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Relations Between Summation Methods and Integral
Transformations'

Werner Greub?

(May 12, 1959)

Relations between the Lototsky method of summation and those of Borel, Euler, and
Knopp are obtained by associating an integral transformation with the series transformation.

1. Introduction

In a recent paper, R. P. Agnew [1] ? establishes re-
lations between the Lototsky method of summation
for divergent series and the classical summations of
Borel, Euler, and Knopp.

It is the purpose of this paper to show that these
relations can be obtained in a very natural way if the
S(‘l'i(‘S transformation is associated with an integral

ransformation. The following scheme describes
lho connections between the series and the integral
transformation:

original series ——— transformed series

Laurent expansion Taylor expansion

analytic function ——— integral transform

of the function

In section 2 it is shown that under certain con-
ditions a regular series transformation can be
assigned to every integral transformation, and con-
versely. As an example, the integral transformation
corresponding to the Lototsky series transformation
(L-transformation) is constructed. This integral
transformation is used in section 3 for the discussion
of the relation between the Lototsky and the Borel
integral methods. The outcome of this discussion is
that L-summability contains Borel integral-summa-
bility (Bl-summability) but does not contain a
modified Borel summability (BI*-summability as
denoted in [1]). It is shown that the L-method can
be extended to a summation method which is equiva-
lent to the BI*-method.

In section 4 it is proved that a power series is
Li-summable in all interior points of the Borel polygon
of the corresponding analytic function but not
[i-summable in all the exterior points. This proof
is based on the relationship between the L-method
and the Bl-method.

In section 5 the Lototsky method is compared
with the method of Euler-Knopp.

In the last section the inverse of the L-integral
transform is constructed and used to obtain the
inverse matrix of the Lototsky series transformation.

1 This work was (‘unwl out in part lmdo a National Bureau of Standards
(mm.ut with The A 5
2 Present address: Univ msn) of Ziirich, Ziirich, Switzerland.

3 Figures in brackets indicate the litomture references at the end of this paper.

2. General Relations Between Series and
Integral Transforms

Let a,, (n,p0=1,2,. ..) be an infinite matrix whose
elements are tomplm and subject to the condition

Tim V]a,,|=0

V> ™

(n=1,2,...). (1)

We consider a not necessarily infinite

series

convergent

>, (2)
v=1
with the property

Iim Vu,| < . (3)

]

This condition assures that the radius of convergence
of the power series

Is positive.
Under conditions (1) and (3) all the series
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v=1

are convergent, as can readily be seen with the help
” X nm .

of the root test. Therefore, we can say that under
those conditions the matrix (a,,) defines the series
transformation
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We will show now that one can associate with this
series transformation a certain integral transforma-
tion between the analytic functions
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‘'o obtamn the kernel of this transformation we
define the functions P,(z) by

©
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Because of (1) these series are convergent for every
z and thus P,(z) are entire functions of z.

It follows from (3) that the function f(z) is regular
outside of a certain circle, |z|=p. Now we integrate
the product, 7°,(2)f(z) along a circle [z|=R (R >p),
and obtain

¢’Pn(2)f (5)({2 —

D @y oy UZd2
m

=21 > @pty=2wil,.  (6)
u=1
Under the hypothesis that the function
K(z,0)=3 P,(z)a"
n=1

is regular in the domain [z|< =, |a/<1, we derive

from (6)
¢ K

Hence, defining the function ¢(«a) for |a|<1 by

a)f(2)dz=2m1 Z U,o"

¢(Q)ZZ Upt,
n=1
we obtain the integral transformation *

:51;1, 56 K(z,0)f (2)dz, @)

which maps every function f(z) which is regular
outside of a certain circle into a function ¢(a)
which 1s regular within the unit circle.

Conversely, let (7) be an integral transformation
whose kernel K(z,a) is regular in the domain

l2|<ew, laj<1 and fulfills the condition® K(z,0)=
Substituting for £(z) a function® regular for |z [>1
f(Z)_lZ P

we obtain for ¢(«) a function which can be expanded
into a power series within the unit circle,

() 22 U,o".

4 The path of integration in the z-plane will always be a circle [z|=R (R>1).

5 This is not an essential restriction because it can be achieved by replacing
K(z,a) by K(2,a)—K(z,0). Then the function ¢(a) is only changed by a con-
stant.

