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Low Even Configurations in the First Spectrum 
of Ruthenium (Rul), part 2 

R. E. Trees 

(July 29, 1959) 

A published calculation for the 4ds, 4d 75s, a nd 4rl6 5s2 conn guraLio ns of RlI I (R . E. 
Trees, J . Opt. Soc . Am. 49, 838 (1959).) is r epeated in steps. Displacements p roduced by COI1-

figuration interaction are evaluated , and depa rtures of t erm posiLions from familiar expecLa­
tions in t he absence of configuration interaction are explained . The weaker p er t urbation s 
produced by second-ordcr ef-rects of t h e spin-orbit interaction a re then deLermin ed . It is 
shown t hat thc neglcct of th ese effects in published hand computations h as obscured the 
remarka bly good agreemen t between t heory and observation that is obLainable in sp ectra 
of t h e second long p eriod . The eigenvectors are based on "Lhird-ord er eigenful1 cLions" 
whi ch d escribe th e levels simply, and show the degree of L S-collp ling in a m o r·e quanLitaLive 
manner. 

1 . Introduction 

This paper is the fourth in a series of CHlcuhl,tioJ1s 
carried ouL for complex spect ra b.y utilizing a digi tal 
computer [J , 2, 3.)1 In previous ralculaLions Lhr 
Standards EasLern Automatic Compu ter (SEA C) 
was used , bu t thi s machine is no longer available. 
The mathematical operations that we re carried ou t 
on the SEAC arc described in referell ce [1] . Similar 
codes have now been completed for the IBM 704 , 
and they hav e been used to oblailJ the res ul ts in this 
paper. The code for the 704 is able to manipulate 
the high-order matrices that arise in th ese calcula­
tions in a general manner, but in particul ar carries 
out the opera tions described in sec tions 2, 3, 5, and 
6 of reference [1] . An 011 Lpu t of linear formulas 
that approximate any spee ifi ed eigenvalues of Lhe 
matrices is obtain ed and used directly as an input 
to an or thonormalizaLion code, similar to tha t de­
scribed in section 4 of reference [1], to obtain im­
proved values of radial parameters.2 

The prese nt paper is a co ntinuation of a previous 
calcula tion for the 4d8, 4cP 5s, and 4d6 5s2 configura­
tions of Ru I [3], and part of the previous work has 
been repeaLed . An extension of the discussion of 
the agreement between calculated and observed 
energy levels and a simplification of the procedure 
for assigning designations to levels arc also given. 

All of the calculations have been carried out to 
assist wiLh Lhe experimental analysis of observed 
data [4]. The use of the calculations in the analysis 
of Ru I is discussed in the paper b)" K essler which 
gives details of the experimental side of the work 
that has been done on this spectrum [5]. He found 
that even though the analysis was carried out by 
using a digital computer , levels were overlooked bu t 
later found after they were predicted by theory. 

I Figures in brackets indicate the literature references at the end of this paper . 
2 The orthonormalizat ioll code has been wr itten by P. J . Walsh and E. V. 

Haynsworth and is in general usc at the Nat ional B ureau of Standards. 

These were levels determin ed from a relatively fe\\-, 
mostl.,' weak combi nations, a lld in some cases they 
wouldha ve had Lo be 1"ej ecterl as u nreal in Lhe absence 
of theoreti cal co nfirmation . This co nfirmation would 
naturall)' be improved i f the low illt ensities of th e 
combi nations could also be exp la in ed b)- exte nding 
the calculations to include a co nsideraLion of the 
much more eomplicaLed ocld configuraLions in Lhi s 
spectrum. 

