,=~-a)I -Z- I . 
z- 1 n= 1 n z- l 

Hen ce , defining the a nalyt iC' (unc t ion 
(10'1< 1) b.v 

] p(l _ a) I-Z_ 1 
cf> (a)= -2 . 1 I (z) dz, 

7r~ z-

cf> ( a ) 

(16) 

the AL-summa,biliLy of Ule Sel'll'S ~uv means t.hat 
v 

4> (a) app l'oachcs a limi t if a tend s 1,0 1 from th c left 
along tJIC rcal ax is a lld we have the relation 

AL (~ uv) = lim cf> (a ). 
v a~ ! -O 

In ordcr to show that a convel'gcnt seri cs is also 
AL-summable to the sam e valu e we check that th e 
kernel K (z, a) satisfies the h ypothesis of theol'cm 1. 
Condition (i) is immediatel.\T cl ear and (ii ) follows 
from the fact that an(a ) can be wri t ten as 

( ) _ 1 pK (z ,a) d _ j _ "( ~ 'Y v an a - - , --n- z - -e L...J ,-
27r~ Z v= ! V . 

(17) 

where 

'Y=-log (I - a). 

p ,,(z ) =z (z+ 1) . . . (z+ n - 1) (11 = 1,2, .. ,), (14) To check (iii) wc obscrve th a t 

This transformat ion was in troduced by Lototsky [3] 
and will be called the L-transformation . If th e 
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and therefore 

Now it follows from theorem 1 that the transforma
tion (13) maps a convergent series into an A-sum
mabIe series with the same sum. 

In this special case it even can be shown that the 
series "'22 Un is convergent itself. From (13) we get 

n 

'" 1 n 1 1 
L. a,,,=, :z= Pn-1Pv- l= , Pn-l(I) = - , 
v= 1 n. v= 1 n. n 

and thus condition (12) is fulfilled which assures the 
convergence of the series "'22 U n. This means that 

n 
the L-method is regular. 

3 . Connections Between the Lototsky and 
the Borel Summabilities 

As men tioned before, thcre is a close relationship 
between the Lototsky and the Borel-integral methods 
of summation. Let "'22u. be a (not necessarily con-

• 
vergent) infinite series such that 

1-· ~. lun1 1m -=0. 
n-->'" n! 

(18) 

Then the sum 

F(t)= ~ 11vT' tV 
1= 0 V. 

(19) 

defines an entire function of t. The series "'22u. is 
• 

called summable with respect to the Borel integral 
method (BI-summable) if the improper integral 

exists. In this case we write 

We are going to show that the function 

(20) 

can b e represented as a certain integral transform 
of the function 

'" 11 f(z) = "'22 --.;. 
v=1 z 

(21) 

4 

Assume (as we did in sec. 2) that the radius of con
vergence of the series (21) is positive; in other words, 
that 

- ro- 1 
lim ;; Iun l=-;-< 00. 
n~co 1 

(22) 

Since "jiJ--'7 00 it follows from (22) that condition 
(18) is automatically fulfilled. 

The coefficients Un are represented by the integrals 

(23) 

where the integral is taken around a certain circle 
Izl= R (R > r). From (23) it follows that 

"'22 ~ t n=-. ](z) "'22 - dz=-. j (z)eztdz, '" U 1 ~ '" znt n 1 ~ 
n=O n! 27r'l, n=O n! 27r'l, 

and therefore, using (19) and (20), 

B ( t)=~ rt rF. ertz-l)](z)dzdr. (24) 
27r'l, Jo J 

Since the integrand is regular we can interchange the 
two integrations and integrating with respect to r we 
obtain 

1 ~ etCz - 1)_ 1 
B (t ) = 2-----; 1 j(z)dz. 

7r'l, z-
(25) 

Thus the BI-sum of the senes "'221(v can be repre

sented as the limit 

( ) . 1 ~ et (z-1)_ 1 
BI "'22 11 . = hm?"", - 1 ](z)dz. 

v 1.-4 ID .• ;../7r~ Z 
(26) 

Comparing transformations (16) and (25), we obtain 
the following relation between functions </>(a) and 
B(t) : 

¢(a) = B(-log(l- a )) (2 7) 

which can also be written as 

(28) 

From this relation it follows immediately that the 
existence of one of the limits 

lim </>( a) or lim B (t) 
a-->l-O t-->", 

implies the existence of the other, and these limits 
coincide . This means in terms of series: Under the 
hypothesis (22) AL- and the BI-summability are 
equivalent. 