6 It is assumed that there is no constant term in the expansion; in other words,
that f(e)=0.

From (7) we obtain between the coefficients u, and
U7, the relations

Un 27r19§¢"“d <2 z>§
g

Hence the integral transformation (7) defines a series
transformation whose matrix is given by

_<21rz> fpfﬁ

[t can be shown that under certain hypotheses about
the kernel the series transformation (8) is regular in
the following sense: If the series > u, is convergent,

K(z,a) a)

n+1 v

z)dzda

— dzda. (8)

n+1 v

v
the series > U7, is Abelian summable (A-summable).

n
This means that the limit

Iim (>0, a"> oy
a—>1—-0 \n=1

exists and the relation

lim
a—>1—0

Z U, a >:Z Uy
v=1
holds. The hypotheses about the kernel are:
(i) K(z,«) is a regular function of z and « in the
domain |z|<e, |a|<1 and therefore can be expanded
in the form

K(z,) =20 pyr(@) 2™, (9)

(i1) For every fixed n we have

lim a,(x)=1 (e real).

a—>1—0

(iii) There exists a constant M not depending on «
such that

nz:l !an+1 (a) _(ln(a) l éM

To prove the above statement we consider the trans-
formation

O 56 K(za)f(2)d

and substitute for K(z,a«) and f(z) the expansions
(9) and (5), respectively. So we obtain the series-
to-function transformation

¢(a>=;é oty (). (10) |



Using a well-known regularity theorem we conclude
from conditions (ii) and (iii) that this transformation

is regular; this means, the limit lim ¢(«) exists pro-
a—>1—0

vided that the series > u, is convergent and the
v

relation

)

>0 U,

v=1

lim ¢(a)= (11)

a=>1=0)
holds.
The statement which has just been proved can be
formulated as the following:
Turorem 1. Let K(z,a) be a function with the
properties (i), (11), and (iiv), and let the matriz a,,

be defined by

Ly <‘)7I'7> ?q) I("(_:;av) dzde.

Then the series transformation indwced by this matrix
carries every convergent series >, into an A-summable
v

series > U,
. w . .
It is worth noting that the series >, need not

n
be convergent itself. However, if the matrix a,,
fulfills additional inequalities of the form

with the same sum.

= {(1,,,.\§3:I{ n=1,2, . . .) (12)

v=1

where M is a fixed number, it follows that

..—

l[ n“é"*

In this case we can apply the Tauberian theorem and

conclude that the series 2507, is convergent and
n

Z( = lim > (U,a")

a->1—0 n

Thus, under the additional hypothesis (12), we get

Z lvn:Z U,

for every convergent series > u,, which means that
v

the transformation (4) is regular.
As an example, let us consider the series transfor-
mation

U=y, U= (13)

‘ Z pn—l v—1Uy
where the p,, are the coefficients of the polynomial

(z4+n—1) (@m=1,2,...). (14)

Pa(2)=zc(z4-1). ..

This transformation was introduced by Lototsky [3]
and will be called the L-transformation. If the

series >/, is convergent respectively A-summable
n
the original series > u, will be called Li-summable

o
respectively AlL-summable, and we write

N Wi=JL <2 uv>
and '

s (z U,,w):A/; (2 71,,).

a—>1—0 n

For the integral kernel, K(z,a)=>" P,(2)a", of the
n=1

[-transformation, the functions /2,(z) have the fol-

lowing form:

124 =2
1 (—1) '1—;‘)
P (2)=— ) — —
Pu(z) )1'])”_1("' z2—1 ( n & )
(15)
This leads to
® 2 ]
e 1_2(*]),,(1 ->a,,:(1 @) _
z—1 7= n z—1
Hence, defining the analytic function ¢(a)

(Ja|<1) by
1 '{]—a)"zfl

the Al-summability of the series >3u, means that

vz (16)

1/
¢(a) approaches a limit if « tends to 1 from the left
along the real axis and we have the relation

AL (Z u,.)z lim ¢(a).

G =)

In order to show that a convergent series is also
Al-summable to the same value we check that the
kernel K(z, a) satisfies the hypothesis of theorem 1.

Condition (i) is immediately clear and (i1) follows
from the fact that a,(a) can be written as
1 LK (z,0) _ = '
a,l(a)~/2;-i¢? il 2 Y an)

where
Y=—log (1—a).
To check (iii) we observe that

»yn+l

(n+1)

iy (@) —a,(a)=e""



and therefore

© y @ fyﬂ+1
n2=1 la’n—H(a)_an(a)I:e = (ﬂ+1)‘
L = 0=a<l).