2 . General Procedure 

Radial parameters have al read)T been obtained for 
Ru I [3], and these a rc give n in table 1. By using 
Lh ese parameters, the calculaLion is repeaLed in four 
s teps , (a) with co nfiguration interaction a nd spin­
orbit interaction neglecLed , (b) wiLh th e configura-

TABL E J. Radial paramelers /01' Ru 1 * 

A (dS) 14752 ± 50 
A (d7s) J45 J8 ±'IO 
A (d6s2) 20874 ± 106 

B (dS) 485.7 ± 7 
B (d's) 54c2.6 ± 3 
B (dBs2) 596.7 ± 4 

C (dS) 24 12. 6 ± 60 
C (d's) 2578. 6 ± J J 
C (d6s2) 27·W.4 ± 1 

redS) 837.8 ± 30 
r (d7s) D15. D± 16 
r (d6s2) 970.6 ± 23 

(: 2 J 736. O± J 1 
H2 329. 9 ± 2 

a 29. 41 ± 1 

M ean error = ± 63 cm-1 

"R . E . Trees, table 1, reference [3]. 
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tion in teraction included but spin-orbit interaction 
still omitted, (c) wi th configuration interaction and 
th e fust-order effects of spin-orbit interaction, and 
(d) finally with all interactions included. Step (d ) 
is essen tLaUy the result alr eady published, [3], but 
th e eigenvectors in the prcsent paper are r eferred to 
th e more appropriate basis obtained in step (b ). 
The first three steps were carried out for the even 
three-electron configura tions of Ti II and Zr II by 
Ufford [6] and the first two steps describe the calcu­
lations carried out by Trees for the even six-electron 
configurations of Mo I [7]. These were hand com­
putations, and this was a simplifying procedure used 
to determine the parameters successively in order of 
th eir decreasing effects on the positions of the levels. 
The rigorous approach is, of course, to include all 
interactions at the start and determine the par­
ameters simultaneously, but this is a difficult calcu­
lation even with the help of digital computers. 
However, after thc rigorous determination of param­
eters has been carried out [3], i t is instructive to 
repeat the calculation by steps. This procedurc will 
also clarify the interpretation of third long period 
spectra [1 , 2] . 

A convenient terminology has b een used by Ufford 
to describe this calculation (foo tnote 5 of ref. [6]) . 
His " first-order eigenfunctions" are those in ,vhich 
the matrix of electrostatic in teraction is diagonrrl in 
each configura tion with r espect to different kinds of 
terms occurring in LS coupling. There are pairs of 
duplicated terms having the same I.JS-values, in 
both d7s and d6s2, and the electrostatic interaction 
is not diagonal within the configura tion for these 
pairs when t he base vectors are distinguished 
by different values of Racah 's seniority number 
(seniorit~- numbers are given as prefixes in table 3) 
[8] . The "second order eigenfunctions" are the 
basis in which the electrostati c interaction is also 
diagonal for each of these pairs (+ and - sign super ­
script postscripts are usually used to distinguish 
the new base vectors, but since our tables r efer only 
to the "minus" - component, the sign has b een 
omitted). These correspond to the classification in 
A.E.L., and are obtained in step (a). " Third order 
eigenfunctions" are ones for which the matrix of 
electrostatic interaction is diagonal for all three con­
figura tions dB, d7s, and d6s2 taken together and they 
are obtained in step (b) . There are terms where the 
concep t of second-order eigenfunctio n is not needed, 
but this concept is applied in general to mean second 
or next lower applicable order eigenfunction . Simi­
larly, th ere are terms that occur only once in all three 
configura tions for which neither the concept of third­
order or second-order eigenfunction is needed (i.e., 
the 5F , 5P , lH , and1p terms from cFs and the 5D and 
II terms from d6s2) , bllt the terminology will still be 
applied in general with a similar interpretation. 

