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Th e method of steepest descents is extend ed to the case when a sadd le point a nd a 
pole of a rbitrary order a re involved . An application to a problem in d iffract ion t heor.v 
is d emonstrated . 

1. Introduction 

The solution of numerous problems in electro
magnetic and acoustic wave propagation theory is 
frequently given by an integral representation of 
the form 

(1) 

Here '1'( z) deno tes the desired property (for ins tance 
the electromagnetic or acoustic potential) . The in
tegration in (1) is taken along a curve C in the 
complex v plane along which w(v) and u(v) are 
defined. These function contain generally cer tain 
parameters which depend on the physical configura
tion under inves tigation. The parameter z is usually 
r ela ted to the distance between ome point of r efer
ence and the point of observation. A reduction of 
the integral (1) to an asymptotic series has to be 
carried out when approximate expressions for large 
z are desired. The frequently used method of s teep
est descents [3, p. 86]1 becomes invalid w11en Ol1e of 
tlle above mentioned parameters assumes a value 
for whi cll a pole of w(v) coincides with a saddle 
point of u(v). M ethods to cope with such cases 
have been worked out and discussed [1], [8], [9]. 
The fonner two give expansions whicll proceed in 
terms of hypergeometric functions besides a " leading 
term", while the la tter consists of an error integral 
as leading term and an asymptotic series with in
verse powers of z . It is shown here that t he method 
given in [9], which involves a pole of the fLrst order 
and a branch point of order 2 can be extended to 
th e case involving a pole and a branch point of 
arbitrary order. The expansion for this case con
s ists of a fin i te number (equal to the order of the 
pole) of terms involving liVhittaker's functions and 
an asymptotic series with inverse powers of z. 

2. A Modifica tion of Watson's Lemma 

It is assumed that the reduction of the contour 
integral (1) (for instance by the method of steepest 
descen ts) to one or several in tegrals of the Laplace 
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transform type 

f( z)= So'" F (t)e - tzdt (2) 

has already been carri ed out and only this k.ind of 
in tegrals shall b e considered . A theorem commonly 
referred to as liVatson's lemma [2, p. 218] admits the 
asymp totic represen tation of j(z) for large z when 
the behavior of Fet) for small t is known. In its 
general form given by Doetsch [3, p. 48] and [4] one has 
the 

T HEon'8M: Let F(t) be analytic in a sector a< 
arg t< (3 oj the complex t plane with the possible ex
ception oj the origin, and let the behavior oj F(t) in 
this sector be 

(a) 1F(t) I<Aeci t i , 

(b) F (t) "'" ~ant am, 
n~O 

jor Itl>R, 

when t 0 in a< arg t < {3 . 

A, c> O. 

The asymptotic expansion for j( z) = So'" F(t) e-ztdt 

for large z is th en obtained by inserting the series (b) 
for F(t) into (2) and integrat ing term by term. 

The fUll ctlOn p et) in (2) is now assumed to be of 
the form 

F(t )= tag(t ), R e a>-l , (4) 

where the fUll c tion get ) is analytic in the vicinity of 
t= O. In this case 

(5) 

with 

(6) 



L 

to 

• 

This series is convergent for It l< lto l, where to is that 
singular point of get) which is closest to the origin . 
The other singular points are denoted by tl , t2,. . . 

such that their moduli form a nondecreasing se
quence. We assume that none of the singular points 
is on the positive real t-axis. The asymptotic ex
pansion of (5) then becomes by (3) and (6) 

for Z--7 oo . The range of validity for arg z depends on 
the behavior of get) according to (a) and (b) of the 
theorem quoted before. The case in which the 
singular point to is a pole of order m, say, is considered 
now. The Laurent expanSIOn of get) in the vlCll1ity 
of to is then 