Here the question arises whether this equivalence 
still holds without condition (22 ). We are going 
to show that the implication BI--'7AL is true in 
general but not conversely. 

< 
I 

I 

l' 
I 



We firs t prove 
Ll~MMA 1: L et u , be an injinite series such that the 

function 

F(t )=£. u"+! t" 
1=0 v 

is regular in a certain neighborhood of t= O and define 
the functions B(t) and cf>(a) by 

B(t)= .r F(r)e-Tdr 

and 
cf>(a)= B(- log (1 - 0')) . 

Then the coefficients Un of the expans'ion 

are the L-transforms of u ,. 

PROOF: The coeffi cients Un arc defined by 

B (- log ( l -a))=~ Unan . 
n 

DifferenLiaLing thi s relat ion we get 

1 
B'(- log (1 - a)) -I -=~nUnan- l, 

- a n 
(29) 

and hence, observing that 

B'(t)= F(t )e- t 

and therefore 

B'(- log( l - a))= (l - a)F( - log ( I - a)), 

we conclude that 

'" (-1)v 
~ nUnan- l = ~ - -, - [log (l - a)]"uv+!. 

11 0= 0 V. 

Using the residue theorem we conclude that 

U -~ ~ (-I)" (~[Log (1- 0')]" l ) ,,- L..J, 71+ 1 GO' U V+1, n 1=0 V. a 

which can be written as 

1 '" 1 '" 
U ,,=-, ~ a"_ 1 vUv+l =, L, an- I v- 1u., (30 ) 

n . 1= 0 n. 1= 1 

wh ere the coefficien Ls an, are defmed by 

_(_ I)"n!~. [log (I - a)]" l . 
a"v- , n+1 GO' V. a 

(31) 
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It has to be shown that the numbers an. coincide 
with the numbers Pn. defined by (14) . FU'st of all 
we have a".= O for v> n since the functions 

[log (1- 0') ]" 
0'71+ 1 

are regular at 0'= 0 provided that v~n+1. We now 
define the polynomials an(z) by 

n 
an(z) = L:.: an,z" 

,= 1 

and show that 

a,,( - k )= O (k = O, I, ... ,n- l ). 

In fac t we have for ever.\" in Leger 

! (_ I )= ~lcV~ [IOg(l -a) l ' l 
, a " Ie L..J, n+1 (i a n . .=1 V. a 

If now k ~ n - 1 Lhere is 110 residue at 0'= 0 and we get 

an(- lc )= O (1c = 0,1, ... ,11-1 ) . (3 2) 

From here it follows, since the polynomial an(z) has 
Lhe degree n, 

a ,,(z) = /.. z(z+ 1) . .. (z+n - l ) (33) 

wllCre A is a consLant. Substituling Z= 1 in (33) we 
get 

and on the other hand we have 

n <Xl 00 (- 1 )' ~ [log (I - a)]" 
an( I)=~an,=~an,=n! ~ --, - ,,+1 dO' 

.= 1 . = 1 .=1 V. a 

_ ,r£(_l _ )~_ , 
- no J 1- 0' 1 an+l - n .. 

From the last two relations it follows that A= 1 and 
we obtain 

a ,,(z)=z(z+ 1) ... (z+n- l )= Pn(z) 

and comparing the coefficients 

which proves lemma 1. 



I 

l ~ 

THEOREM 2.7 A BI-summable series is also AL- and the sequence Un by 
summable and the two sums coincide: 

PROOF: By hypo thesis the series 

F(t )= i= UU ~I t' 
1'= 0 v. 

defines an entire function. H ence the function 

is entire too, and therefore the function 

cf>(a)= B( - log (l - a)) (34) 

is regular for la l< l. According to lemma 1 we have 
the expansion 

cf> (a) =~ Unan (35) 
n= 1 

where the Un are the L-transforms of the U , . Hence 
the series 

is convergent for la l< 1. Furthermore, we obtain 
from (34) and (35) 

~ Unan= B (- log (l -a», 
n= 1 

and hence, if a tends to 1 on the real axis, 

This m eans that the series ~uv IS AL-summable 

and that the r elation 

holds. 