Now it follows from theorem 1 that the transforma-
tion (13) maps a convergent series into an A-sum-
mable series with the same sum.
In this special case it even can be shown that the
series >, [/, is convergent itself. From (13) we get
n

2 1 Z 1 1
Z} anr—m 1,=Zl pn—lpr~]—m pn—l(l)'—ﬁ’

and thus condition (12) is fulfilled which assures the

convergence of the series >U/,. This means that
n

the L-method is regular.

3. Connections Between the Lototsky and
the Borel Summabilities

As mentioned before, there is a close relationship
between the Lototsky and the Borel-integral methods
of summation. Let >Ju, be a (not necessarily con-

-
vergent) infinite series such that

Tim 4 /el

n—>wo n!

=((). (18)
Then the sum
7/z+1
Fl)=33 " ¢ (19)

defines an entire function of . The series > ju, is

v
called summable with respect to the Borel integral
method (Bl-summable) if the improper integral

J T e tF(t)dt
0

exists. In this case we write

BI (2@:]“” e~ F(t)dt.
v 0

We are going to show that the function

B(t)— J e~ F(r)dr (20)

can be represented as a certain integral transform
of the function

===

v=1

NE

(21)

Assume (as we did in sec. 2) that the radius of con-
vergence of the series (21) is positive; in other words,
that

lim v\unl— <. (22)

n—

Since Ynl—>w it follows from (22) that condition
(18) 1s automatically fulfilled.

The coefficients u, are represented by the integrals

% gﬁ f(2)2"dz

where the integral is taken around a certain circle
lz|l=R (R>r). From (23) it follows that

= Un41 n__ w ,.. P
,LZO n! : 2 @9Sf( =0 72' (‘ 9119§f ¢

and therefore, using (19) and (20),

B(t)zﬁfo gSe"z‘”f(z)dzdr.

Since the integrand is regular we can interchange the
two integrations and integrating with respect to r we
obtain

Un41= (23)

(24)

1 ol =D __1

. (25)

Thus the BI-sum of the series > u, can be repre-
7
sented as the limit

BI (; u1>—hm —1—95 E;lf(z)dz. (26)

- 21 z—1

Comparing transformations (16) and (25), we obtain
the following relation between functions ¢(«) and
B(t):

¢(a)=B(—log(1—a)) (Ja|<<1), (27)
which can also be written as
Bt)=¢(1—e"). (28)

From this relation it follows immediately that the
existence of one of the limits

lim d)(a) or

a 1=

lim B(?)
to®

mmplies the existence of the other, and these limits

coincide. This means in terms of series: Under the
hypothesis (22) AL- and the Bl-summability are
equivalent.

Here the question arises whether this equivalence
still holds without condition (22). We are going
to show that the implication BI—AL is true in
general but not conversely.



We first prove
Levyma 1: Let u, be an infinite series such that the
funection

Fiy=3 st v

v=0 U

is reqular in a certain neighborhood of t=0 and define
the functions B(t) and ¢(a) by

= f F(r)e=dr
JO

and
¢(a)=B(—log (1—a)).

Then the coefficients U, of the expansion
«) :; U, a"
are the L-transforms of .
Proor: The coefficients {7/, are defined by
B(—log (l—a)):; U,a".

Differentiating this relation we get

B’ (—log (1 —a)) nl a1, (29)
n
and hence, observing that
B’ t)=F(t)e "
and therefore
B'(—log(1—a))=(1—a)F(—log (1—a)),
we conclude that
>l i e [log (1—a)]uyyy.
n =0
Using the residue theorem we conclude that
‘” —1 & [1 1— v
U,— (—1) <§ og ( - )] (th> Upsr,
’l v= o
which can be written as
] ©
/n Z Ap—1 WUy =3 z‘: Ap—1 v—1Un, (30)
‘ v=0 n! =1
where the coeflicients a,, are defined by
log (1—
by s (,H : N 1o (31)

v'

It. has to be shown that the numbers a,, coincide
with the numbers p,, defined by (14). First of all
we have a,,=0 for » >n since the functions

flog (1—a)1"

are regular at =0 provided that v=n-+1. We now

define the polynomials a,(z) by

n

G2t

v=1

ay(2)=

and show that

an(—k)=0 (k=0,1,... n—1).