where 

is analytic for It I < ltd and consequently can be 
represented by the series 

g*(t) = 'f:, cnt", 
n~O 

1 [dn 
] cn=-, -ltng*(t) , n. c 1 ~ 0 

It has to be remembered that in physical applications 
the function get) in (4) contains generally certain 
parameters which depend on the configuration of the 
problem, and this may become such that the pole 
to of get) coincides with the origin t= O (see section 3). 
In this case all the coefficients an tend to infinity by 
(6) and (8) and the asymptotic series in (7) becomes 
useless although the integral in (7) may exist. It is 
therefore necessary to obtain an expansion which for 
to ~ 0 represents the integral (7) asymptotically for 
large z and which for to= O (if the integral exists ) 
gives its correct value. Such an expansion can be 
obtained as follows : One inserts the representation 
(8) for get) into (7) and gets 
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But 
(11) 

(12) 

by virtue of the integral representation for Whittak
er's function [5, p. 274]. The integral 

can be represen ted asymptotically for large z by 
me~ns of the power series expansion (10) (which is 
valId for It l<l tl l) and Watson's lemma. One obtains 
then finally 

00 

""" ~ cn r(a+n+ l )z-a- n- l+ r(l + a)( -to)!az-!a-l 
n~O 

The range of validity for arg z depends on the 
behavior of g*(t) according to the requirements (a) 
and (b) of the theorem quoted before. For certain 
combinations of a and m (13) can reduce to a simpler 
expression, as for instance 

W• () . .c k l.D [( L q z = 2'- Z ' 2k- } 2z)z], 

(parabolic cylinder function) (14) 

(15) 

(16) 

Wo,~(Z) =(z/7r)!K~G z ). (modified Bessel function). 

(17) 

The case a = -t, m = 1 (branch point of order 2 and 
pole to of the order 1) which leads to the special case 
(15) has been treated before [9]. For this case one 
obtains from (13) and (15) 



f (z)= So'" t - ~g(t)dt ~n~ c"r (n+D z-n-t 

+ b_ I7r( - to) - te-zto Eric [( -zto) t ] . (lS) 

The coefficients en according to (9) and (10) are 
defined by 

'" 
gCt ) - Ll (t - tO )- I= L: cnt n , (19) 

n=O 
or 

(20) 

But these coefficients r emain finite when to--70. 

3. Application to the Wedge Diffraction 
Problem 

The investigations outlined before will now be 
applied to a previously discussed problem . It was 
shown [6, 7] t hat t he sol ut ion of the problem of t he 
diffraction of plane waves by a wedge or C01"ner is 
governed by the integral 

with 

g(t )=- (2a)- ' e-~p sin (m/;ja) (t + 2) -~ 

·{cosh [7r/alog(l + t +(t2+ 2t) t )]- cos(mt-/a) }- ' . (22) 

Here get) is analytic ncar the origin alld t he singu
Im'ity neares t to tlte origin is a pole of the order olle. 
The pole to and i ts r esidue L, are fou nd to b e 

(23) 

(24) 

The parameter if; in (22) depends on t he d ir ection 
of t he incident wave a nd on t lte direction of the point 
of observation such, t hat if; (and co nseq uently to ) 
tends to zero wh en one of t he bOll n daries of geo
m etric optics is approached. The asympto tic ex
pa nsion of the integral (21 ) for large 'YP can th en be 
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obtained by m eans of (IS), (19), a nd (20): 

1 - " CO"( (~) E f' [(2 ) 1, . ] -'.Ie 2 ; r c 'YP 2 sm if; . (25) 

The coefficients en are d etermin ed by (10) with 

and get) is given b y (22). The function g*(t) fulfills 
the conditions (a) and (b ) in the r egio n - 7r < argt< 7r . 
The asymptotic expansion (25) holds ther efor e in 
- 3?r/2 < arg ('YP) < 37r/2 a nd is valid also for f = O 
(in which case all the en vanis h) a nd ass umes in t his 
case the correct valu e of (21) 

(27) 

T he r esul ts produ ced her e ar e equivalent to those 
in [6,7]. 
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