Conversely, one cannot conclude that an AL
s ummable (even an L-summable) series is also 
BI-summable, as the following example shows: 

Let the function cp(t) be defined by 

1 
cp( t) = 2-----=1 -e 

1 Different proofs of theorems 2 to 4 are given in a mimeographed report by 
R. P . Agnew (U.S.A .F. Contract 18 (600-685» . 
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(n= I,2, ... ). (36) 

Then we have 

and therefore this series is convergent, only for 
It l<log 2. H en ce the BI-method cannot b e applied. 

To obtain the L-transform of sequence (36) we 
apply lemma 1. The function B(t) in our case is 
given by 

B (t ) = --=loo' (2-e- t ) i t e- rdT 
o 2-e- r b , 

and from here we get 

cf>(a) = B (- log (I-a» = log (1 + a) , 

and thus 

U n =(_l)n-1 ~. 

The series ~Un is convergent, and hence series (36) 
n 

is L-summable to the value log 2. 
As the above example shows, the AL-summability 

of a series ~uv does not imply that the series 

~ Uv+ l t' 
v v! 

has an infinite radius of convergence. It can b e 
shown however that this radius can not be less than 
log 2. To this purpose we prove 

LEMMA 2: L et ~uv be an infinite series and ~ U n its 
v n 

L-transjorm . A ssume that the series 

is convergent in a catain circle la !< p, (p > O). Then 
the series 

F(t ) =~UV+ l t' 
v v! 

is convergent in a certain circle It l< p' , (p' > O) and the 
relation 

(37) 

holds. 
PROOF: By hy pothesis the function 

(38) 

is regular in a certain circle It l< p' and therefore the 
same is true for the function 

(39) 



where B' indicates Lhe derivaLive of B. 

From (38) and (39) it follows that 

F(t) = cp' ( l -et) .~ 

Expanding the function F(t) into a power series, 

F(t )= ~c. t ', 
v 

we obtain from (40) 

cp' (l -e- t)= :Z::::;c.t', 
v 

and if we in troduce 

as a new variable, 

cp' (a) = :Z::::; ( - l ) 'cv ~og( I -a)]' . 
v 

On the other hand we have 

q/(a) = :Z::::; nUnan- I. 
n 

From (41 ) and (42) it follows that 

:z::::; nUna,,-I= :Z::::; (- I )'c, [log (I - a)]', 
n 

and from here we obtain 

(40) 

(41) 

(42) 

1 
= - j:Z::::; P n - J ,vic,. 

n. v 

This equation s tates that the Un arc the L
transforms of the sequ ence v!c,. On the otJlCl' 
hand, they are by definition the L-transforms of 
u" and hence we conclude 

Therefore the expansion of F(t) becomes 

F ( t ) =~ U'~I t' 
v=o v. 

(43) 

and this series must b e convergent within the 
circle It I <p'. 

R elation (3 7) now follows from (43), (39), and 
(38) . 

From lemma 2 we can derive Lhe following theorem, 
which is proved by Agnew [2] in a different way. 

THEOREM. For the terms of an AL-summable 
series :Z::::;uv the inequality 

v 

lim n Il unl ~_I_ 
1l--t'" -V n! - log 2 

508986- 59- 2 

(44) 
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holds. 
PROOF: Since the series :Z::::;u, is AL-summable the 

fun ction 

is regular for lal< 1. H ence the function B (t) 
defin ed by 

must be regular in the domain D, which IS deter
mined by the inequality 

and the sam e holds for the func tion · 

F (t) = B' (t )e- t • 

Writing t= x+iy, we get 

II-e- t I2= 1+ 2e- x Ct e-x- cos y) 

and hence inequality (45) is equivalen t to 

(45) 

This means that the point l= x+ iy lies in the 
" interior" of the curve 

x=-log (2 cos y) . (46) 

y 

--~-----+----~------------~x 

FIGURE 1. R elations between summation methods and integral 
transformations. 

Thus the function B Ct) can be expanded into a 
power series within the largest circle It l= p with the 
center t= O that is contained in the domain D . 
This is the circle 

It l=log 2. 

because this circle touches curve (46) in the point 
t= - log 2, it is sufficient to show that the radius of 
curvature of the curve (46) is not less than log 2. 
The curvature of this curve is given by 

1 -=--, 
P cos Y 



and hence we have 

Thus the expansion of Fet) into a power senes 

where a (a 7'" 0) is an arbitrary complex number. 
In this case we obtain 

must be convergent for and thus, 

Itl< log 2. 