In fact we have for every integer

1 " oY o —_
= (== ]\ [log (1 1a Joe
n! = 1 amt

w k* log (1—
: J ¢I n+lfx /a

r=1 "

(1—a)*
a"”i

~I

If now k< n—1 there is no residue at «=0 and we get

an(—k)= (k=0,1,... ,n—1). (32)

From here it follows, since the polynomial a,(z) has
the degree n,
(33)

a,(2)=Nz(z+1) . . . (24+n—1)

where X\ is a constant. Substituting z=1 in (33) we
get

a,(1)=n!

and on the other hand we have

[log (1—a)]
n+1
da
471' Cﬁ (1—(1 —’,'I'_;*l'_)’l!.

From the last two relations it follows that A=1 and
we obtain

n
an(l):Zan Zanv*n Z
v=1

a,(2)=z(z+1) ... (z+n—1)=p,(2)
and comparing the coeflicients
IIU plll))

which proves lemma 1.



TarOREM 2.7 A Bl-summatble series is also AlL-
summable and the two sums coincide:

BI (}3 u,,,>=AL >3 u)
Proor: By hypothesis the series

F(t)= Z u;f‘ 0

=0

defines an entire function. Hence the function

fH— fOlF(r)e"dt

is entire too, and therefore the function

¢(a)=B(— log (1—a)) (34)

is regular for |a|< 1. According to lemma 1 we have

the expansion

=3[, a" (35)
n=1
where the U/, are the L-transforms of the u,. Hence

the series

is convergent for |a|<1. Furthermore, we obtain

from (34) and (35)

=)

2,

U,a"=B(—log (1—a)),
and hence, if « tends to 1 on the real axis,

lim L U,a®

a—>1—0 /

= lim B(t).

t>+

This means that the series > u, is Al-summable
v

and that the relation

AL(S @:Bl (z u)
holds. v ;

Conversely, one cannot conclude that an Al-
summable (even an L-summable) series is also
BlI-summable, as the following example shows:

Let the function ¢(¢) be defined by

1
2—e

e(t)=

—

7 Different proofs of theorems 2 to 4 are given in a mimeographed report by
R. P. Agnew (U.S.A.F. Contract 18 (600-685)).

and the sequence u, by

U, =" (0) =12 . - o ) (36)
Then we have
© Upg1 45
UZ=0 t =g,

and therefore this series i1s convergent only for
t|<log 2. Hence the Bl-method cannot be applied.

To obtain the L-transform of sequence (36) we
apply lemma 1. The function B(f) in our case is

given by
B
B()=
0

and from here we get

¢le) =B(—log (1—a))=log(1+a),

e "dr
2—eT

—log(2—e~"),

and thus
Un: (-— 1) w

The series > U, is convergent, and hence series (36)
n

is Li-summable to the value log 2 N
As the above example shows, the AL-summability
of a series > Ju, does not imply that the series
v

2 Uy41 0

ra)

has an infinite radius of convergence. It can be
shown however that this radius can not be less than
log 2. 'To this purpose we prove

Lievmwma 2: Let Eu,, be an infinite series and Z‘,U its

L-transform. Aasume that the series
a)= > U,a"
v

is convergent in a certain circle |al<p, (p>0). Then

the series

F()=5"t o

(p” >0) and the

1s convergent in a certain circle [t|<p’,

relation
L(Z et ) erdr—g(l—) ()
holds.
Proor: By hypothesis the function
Bt)=¢(1—e™") (38)

is regular in a certain circle [t|<p” and therefore the
same is true for the function

F(t)=DB'(t)e" (39)



where B’ indicates the derivative of B.

From (38) and (39) it follows that

F(t)=¢'(1—¢") | (40)
Expanding the function #(¢) into a power series,
F(t):?v_‘,cl,t”,
we obtain from (40)
¢’ (l—e“‘)ZDZc,,t",
and if we introduce
a=1—¢*
as a new variable,
¢’ (a)=;(~1)"cu[10g(1—a)]"~ (41)
On the other hand we have
¢ (@)= nl a1, (42)

n

From (41) and (42) it follows that

25 Uz =25 (=1)%, [log 1—a)]",

n

and from here we obtain

B o log A—a)*
" 2ran S = C'J% o et

L S pucietle
IL! = G LpEB A

This equation states that the (7, are the .-
transforms of the sequence »l¢,, On the other
hand, they are by definition the IL-transforms of
u,, and hence we conclude

1
Cv:J Uy41-

Therefore the expansion of F(¢) becomes

=)

F)=>" Yot1 4

=0 p!

