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On a Modification of Watson's Lemma

F. Oberhettinger*

(May 27, 1959)

The method of steepest descents is extended to the case when a saddle point and a

pole of arbitrary order are involved.
is demonstrated.

1. Introduction

The solution of numerous problems in electro-
magnetic and acoustic wave propagation theory is
frequently given by an integral representation of
the form

v

so(z):J w(p)e=* . (1)
C

Here ¢(z) denotes the desired property (for instance
the electromagnetic or acoustic potential). The in-
tegration in (1) is taken along a curve C in the
complex » plane along which w(») and u(v) are
defined. These function contain generally certain
parameters which depend on the physical configura-
tion under investigation. The parameter z1s usually
related to the distance between some point of refer-
ence and the point of observation. A reduction of
the integral (1) to an asymptotic series has to be
carried out when approximate expressions for large
z are desired. The frequently used method of steep-
est descents [3, p. 86]! becomes invalid when one of
the above mentioned parameters assumes a value
for which a pole of w(») coincides with a saddle
point of wu(»). Methods to cope with such cases
have been worked out and discussed [1], [8], [9].
The former two give expansions which proceed in
terms of hypergeometric functions besides a “leading
term’”’, while the latter consists of an error integral
as leading term and an asymptotic series with in-
verse powers of z. It is shown here that the method
given in [9], which involves a pole of the first order
and a branch point of order 2 can be extended to
the case involving a pole and a branch point of
arbitrary order. The expansion for this case con-
sists of a finite number (equal to the order of the
pole) of terms involving Whittaker’s functions and
an asymptotic series with inverse powers of z.

2. A Modification of Watson's Lemma
It is assumed that the reduction of the contour
integral (1) (for instance by the method of steepest

descents) to one or several integrals of the Laplace
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An application to a problem in diffraction theory

transform type
f(2)= J F(tyerdt
0

has already been carried out and only this kind of
integrals shall be considered. A theorem commonly
referred to as Watson’s lemma [2, p. 218] admits the

asymptotic representation of f(z) for large z when
the behavior of F(t) for small ¢ is known. In its

general form given by Doetsch [3, p. 48] and [4] one has
the

Turorem: Let F(t) be analytic in a sector a<l
arg t<B of the complex t plane with the possible ea-
ception of the origin, and let the behavior of F(t) in
this sector be
(a) |F(t)|<<Ae't,

for [t| >R, A, >0,

(b) F(t) =~ > a,ten,

n=0

‘—1<I{(‘ a()’<1{40 a1<' 0 0

when t—0 in a< arg t<B.

L)

F(tyedt

0
for large z is then obtained by inserting the series (b)
for F(t) into (2) and integrating term by term.

The asymptotic expansion for f(:):J

~

i (lnr(] —WLan)Z#an—l

n=0

f(z):’(]m F(t)e "*dt =~ (3)

m™
3

4

when z— oin—

—p<larg 2< g——a.

The function F(t) in (2
the form

) is now assumed to be of

(4)

where the function ¢(¢) is analytic in the vicinity of

F(t)=t2g(t), Rea>—1,

t—=0. In this case
fe)= teg(t)e~'adt (5)
with
s=ar,  a—y|ima0] o ©
im0 "l Ldtr T | e



t
to

Y

This series is convergent for [t|<[t,[, where ¢, is that
singular point of ¢(¢) which 1s closest to the origin.
The other singular points are denoted by ¢, #,, .

such that their moduli form a nondecreasing se-
quence. We assume that none of the singular points
is on the positive real ¢-axis. The asymptotic ex-
pansion of (5) then becomes by (3) and (6)

f(Z) :J;w t"g(t)e"zdt %g anr(a+n+1)2—a—n—l (7)

for z— . The range of validity for arg z depends on
the behavior of ¢(¢) according to (a) and (b) of the
theorem quoted before. The case in which the
singular point ¢, is a pole of order m, say, is considered
now. The Laurent expansion of ¢(¢) in the vicmity
of t,1s then

gt =b_n@—to)="F . .. tb_,(t—t) " +g*@) (8
where

g*)=g(t)—b_,(t—to)™"— . .. —b_(t—t)™" (9)
is analytic for [¢f[<]|t;| and consequently can be

represented by the series

dﬂ "
dt” 9

®] o 1<l
(10)

o 1
g*(t):,z(‘) Cntny cn:,TZ‘ [
n= .