On the other band, using lemma 2 this expansion is 
given by 

F (t)="L,UV+ l tV. 
v v! 

From here it follows that 

1-· V IUnl < 1 Jm - _ --1 
7l-->'" n! -10g2 

which proves theorem 3. 
It follows from series (36) that the bound l/log 2 can 

not be improved. 
The BI*-methocl. The application of the BI

method provides that the series 

"L, U V±! t' 
v v! 

converges in the whole t-plane. Frequently the 
case occurs that the radius of convergence of this 
series is positive and finite such that this series de
fines a regular function F(t) within a certain circle 
It I <po If this function can be analytically continued 
along the positive t-axis one can form the improper 
integral 

In case this integral is convergent, the series is said 
to beBI*-summable [2, sec. 11] and its value is called 
t.he BI*-sum of "L,uv, 

v 

B J* (~Uv)= i 00 F(t) e- tclt. 

Obviously a BI-summable series is also BI*-sum
mabIe to the same value. 

It can be shown that AL-summability implies 
BI*-summability, but we do not prove this here 
since BI*-summability will turn out to be equivalent 
to a generalization of AL-summability and the above 
statement will follow immediately from t.here. 

To demonstrate the BI*-method by an example, 
let U n be defined by 

_( 1)" n! U n+ l - - n 
a 

(n= O, 1,2, ... ) (47) 
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( ) ( "' ae-t 
BJ* ~ U v = Jo a+ t clt. 

This integral converges for every number a which 
is not real and negative and therefore series (47) is 
BI*-summable for all those values of a. 

The next example shows that a BI*-summable 
series is not necessarily AL-summable (and hence 
not L-summable). Let the function cf>(t) be defined by 

(48) 

where a is a real number such that a> I, and let 
the sequence Un be defined by 

(n = 1,2, . . . ). ( 49) 

Then the series 

"L, U v , 

v (v + l)! t 

is convergent in the circle 

Itl< log a 

and represents the function cf>(t). This function is 
defined along the whole positive t-axis and the integral 

1 
a 

is convergent. Thus the series (49) IS BI*-sum
mabIe. 

In order to obtain the L-transform of (49) accord
ing to lemma 2 we have to form the function 

i t 1 1 
B(t) = cf>(T) e-Tdr=- - --_-t 

o a- I a-e 

and then substitute 

t= -log (I - a) . 

This gives 

cf>(a) 
1 

a- I 
1 

a- l + a 

The function cf>(a ) so obtained has a pole at a = l-a 
and hence the series"L,Una n is only convergent in 
the circle 7l 

lal<a- l, 



wh ich is smaller than the unit circle if a< 2. Therc
fore, the AL-method can not be applied to series (49). 

The AL*-summability. As the last example shows 
the BI*-method is more powerful than the AL
method. However the AL-method can b e extended 
to a method AL* in a similar way as BI has been 
extended to BI*. 

Let L:uv be an infinite series such that the power 
v 

sen es 

is convergent within a circle lal< p and assume that 
the function cp(a) can be analy tically continued 
along the interval O~u< 1 (a = u +iv). If the 
limit 

lim cp (a) (a real) 
a -; i-O 

exists we shall call the seri es L:uv AL*-snmmable and 
v 

write 

AL* (L:uv) = lim cp (a). 
v a-; i - O 

AL*-summability obviously implies AL-summabil
ity. 

THEOREM 4. Th e AL*-summabihty is equivalent 
to the BI*-summab'iiity. 

PROOF: Assume firs t ('.] 1(' se ri es :L:uv JS BI *-sum-
n 

mable. Then the fun ction 

F(t )= L: 1J v+ ~ tV 
v v! 

i~ regular within a circle Itl< p. Let now the func
tlOns B(t) and cp (a) be given b.v 

B (t)= i t FH e- TdT 

and 
cp(a)= B (- log (I - a)) . (50) 

Then cp (a) is regular within a circle lal< p' and 
therefore It can be expanded into a power series 

According to lemma 1 the coefficients Un are the 
L-transfonns of the U V ' By hypothesis, the function 
F (l) can be analytically continucd along the positive 
t-axis and therefore the same is true for the funct ion 
B (t) . Hence eq (50) defmes an analvtic contin ua
t ion of th e function ct>(a ) along the real unit interval 
and we have 

lim ct>(a)= lim B (t). 
a-; i -O t-;", 
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This means that the sen es L:uv is AL*-summable 

and the relation 

holds. 
On the other hand, if th e serie L:uv is AL*-sum-

v 
mable, the function 

ct> (a)= L: Un a" 
11 

IS regular within a circle lal< p. H ence the en (' 