(43)

and this series must be convergent within the
circle [t|<p’.
Relation (37) now follows from (43), (39), and

(38).

From lemma 2 we can derive the following theorem,
which is proved by Agnew [2] in a different way.
Tuarorem. For the terms of an  AL-summable
series >, the inequality
v

7 ’U"|S 1 i
,1132 \/ n! ~log 2

508986—59——2

(44)

holds. )
Proor: Since the series > ju, is AL-summable the
function v

¢(a) - Z l]n a”

is regular for |a|<I. Hence the function B(f)

defined by
B(t)=¢(1—e™)

must be regular in the domain ), which is deter-
mined by the inequality

D: |1—e™t|<1; (45)
and the same holds for the function
F(t)=B’(t)e™".
Writing t=a-1y, we get
[1—e~t*=1+2¢=% (3 ¢~*—cos ¥)
and hence inequality (45) is equivalent to
i

Ye "< cosy.

This means that the point t=a-1iy liesin the
“interior’” of the curve

r=—log (2 cos y). (46)

1/—/——
‘\ V x
e st
log 2 /
Relations between summation methods and integral
transformations.

Ficure 1.

Thus the function B(f) can be expanded into a
power series within the largest circle |{|=p with the
center t=0 that is contained in the domain D.
This is the circle

[t|=log 2.

because this circle touches curve (46) in the point
t——log 2, it is sufficient to show that the radius of
curvature of the curve (46) is not less than log 2.
The curvature of this curve is given by



and hence we have
p>1>log 2.

Thus the expansion of F(f) into a power series
must be convergent for

[t|<log 2.

On the other hand, using lemma 2 this expansion is
given by

F(ty=>2 %t pr,
v U'

From here it follows that

Iim

n—ro

lu,,|srl ,
n! ~log?2

which proves theorem 3.

It follows from series (36) that the bound 1/log 2 can
not be improved.

The BI*-method. 'The application of the BI-
method provides that the series

Zubﬂ 1

)

converges in the whole ¢-plane. Frequently the
case occurs that the radius of convergence of this
series is positive and finite such that this series de-
fines a regular function F'(f) within a certain circle
[t|<p. If this function can be analytically continued
along the positive #-axis one can form the improper
integral

f F(t)edt.
0

In case this integral is convergent, the series is said
to beBI*-summable [2, sec. 11] and its value is called
the BI*-sum of > u,,

v

BI* (z uv>=LmF(t)e"df.

Obviously a BI-summable series is also BI*-sum-
mable to the same value.

It can be shown that AlL-summability implies
BI*-summability, but we do not prove this here
since BI*-summability will turn out to be equivalent
to a generalization of ALL-summability and the above
statement will follow immediately from there.

To demonstrate the BI*-method by an example,
let %, be defined by

!
urz—{-l:(—'l)n;%; (nZOy ]72) . ) (47)

where @ (a5£0) is an arbitrary complex number.
In this case we obtain

Ups1 p_ 1 a
Z“’ v! (e I—H/a at+t’

and thus,

BJ*(ZU) JO aedt.

This integral converges for every number @ which
is not real and negative and therefore series (47) is
BI*-summable for all those values of a.

m . = . ” *

T'he next example shows that a BI*-summable
series is not necessarily AlL-summable (and hence
not L-summable). Let the function ¢(¢) be defined by

1

¢(l’)=mé’ (48)

where @ is a real number such that ¢ >1, and let
the sequence u, be defined by
U, =" (0)

(=12, . ..). (49)

Then the series
u,

2 ot

is convergent in the circle
[t|<loga

and represents the function ¢(t). This function is
defined along the whole positive t-axis and the integral

f e ldt 1
(@a—e 9 a—1 a

is convergent. Thus the series (49) is BI*-sum-
mable. ‘
In order to obtain the L-transform of (49) accord-

ing to lemma 2 we have to form the function

B&)= | sm)erdr— g
0 a—

1 a—et

and then substitute

t=—log (1—a).
This gives
1 1
A s s

The function ¢(a) so obtained has a pole at a=1—a

and hence the series> U,a" is only convergent in
. n -

the circle Zt

]a!<a—17



which is smaller than the unit circle if a<2. There-
fore, the Al.-method can not be applied to series (49)-

The AL*-summability. As the last example shows
the BI*-method is more powerful than the Al-
method. However the AlL-method can be extended
to a method AL* in a similar way as BI has been
extended to BI*.