3. Configuration Interaction 

The matrices were first generated with the spin­
orbit and config ura tion interactions omitted, by 
using the parameters of table 1 with zero values for 

'--------- - - - -

the three spin-orbit param eters, zeta, and tb e three 
configuration interaction integrals (th e two equal 
values of H 2 and one of the two equal values of G2) . 
The eigenvalues of these matrices were calcula ted 
and they are given as the " unperturbed positions" 
in column (1) of table 2 (terms occurring only once in 
all three configurations are omitted for brevity) . 
These are the term positions tha t would be expectecl 
in Ru I if simple comparison were made with a 
spectrum having weak configuration interaction, 
such as F e 1. The eigenvectors are the second-order 
eigenfunctions; since tbey can be easily calculated by 
hand, they have b een omitted for brevity. 

The full matrices of electrostatic interaction werE' 
then generatecl, the three spin-orbi t parameters b eing 
the only ones assigned zero values. The eige nvalu es 
of th e matrices obtained in this approximation are 
given as the "perturbed positions" in column (2) of 
table 2. The corresponding eigenvectors are third­
order eigenfunctions and these are given in table 3. 

T A BLE 2. Perturbation by configuration interaction in lilt I 

Calc. te rm pos it ion Lande factor 
X (- 1) 

T erm 

(1) (2) (:, ) (.1) (5) 

U npe r t . Pert . DifL Unpe rt . P ert . 

(4F) a 3F 8468 7953 - 515 382 376 
dB b 3F 11219 10289 - 930 419 392 

(2 P ) 0 31" 15585 10681 - 4904 305 6H 
(2 G ) a 3G 13401 13002 - 399 137 1 :38 
(4P) b 3p 16313 14245 - 2068 382 207 

(2 G ) a lG 16873 14739 - 2134 --- -- -- - ------
(2D ) a 3D 17101 16526 - 575 2·1O 223 
(2H ) a 3H 16408 16074 - 334 92 92 
(2 D ) a 'D 20573 13975 - 6598 -- ---- - - -- ----

dB c 31" 18211 21795 3584 419 337 

d6s2 c 3F 24038 22315 - 1723 86 17 
d6s2 b 3H 2257-( 22909 335 97 97 

dB b l G 22108 23030 922 - - - -. - - - ----- -
dB b lD 18297 22693 4396 -------- - - --- -

d6s2 d 3p 23627 26348 2721 1411 1320 

(2 F ) a 'F 27490 25481 - 2009 --- - ---- ----- -
d6s2 b 3G 25263 25663 400 146 145 

(2 F ) d 3F 24018 26904 2886 - 76 U 
d6s2 b 3D 29028 29392 364 - 81 - 43 

T erms having a parent indicated in the deSignation belong to the d's configura· 
tion. 

The differences between columns (1 ) and (2 ) of 
table 2 are given in column (3) and represent the 
displacem ents produced by configura tion interaction . 
In half the terms these displacemen ts are grea tel' than 
2,000 wave numbers, and in three the displacem ents 
exceed 4,000 wave numbers, i. e., a 3P , a ID, and 
b iD . The simple procedure of comparing Ru I and 
Fe I demonstrates the strong interaction in a 3p very 
easily. However, this procedure may no t show that 
th e singlet term a lD appears below the correspond­
ing triplet, the a 3D , from th e same parent in di. In 
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TAB I,E 3. Eigenvector,; oj molrices of electrostatic interaction in Rll I 

(2 P ) 3 P (4 P) 31' 3p ··taP 231' IS 4 IS OIS 

a 3 p . 7367 - .2] 66 .5576 .2210 - .2250 alS . 3-182 . 8306 -. 4347 
b3P .22-19 . 8877 . 2J 1:3 -. 3325 .0790 blS . 9300 -. 3643 . 0488 
c 3p - . 60-.8 -. 05W .7926 - .0536 -. 0166 c 18 . 117 . -1212 . 8993 
d 3 p - 1998 . 3838 -. 0909 .6977 - .56:37 
e 31' .0320 . 1222 . 089-l . 59:J4 .7906 