F (t )= L: UV+ 1 tV 
v v! 

according to lemma 2 is co nvergent with in a circle 
It I < p' , and th e relation 

F(t) = ct>' (l -e- ' )et (51) 

hold s. Since the function ct>(a) by hypoth esis can be 
analytically contin ll ed along the real unit interval 
the SAme hold s for F(t ) along the posi tive t-axis and 
relation (51) hoMs for every positive t. From there 
we obtain 

f '" F(t)e-tdt = lim ct>(a) 
o a-;J-O 

which shows t}lat the series L:uv is BI*-summable. 
v 

Altogether we have the following relations between 
the Lototsky and the Borel methods, where all the 
simple arrows are not invertable: 

L -i>AL-i>AL* 
t 1i 

BI BI* 

Series (36) shows that L does not imply BT, but it 
is not Imown to the author whether the implication 
BI -i>L holds. 

3. Application to Analytic Continuation 

Let g( z) b e 31) analytic function regular in a do
main D which contains the origin and let 

g (z)=~ U ,Z·-l (52) 
v= 1 

be the expansion of g( z) around the point z= O. It 
is a known result that the series (52) is BI-summable 
to the valu e g(z) at every interior point of the Borcl 
polygon 7r of g( z) and not BI-summable at every 
exterior point . Making use of th e relationship 
between the BI- and th e L-summability the same 
can be shown for the L-summabili ty of series (52). 

In order to do so we first observe that 

lim ;/ Iu"z~ 11=lzollim .. /1UJ<ro , 
n~co 'n--1 o:> 



and h ence the BI-summability is equivalent to AL
summability (sec. 3). From this remark and the 
implication L -»AL it follows that series (52) can 
not b e L-summable at an exterior point of 7r. 

L et now Zo be an in terior point of 7r. Then the 
series L: u vzg- 1 is BI-summable and h ence AL-sum-

v 
mabIe. Thus the relation 

lim (L: U ,,(zo)an) = g(zo) (53) 
a-71-0 n 

holds where Un (zo) denotes th e L-transform of the 
sequence uvzo-1. 

It remains to show that the series ~Un(ZO) IS con-
n 

vel'gent ; then the relation 

L: Un(zo) = g(zo) 
n 

will follow from (53) and the Abelian limit theorem. 
,liT e arc go ing to prove the absolu te convcrgence 

of the above series . For that we start ou t from the 
relations 

1 11- 1 

U ,,(zo) = , L: Pn - l v U v+ l zg . (54) 
n. v=1 

Since Zo is an interior point of the polygon 7r the 
closed circle 

I z-~~ I <~ 2 = 2 

is contained in D , and therefore a number p> 1 can 
be chosen so close to 1 that the circle 

c: 

still is contained in D. [2 , Chap . VIII .] 
Hence the coefficients U v can be represented by 

UV=2~~g(:) dz . 
7r'/,J z 

From (54) and (55) we obtain 

(55) 

and from there, if 111 denotes the maxImum of 

g(z ) on the circle c 
z ' 

If we write for abbreviation 

Zo w=-, 
Z 
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this relation becomes 

= M lw(w+ 1) . . . (w+ n) I.1 n 2 1·lnw- 21 . 
n!n w (w+ n - l )(w+n) 

(56) 

If n tends to 00 the first factor approaches r (w) 
and therefore stays bounded . The same is true 
for the second term and therefore it is sufficient 
to show that th e series 

(57) 

is uniformly convergent on c. The circle c IS 
represented by the equation 

From here it follows that 

and for the real part 

R (w)= 2(1 + p cos 0) ::;; _ 2_ . 
1+ 2p cos 0+ p2 -1 + p 

Therefore we have 

- 2p 
R (w- 2) ~ l + p = -1-8, 

and hence the inequaliti es 

hold, which imply the uniform convergence of series 
(57) on c. Now the absolute convergence of the 
series L:U n follows from (56). 

n 

5 . Connections With the Euler-Knopp 
Method 

The Euler-Knopp transform of a sequence u, 
(EK-transform) is defined to be the sequence 