Let > u, be an infinite series such that the power

v

series

¢(c) :; r, @@

is convergent within a circle |a/<p and assume that
the function ¢(a) can be analytically continued

along the interval 0=2u<1 (a=wu-+w). If the
limit

lim ¢() (e real)

a=1=0

exists we shall call the series > u, AL*-summable and
v
write
AL*(ZU[): lim ¢(a).
v a—>1—0

AL*summability obviously implies AL-summabil-
1ty.

Turorem 4. The AL*-summability is equivalent
to the BI*-summability.

Proor: Assume first the series > u, is BI*-sum-

n

mable. Then the function

JOESIE -
v
is regular within a circle [t|{<p. Let now the func-
tions B(t) and ¢(a) be given by

Bm:J F(r)e-rdr
0

and

¢la)=DB(— log (1—a)). (50)
Then ¢(a) is regular within a circle |o/<p’ and
therefore it can be expanded into a power series

pl@)=2 U, a"

According to lemma 1 the coefficients [/, are the
L-transforms of the u,. By hypothesis, the function
F'(t) can be analytically continued along the positive
t-axis and therefore the same is true for the function
B(t). Hence eq (50) defines an analytic continua-
tion of the function ¢(«) along the real unit interval
and we have

lim ¢(a)=lim B(t).

a—1—0 t>w®

This means that the series > u, is AL*summable
v
and the relation

ALX Zu,,)zBI* Z?I,.)

holds.
On the other hand, if the series > u, is AlL*-sum-
v

mable, the function

()=2 U,a"

i1s regular within a circle |a|<p. Hence the series

F)=> "¢

o

according to lemma 2 is convergent within a circle
[t|<<p’, and the relation

F(t)=¢'(1—e )¢ (51)

holds. Since the function ¢(«) by hypothesis can be
analytically continued along the real unit interval
the same holds for F(¢) along the positive f-axis and
relation (51) holds for every positive t. From there
we obtain

I J/"(l‘)ﬂ"(lt-— lim ¢(a)

0 (it

which shows that the series > u, is BI*-summable.

v
Altogether we have the following relations between
the Lototsky and the Borel methods, where all the
simple arrows are not invertable:

L—AL—>AL*
T
BI  BI*
Series (36) shows that 1. does not imply BI, but it
is not known to the author whether the implication
BI-—L holds.

3. Application to Analytic Continuation

Let ¢g(2) be an analytic function regular in a do-
main [) which contains the origin and let

g@=§mw1 (52)

be the expansion of ¢g(z) around the point z=0. It
is a known result that the series (52) is Bl-summable
to the value ¢g(z) at every interior point of the Borel
polygon = of g(z) and not Bl-summable at every
exterior point. Making use of the relationship
between the BI- and the L-summability the same
can be shown for the L-summability of series (52).
In order to do so we first observe that
lim V]u,22~=|zo|im +/u,[< =,
n—>w >

N o



and hence the Bl-summability is equivalent to AlL-
summability (sec. 3). From this remark and the
implication LL—AL it follows that series (52) can
not be LL-summable at an exterior point of =.

Let now z, be an interior point of =. Then the
series Z u,25~" 18 BI-summable and hence Ali-sum-

mable. Thus the relation
lim er,L(z(,)a"):g(z()) (53)
a—>1-0 n

holds where U, (z,) denotes the L-transform of the
sequence u,z, .
It remains to show that the series >0, (z0) is con-
n

vergent; then the relation
22 Un(z0)=9(20)
n

will follow from (53) and the Abelian limit theorem.

We are going to prove the absolute convergence

of thp above series. For that we start out from the
relations

1

L'Tn (20) :;

n—1
| El Prn—1 0 Uy 28' (54)
L=

Since z, 1s an interior point of the polygon = the
closed circle

[\311\1
MIA
M‘N

is contained in 1), and therefore a number p>1 can
be chosen so close to 1 that the circle

[zl
2

=p

2|8

<~

still is contained in D. [2, Chap. VIII.]
Hence the coefficients u, can be represented by

9(2) dz

217

(55)

=

2mi

From (54) and (55) we obtain

z 1 £ gz 2
K n'(ﬁp" IEI%) Zﬁd?:mgsi;zpnq(f)dz
and from there, if M denotes the maximum of

g()

on the circle ¢,

20
a1 (2))

If we write for abbreviation

=)
Ww=—
2

10

this relation becomes
M
[Uﬂl_ : ]wHw—&—l[ . Jwtn—2].

wr(ijl)

n'n“’

(w+n)

} -lne=2|.