·-h17 58 

(:32D ) 3D (FD ) 3D 4. 3D 
(32D ) ID (12D) ID ID 4,ID 21D 

aID - .6028 .2448 . 7249 .1949 -. 1145 a 3D .891 2 -. -1018 .2103 
hID . 6357 - .2366 . 6851 -. 2629 . 0378 b 3D - .1188 . 2-108 .96:3:3 
c ID .0601 -. 6138 .0110 .6689 - .4148 c 3D . ·1377 . 88:35 - . 1669 
dI D . 4785 . 6998 .00 17 .51 l0 -. 1422 
e 'D -. 0001 - . 1326 . 0699 . 429"J .8906 

(2 F ) 'F ..J. IF 

(2 F) 3 F' (' }<') 3]i' 3}' -[3F 2 3F o IF .926.') . :n6:J 
b q <' - . ~n62 . 9265 

(( 3F - .040 J .9803 . 0759 . 1710 -. 0483 
b 31" - .2029 - . 0098 .9640 .0616 - . 1258 
r 3F . 688 l . 1308 .2340 - .6140 .2786 (20) 3(; 4 3G 
cL 3P .695-1 -. 1026 . 0552 .64]1 -. 3030 
e 3F -. 009-1 -. 036:3 .0 -Ie 9 .4230 .9014 ----

0 3G . 91l4l - . 1776 
b 3G 1776 .9 ··11 

(2 G) 'G IG -IIG 21G 
(2 1l) 31 [ -l 31J 

a 1(; .8926 . ,1:3 12 - 1061 - . 0776 
b iG -. ,1087 .8670 . :2 191 - . 1826 a 3J-[ . 9752 .22 1:3 
c 'G 1(;-12 -. 2:35-1 .80-17 -. 5197 b 3 JJ - .22 1:l .975:2 
dIG . 0962 . 08:35 . 5-11 5 .8:310 

A.E.L. Rild t.he paper by K essler the level at 15054 
is assigned to the a 3D LerIn a nd the level at 17046 is 
given the designaLion a ID 2 ; except for this, the 
assignme nts of the present paper agree with those in 
A.E.L. a nd in Kessler 's paper. The interesting 
perturbation of a ID is obscured when this is done. 
H also leaves unexplaiJ1ed the appearance of 4d8 bID 
above the Lerm 4d8 bIG, the respective positions of 
these bei ng 23453 and 23393 . vVhen the data is 
illterprcLecl so that a ID is lower than a 3D , the 
unexpectedly high position of b lD is explained as a 
compensaLion for the low posit ion of aID. 

in quesLion, iL was d ifficult to be sure of the correcL 
designations for the levels because sligh t changes in 
the parameters somet imes produce lft rge changes ill 
the eigenvecto rs. I L wa s not likrl!- that the erro l' 
could be large enough to caU for the desig nat ions used 
in A.E.L. , bu t Lhis op inion is co nfirm.ed o nl~- no\\­
after it is esLablished t, haL the a lD is pe rLurbed by 
s trong configura Lion interaction rather Lha n b~- a n 
unexpectedl:,- large seco nd-o rd er spin-ol'b iL e[ect. 
On the same theme, it ma~- be ad ded that it would 
be more consistent in both A.E.L. a lld th is paper if 
the con figuration ass ig llments for c 3F and d 3F were 
ill te rcha nged. This would pu L Lhe a IF term based 
on the 4cP 2F parent above c 3F (whi ch would then be) 
based on Lhe same pa ren t , in agreemell t wi th expecta­
Lion. The Lhil'd-order eige nvectors (table 3) show 
LhaL by a small margin of 2 percent the overall 
puri t~T would be increased if this in terchange were 
made; i.e. , c 3F has 2 perce n t more of d7 (2F)s 3F in 
its composition than it has d6s2 3F , and the reverse is 
true for d 3F. 