(58) 

where K is a complex parameter. 
This transformation can be derived from a lineal' 

transformation of the w-plane which has the fixed 



point w= 1 and maps w= 0 in to w= co. The most alld making usc of the iden ti ty 
genera 1 transformation of this kind is given by 

l - a+ Z= -- a 
w 

(59) 

where a is a complex number. Now let 

f(z)=~ :: (60) 

bf' an analytic function which is r egular for Iz l> l. 
This impli es that the function 

( l - a ) f* (w) = f ----:-+a (6 1) 

is regular in the dom aill t hat is mapped onto Izl>1 
under the transform at ion (59), that IS t he cU'cle 

11- a + awl>l wl· 

Since this domain co ntains th e point w= O the 
functionf*(w) can be expa llded in to a power sf'ries 

f*(w) =~ U nwn. 
n 

The coefficients U n are given by 

Un=2~ rh f~,~) dw. 
7r~ j W 

If we substitute here for the fun ction f*(w ) the 
express ion (61) and fOl'f (z ) t he expansion (60) we get 

1 P ( w ) " dw U n= 2--; ~ 1 + n+ ! Uv· 
7r ~ v - a aw w 

This integral can be evaluated by the residue 
theorem. First we observe that 

= K" {I + (K - i )w}-v 

where 
1 

K=~ ' 
I - a 

(62) 

From there we obtain 

11 

(-V) (_ l )n- "= (n- l), 
n- v v - J 

we finally get 

U ~ (n- l) "'1 )n- v n= ~ v - l K \ -x U •• 

This equation shows that t l1(\ coefficients U n are the 
EK-transforms of t lto coefficiell ts U v' 

From the relation s lup betweell t lte EK-transJonn a
tion a nd t lte lin eal' mapping (59) i t can easily be 
derived that th e ET\.-transfol'mation ca llnot be 
regul ar unless K is r eal a nd O<K ~ l. .Assume t hat 
Lrans formation (58) is r egul ar a lld let ~u,. be a CO)) -

v 
ve rgent seri es such Lllat the fun ction 

l ' 
f(z)=~ -'! 

v Zv 
(63) 

has a sing ularity at a givell point 2, (lz, l= l , z!~1) . 
Theil t he series ~Un by hypothesis is also co nvergen t 

" nnd hell ce the funct lOIl 

( I -. a ) 
f '";w) = j --:;- +a. (64) 

is regular [01' Iwl <' 1 . Theref'or(' the fun ction fe z) 
mllst be regula r ill Lil e im age domain of the circle 
Iwl< l under i he mapp ing (59 ). Tills image IS 

given by 

Therefore the poillt z, can Do t be contained in D 
a nd sin ce 2, was arbitrary on tbe unit circle this ll a; 
to hold for the whole circlf' Izl= l. He nco t he unit 
circle has to be contained In the circle 

I z -a l ~ 11- a l 

and this is possible only if a is real and a'::; 0 wllich 
m eans that K is r eal and O< K;;;: 1. - , 

It is k.nown that an EK-summable series is also 
AL-summable provided. that K is real and positive 
[2 , sec. 8.] We shall glve here a proof of this fact 
using the in tegral repl'eSentatlOn of tbe L-trans
formation. 

LeL ~uv be an EK-summable seri es and define the 
v 

functionj(2) by 

f (z )= ~ u v• 
v Z v 



Then the function 

g(w) = f * (~) f (( I - a)w+ a) 

has the expansion 

The functionf(z) can be expressed by g(w) as 

( z-a) f (z)= g - . 
I - a 

From this equation it follows tha t the L-integral 
transform ofj(z) can be written as 

cf> (a) = 2. rho (l - a )I-Z- I f(z)dz 
21f~ j z- 1 

1 ~ (l - a )I-Z- l ( z-a) = - . 9 -- dz . 
21f~ z- 1 I - a 

Introducing t he new variable 

we obtain 

~=z-a 
I - a 

and hence cf>(o:) can be considered as the transform of 
g(w) with respect to the kernel 

It is easily verified that this kernel fulfills the concli
tions of theorem 1 provided th a t a is real an d 0 ~ a< 1. 
Therefore it follows that under this condition 

lim cp (a)='L; Un = EK ('L;uv) 
a- >1-0 n v 

provided that the series 'L; U" is convergent. But 
n 

that means that the series 'L;uv is AL-summable and 
v 

the rela tion 

AL (~uv)=EK (~uv) 
holds. 