It has to be remembered that in physical applications
the function ¢(#) in (4) contains generally certain
parameters which depend on the configuration of the
problem, and this may become such that the pole
t, of g(t) coincides with the origin t=0 (see section 3).
In this case all the coefficients a, tend to infinity by
(6) and (8) and the asymptotic series in (7) becomes
useless although the integral in (7) may exist. It is
therefore necessary to obtain an expansion which for
1,70 represents the integral (7) asymptotically for
large z and which for ¢, =0 (if the integral exists)
gives its correct value. Such an expansion can be
obtained as follows: One inserts the representation
(8) for ¢g(¢) into (7) and gets
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f(z)= f “tag(tye-rds

m
2
k=1

b~kf (t—to)‘kt“e‘”dt—i-f teg*(t)e='2dt.
0 0

11
But )

f t2e=t (t—t) “*dt=T (1 +-a) (—t,) b=t H 171
0
Xe MW _y s, ta—pi+3(—t2), (12)

by virtue of the integral representation for Whittak-
er’s function [5, p. 274]. The integral

f teg*(t) e~ "*dt
0

can be represented asymptotically for large z b
means of the power series expansion (10) (which is
valid for |t|<(|t,|) and Watson’s lemma. One obtains
then finally

fz)= f " teg(t)e-rids

~ 30 e,T(at-n1)z=e= 14 P(1fa)(—f) bez=bo1

n=0

1
b=

iz 2 \z*
Xe 2 >3 b, — W_ 11
k=1 L0 2%

2

1e+3(—210).
(13)

The range of validity for arg z depends on the
behavior of ¢g*(t) according to the requirements (a)
and (b) of the theorem quoted before. For certain
combinations of a and m (13) can reduce to a simpler
expression, as for instance

Wey(2)=24"1Dy_,[(22)%),

(parabolic cylinder function) (14)

LV_%Y%(z):w%z%e%Z Erfe (2%):256%2f tietdt  (15)
W_1o(2)=—2z"% Ei (—~2)*2‘%6%Zf t=te~'dt (16)

W, .(2)=(2/7) K, <% z )» (modified Bessel function).
(17)

The case a=—3%, m=1 (branch point of order 2 and
pole ¢, of the order 1) which leads to the special case
(15) has been treated before [9]. For this case one
obtains from (13) and (15)



L)

J

The coefficients ¢, according to (9) and (10) are
defined by

J( i 1(/(f)(1t~2(',,1‘

n=0

+b—17!'(—f0> %

)

(o

@ Brfe [(—ztg)?]. (18)

g(t)—=b_i(t—t))~'= ZCt"

%:${ mm—uxh%rw}

But these coefficients remain finite when #—0.

(19)
or
@/

PIT (20)

t=0

3. Application to the Wedge Diffraction
Problem

The investigations outlined before will now be
applied to a previously discussed problem. It was
shown [6, 7] that the solution of the problem of the
diffraction of plane waves by a wedge or corner is
governed by the integral

J@sz
with

g(t)=—(2a) ~'e= " sin (mp/a) (t+2)~
-{cosh [r/alog (14-t+4 (t24-2t)%)]—cos(mp/a) } 1. (
Here ¢(t) is analytic near the origin and the singu-

larity nearest to the origin is a p()lv of the order one.
The pole #, and its residue b_, are found to be

(21)

29)

t,=—2 sin?({y) (23)
b_y=—m"12"%¢rgin (1y). (24)

The parameter ¢ in (22) depends on the direction
of the incident wave and on the direction of the point
of observation such, that ¢ (and consequently )
tends to zero when one of the boundaries of geo-
metric optics is approached. The asymptotic ex-
pansion of the integral (21) for large vp can then be
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obtained by means of (18), (19), and (20):

(a ) = ”200,11“ n+4) (yp) "}
— 176 Erfe[(2yp)? sin ¢ . (25)
The coefficients ¢, are determined by (10) with
g* () =g(t)+ 771272 "sin(3y) (142 sin%y/2) "' (26)

and ¢(¢) is given by (22). The funection ¢*(¢) fulfills
the conditions (a) and (b) in the region —r<arg t<_.
The asymptotic expansion (25) holds therefore in
—3r/2<arg (yp)<3w/2 and is valid also for =0
(in which case all the ¢, vanish) and assumes in this
case the correct value of (21)

2

&

I(e,0)=—Y%e~

(27)

The results produced here are equivalent to those
in [6,7].
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