The eige nvectors given in reference [3 ] \\'e]'e ava il­
able when the classification used in A.E.L. was macie, 
and the~- indicated that the assig nments should be as 
given in this paper. However , Lhe calculated 
eigenvector for the level aL 15054 has a ll unde­
termined errol' which cOlTesponds to a clifrerence of 
0.01 between observed and calculated g-values. 
Sin ce the accuracy of the calculated eige nvector was 
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4 . Spin-Orbit Interaction 

The matrices were next set up with the electro­
static and spin-orbit interactions fully included by 
utilizing all the parameters of table l. The same 
matrices were used to obtain the results in reference 
[3]. Since they are referred to the first-order eigen­
functions as basis, each matrix has large off-diagonal 
elements arising from the configuration interaction, 
the largest elements being the order of 5,000 or 6,000 
wave numbers. By tl"ansforming the matrices to the 
third-order eigenfunctions of table 3 as basis, these 
large elements are eliminated and only the smaner 
nondjagonal matrix elements arising from the spin­
orbit interaction remain. The largest of these ele­
ments are abou t 2,000 wave numbers. The diagonal 

elements of the transformed matrices given in column 
(7) of table 4, are, therefore, good approximations to 
the eigenvalues. The eigenvalues of the matrices 
are given in column (5) of table 4; since eigenvalues 
are, of course, independent of the vector basis, they 
are the same as those given in reference [3] . The 
eigenvectors are omitted for brevity, except that in 
column (10) we give the percentage composition 
corresponding to the dominant component, the latter 
being specified by column (2) of table 4, along with 
the eigenvectors tn. table 3. Tables 2 to 8 of refer­
ence [3] give the eigenvectors referred to second-order 
eigenfunctions as basis, and for comparison the 
dominant percentage composition referred to this 
basis is given in column (9) of table 4- in this case 
the component is fully specified by columns (1) and 
(2) . 

TABLE 4. S econd-01"der spi n-orbi t pel·tU1·bations and purity of levels in Ru I 

(1) (2) (3) (4) Eigenvalue Diag . element Purity 

Config. D esig. J Obs. 
(5) * (6) * (7) (8) (9) * (10) t 

Calc. Dilf. Calc. Dilf. One conf. Mi xed con f. 

5 0 - 17 - 17 150 - 167 98.67 -----------
4 1191 1166 - 25 1295 - 129 98.38 -----------

d7(4F)s a SF 3 2092 2073 - 19 2211 - 138 98. 77 -----------
2 2713 2703 - 10 2898 - 195 98.56 ---------- -
1 3105 3102 - 3 3356 - 254 98. 24 -----------

4 6545 6530 - 15 6826 - 296 79. 24 84. 32 
(17 (4F)s a 3F 3 8084 8083 - 1 8329 - 246 65. 77 69. 97 

2 9184 9167 - 17 9456 - 289 73. 34 74. 95 

4 7483 7413 - 70 7549 - 136 85. 24 -----------
3 8575 8502 - 73 8520 - 18 72. 03 -----------

d6s2 a 5D 2 9058 9047 - 11 9248 - 201 59. 50 -----------
1 9073 9165 92 9733 - 568 57. 24 -----------
0 9492 9503 11 9976 - 473 91. 22 -----------

3 8771 8812 41 8911 -99 96.91 ------ - ----
d7(4 P)S a SP 2 8044 8227 183 9598 - 1371 35.73 ---- - ------

1 9620 9619 - 1 10056 - 437 55. 82 -----------

4 9121 9084 - 37 911 4 - 30 91. 91 97. 48 
dS b 3F 3 ] 0655 10682 27 10681 1 92. 03 99. 41 

2 11 447 11481 34 11856 - 375 77. 05 82. 74 

2 10624 10660 36 10040 620 18. 61 45. 13 
d7(2P)S a 3P 1 11786 11766 - 20 11321 445 40. 60 70.11 

0 11753 11733 - 20 11962 - 229 57.20 82. 91 

5 12207 12244 37 12451 - 207 89.16 91. 94 
d7(2 G)S a 3G 4 12817 12802 - 15 13140 - 338 77. 63 79. 82 