In case K is not bo th real and positive i t is shown 
by Agnew ([2], sec. 8) that EK-summability does 
not imply AL-summabili ty. 

6. Inversion Formula of the Lototsky 
Integral Transformation 

The question arises wheth er the in tegral transfor
mation 

I ~ (l -a)I-Z- I 
cp (a) =~ 1 j(z)dz 

~7r~ z- (65) 

can be inverted. One cannot expect that to every 
given regular function cf> (a) (la l< 1) there exists a 
function fez) regular outside of a sufficiently large 
circle such that relation (65) holds. Provided such 
a function exists, i t can be represented as an integral 
transform of cp (a) at least in a half-plane. 

THEOREM 5. Let j (z ) be a function regular for 
Izl>r such thatj(oo )=0 , and let cp (a ) be its transform 
with respect to (65) . Then in the half-plane x>r the 
function j (z) can be represented as 

12 

j (z) = (z- l ) .r cp (a)(1-a)'-2da . 

PROOF: Since.f(oo )= 0, relation (65) can b e written 
as 

1 ~ (l_o:)I- Z 
cp (a) = 2-----; 1 j (z) clz. 

7r~ z- (66) 

Let zo=xo+iyo be a fixed point in the half-plane 
x> r. We choose for the path of integration in (65) 
a circle Izl= R, wherc 

If (65) is multiplied by (l -a)Zo-2 and integrated with 
respect to 0: between 0 and t (O< t<1), we get 

it 1 it~ (1 )ZO-Z- I 
cp (a) (l -a)'O-2cla= -2 . - a 1 f( z)d zdo:. 

o 7r~ 0 z-

Since the integrand is regular, the two integrations 
may be interchanged and we obtain integrating 
with respect to a 

If t tends to 1, the e).1>resS10n 

(1- t) 'o-' 

tends to zero uniformly on 1 zl = R because of the 
inequality 

Hence we obtain 

i 1 ( ) ( ) ' -2 l 1 ~ f(z)dz () cf>o: I -a 0 GO:=-2' ( 1)( ).67 o 1f~ z- Zo-Z 



Th e r igh t-hancl side of th i equation can be evaluated 
by Lhe Cauchy integral formula since the function 
fe z) is regular for Izl> r. Observing thatf(ro) = O, 
we get 

1 rF, f (z) dz f (zo) 
27rij (z-l)(zo-z) = zo-( 

From (67) and (68) it follows that 

f (zo) = ( I cf> (a) (1_ a) zO-2 da 
zo- l Jo 

and we obtain tb e formula 

f(Z)=(Z - l ).r cf> (a ) (1- a )Z - 2da 

which is the inversion of (65) . 

(68) 

(x> r) (69 ) 

Formula (69) can be used to obtain the inverse 
matrix of th e L-transformation (13). For the 
particular functions 

(k = O, 1 . . . ) (70) 

we get from (69) 

k! Ie! 
Z (z+ l ) .. (z+ Ie - 1) Pk(Z ) 

This function is in fact regular outside of the circle 
Izl= k- 1 and t.hus for the special functions (70) 
the integral equation (65) docs have a solution that 
is regular outside of a certian circle. 

To obtain the inverse of the L-transformaLion 

1 U,,=, ~ P n- I v- 1Uv, n . v 
(71 ) 

we denote by fi n} the illverse of the matrix P nj . 
Then it follows from (71 ) that 

(72) 

Th e functions 

and 

13 

correspond to each other by th e transformaLions 
(65) and (68) . 

In particular, the fun ction (70) posse ses the 
coefFicien ts 

and hence we obtain from (72) 

Thus the fun ction fe z ) has the expansion 

On the other hand this function is given by 

Ie! 
f( z) = Pk(Z) 

(73) 

(74) 

Comparing the right-hand sid es of (73) and (74) 
we conclude that 

~ q n- I k - I _ I _ 
n z" Pk(Z) 

and from there 

or if n - l is replaced b y n and Ie - I by Ie, 

(75) 

This formula corresponds to the representation (3 1) 
of the matrix P nv. If th e integral in (75) is evaluated 
by the residu e theorem we obtain t he formul a 

k V ,,- I 

qnk=~ (-1)"-' (v- 1) !(lc -v) ! 

= _ 1 __ ± (_ I )n-. (lc - 1) vn - I • 

(Ie - I ) ! v= 1 v- I 
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