(56)

‘(w+n—])(w+n

If n tends to o the first factor approaches I'(w)
and therefore stays bounded. The same is true
for the second term and therefore it is sufficient
to show that the series

23|ne? (57)
is uniformly convergent on ¢. The circle ¢ is
represented by the equation

2= (14pe")  (0=0=2m).
From here it follows that
z  1-+pett
and for the real part
~ 2(14p cos 0) 2
B =115, cos 612 =117
Therefore we have
R(w—2) =;2"=—1—5, (6>0)
I+p

and hence the inequalities

Inw—’.’y én_ 1+38)

hold, which imply the uniform convergence of series
(57) on ¢. Now the absolute convergence of the
series > U, follows from (56).

n

5. Connections With the Euler-Knopp
Method

The Euler-Knopp transform of a sequence u,
(EK-transform) is defined to be the sequence

= <Z:D K (1— )™=

where « is a complex parameter.
This transformation can be derived from a linear
transformation of the w-plane which has the fixed

(58)



point w=1 and maps w=0 into w=wo. The most
general transformation of this kind is given by

1
2= (L—i-a (59)
w
where @ is a complex number. Now let
un
f(Z)— = (60)

be an analytic function which is regular for |z| >1.
This implies that the function
g

is regular in the domain that is mapped onto |z| >1
under the transformation (59), that 1s the cirele

@) —=f (J_“ (61)

|[1—a+aw| >|o|.

Since this domain contains the point w=0 the
function f*(w) can be expanded into a power series

I* (0-’):2 U,po
n
The coeflicients {7, are given by

i
no ‘)17‘ 2

If we substitute here for the function f*(w) the
expression (61) and for f(z) the expansion (60) we get

©) 7.

71)1

dw

n+l Uy.

This integral

an be evaluated by the residuve
theorem.

First we observe that

]

(1—a+aw)~"=(1—a)~* <1+1~‘L
=k"{1+4 (k—1)w}~*

where
=14 (62)

From there we obtain

R

J == < ( > (hkl)"‘w“"'"_ll/w> s
J oon

2w
—
-—=Z< )x”(x—l)”""u,,
> \n—o
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and making use of the identity

1— (Gl v—1, ’
,—1'> n—l)

we finally get
. n—1° . B
= Z( >K°\1—.r)" "y
2 v—1

This equation shows that the coefficients [
EK-transforms of the coefficients u,.

From the relationship between the KK-transforma-
tion and the linear mapping (59) it can easily be
derived that the EK-transformation cannot be
regular unless « is real and 0<x<1. Assume that
transformation (58) is regular and let > Ju, be a con-

>

T, are the

vergent series such that the funection

"_2_1 =Y

2y

(63)

has a singularity at a given point 21 (=1, a2
Then the series Z( . b\ hypothesis is also convergent
and hence the functmn

fHw)=f (] (I_i_”‘)

is regular for |w/< 1. Therefore the function f(z)
must be regular i the image domain of the circle

(64)

w/< 1 under the mapping (59). This image 18
given by
D, |z—a|>1—al.

Therefore the point z; cannot be contained in ),
and since z, was arbitrary on the unit cirele this has
to hold for the whole circle [z[=1. Hence the unit
circle has to be contained 1 the circle

and this is possible only if @ is real and <0, which
means that « is real and 0< x<1.

It is known that an EK- summable series is also
Al-summable provided that x is real and positive
[2, sec. 8.] We shall give here a proof of this fact
using the integral representation of the L-trans-
fmmatlon.

Let > Ju, be an EK-summable series and define the
e the

=
function f(z) by

N’:
s <



Then the function

s =1 )=1(1—aata)
has the expansion
() =; U,

The function f(z) can be expressed by g(w) as

=0(i=0)

From this equation it follows that the IL-integral
transform of f(z) can be written as

2 £ (1—a)"
¢(a)—27ri¢ z2—1

L o

‘)mgﬁ(

Introducing the new variable

1—a)!
z—1

z2—a
g (1—@) dz.

=]
le—a
we obtaln
1 £ (l—)u-pu-o_q
s =5r; P =L g as

and hence ¢(a) can be considered as the transform of
g(w) with respect to the kernel

(1—a) -0 0-a)
—1

R(50)= .

It is easily verified that this kernel fulfills the condi-
tions of theorem 1 provided that ais real and 0 <a<1.
Therefore it follows that under this condition

Iim ¢(a)

a—>1—0

:; U,=EK (;u>

But

n
that means that the series > u, is AL-summable and
v

provided that the series > U, is convergent.

the relation
AL (}:ul,):EK (Zu)

holds.

In case « is not both real and positive it is shown
by Agnew ([2], see. 8) that EK-summability does
not imply AlL-summability.
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6. Inversion Formula of the Lototsky
Integral Transformation

The question arises whether the integral transfor-
mation

1 (1 —a) 7 —1

o P =2

21

5)

¢ () = f(z)dz ©

can be inverted. One cannot expect that to every
given regular function ¢(a) (Ja/<1) there exists a
function f(z) regular outside of a sufficiently large
circle such that relation (65) holds. Provided such
a function exists, it can be represented as an integral
transform of ¢(a) at least in a half-plane.

Tueorem 5. Let f(z) be a function regular for
|2| >1 such that f(eo)=0, and let ¢(a) be its transform
with respect to (65). Then in the half-plane x>r the
function f(z) can be represented as

f(2)

(z—l)fo 8(a) (1—a)2da.

Proor: Since f(«)=0, relation (65) can be written

as
(1 -
27r’L

Let zo=uzy+1y0 be a fixed point in the half-plane
z>r. We choose for the path of integration in (65)
a circle |z|=R, where

r<R<x.

If (65) is multiplied by (1 —a)?~2and intcgrated with
respect to « between 0 and ¢ (0<t<1), we get

JO é(c) (1-@%-%:% L 56 %‘f(z)dzda.

Since the integrand is regular, the two integrations
may be interchanged and we obtain integrating
with respect to «

[ st ey da=—y

If ¢ tends to 1, the expression

U= ™ ). (66)

(1—t)%*—1

=1 (z0—72) f(2)d=.

A—t)%

=R because of the

tends to zero uniformly on
imequality

Re (z0—2)=x,— R >0.
Hence we obtain

1
T om

f(z)dz

=12 0

f #() (1—a) = dor=



The right-hand side of this equation can be evaluated
by the Cauchy integral formula since the function
f(z) 1s regular for Observing that f(e)=0,

we get
f (20)
2o eyl

1
omy,

f(2)dz
(=1 (20—7)

(68)
From (67) and (68) it follows that
Tl — [ (@ (1—e)vde
and we obtain the formula
=G0 [ s@—a e >0 @)

which is the inversion of (65).
Formula (69) can be used to obtain the inverse

matrix of the L-transformation (13). For the
particular functions

dl@)=c*  (k=0,1...) (70)
we get from (69)

1
[ == | @ (1—ayd

0

k! k!
T z2(Z+1) ... (c+k—1) p(2)

This funection is in fact regular outside of the circle
|zl=k—1 and thus for the special functions (70)
the integral equation (65) does have a solution that
is regular outside of a certian circle.

To obtain the inverse of the L-transformation

, —

r -
z_“‘ Z Pu~1 L'—lury (1]>
L}

we denote by ¢,, the inverse of the matrix p
Then it follows from (71) that

nj+

:Zﬂq"—lj—l[j}' (72)

The functions

$)=2> U, a"

and
u,,

ORI

13

correspond to each other by the transformations

(65) and (68).
In particular,

coefficients

the function (70) possesses the

('rnzanky
and hence we obtain from (72)
=23 '¢n-15-183=k!qn-1 x-1.
J

Thus the function f(z) has the expansion

fle)=Hl >3 da-LiL, (73)
On the other hand this function is given by
!
2)=—"7— (74
f(e)= N )
Comparing the right-hand sides of (73) and (74)
we conclude that
(In IA l ]
; 2" ])A( )
and from there
1 zn—l ]
In—1 =17 § ;z) az
or if n—1 is replaced by n and k—1 by £k,
( —Lsﬁ LA (75)
=5 Deir(2) ‘

This formula corresponds to the representation (31)
of the matrix p,,. If the integral in (75) is evaluated
by the residue theorem we obtain the formula

n—1

L L »
=27 (=1) (1)—1)!(k—p)!

e I
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