3 13699 13697 - 2 13690 7 94.89 98. 01 

2 13646 13670 24 14038 - 368 48. 55 62. 70 
d7(4 P)S b 3P 1 13982 14044 62 14452 - 408 75. 12 83. 16 

0 14828 14904 76 14659 245 84.38 88. 29 

d7(2G)S a lG 4 14700 14691 - 9 14739 - 48 61. 15 76. 45 

3 16191 16239 48 16080 159 93. 69 97. 55 
cF(2 D )s a 3D 2 17046§ 17055 9 16750 305 81. 19 85. 50 

1 16713 16723 10 17196 - 473 69. 47 73. 08 

6 15550 15609 59 15614 
- 5 I 94. 89 99. 96 

d7(2 H )s a 3H 5 16240 16270 30 16166 104 86. 65 91. 90 
4 17097 17101 4 16625 -476 77. 66 83. 25 

See footnotes a t end of table. 
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T ABLE 4. S econd-order spin-orbit 1Jerturbations and purity of levels in Ru I- Continued 

(1) (2) (3) (4) Eige nva lue Diag. clement Puri ty 

Con fi g. D cs ig. J Obs. 
(5) * 

Calc. 

d1(2 J) 8 ai D 2 I 5054§ 14970 

di (2][ ) 8 a III 5 20056 20080 

di (2 P) s al p 1 202~2 20224 

2 20934 20934 
dB c 3p I 22293 22282 

0 24 174 ? 22346 

<1 21643 21703 
d682 c 3F :3 22419 22246 

2 22343 22 194 

G 22 162 222~ :3 
dGs2 b 3H .5 22519 22595 

.j 2:3005 22997 

d' biG .j 2::l :39:3 23397 

d8 biD 2 2:345:3 2:34 5 

2 24927 2-1887 
dfis2 (pp I 2756 1 27538 

0 - -- - -- 27948 

di (2 1" )s al F 3 25201 # 252 10 

5 2560:3 25562 
d682 b 3G 4 2564:3 25655 

:3 26076 2603J 

4 2728!l 273 11 
(/,(21")s (/31" :3 27517 27535 

2 268 15# 26875 

I 29617?# 2962 1 
dGs2 b 3D 2 29352 29397 

3 29979 29397 

(/G82 a II 6 2!l677# 29788 

* R. E . Tn'cs, taoles 2 to 8, reference [3] . 
t Mixture of configurations defined by eigenvectors in table 3. 
*l ' hese two levels have .designations interchanged from those give n in A.E.L. 
#Thcse lerels given by .Kessler, refere nce [5]. 

The dlfrerellces beLween the eigenvalues and the 
diagonal eielUenLs of Lhe matrices are given in column 
(8) of La ble 4 ; these differences are the displacemen ts 
produced by second- and higher-order spin-orbit 
interacli oll s. The displacements ar e considerably 
smaller lhan those produced by configuration in ter­
act ion, bu t they are still too large to ignore if the besL 
signi6ca ll L ag reeme nt between theory and experime nL 
is desi reel . Si ll ce hand compu LaLions have ignored 
th em, besL agreemenL was no L obtain ed ; for instance, 
a mean error well over ± 200 wave numbers was 
found for the calculaLion car ri eel 011 L in reference [7]. 
The differe nces between the observed ell ergy levels 
and lhe calculaLed eigenvalu es arc given in column 
(6) of table 4. and Lhe mean errol' in Lhis case is only 

-

(6)* (7) (8) (9) * ( lO) t 

Dirf. Calc. Diff. One conf. M ixed conf. 

- 84 ] 3975 995 21. '16 52.03 

24 19880 200 94. 55 --------

- 18 19057 I 167 73.27 ---------

0 21458 -524 40. 50 66.43 
- 11 22133 149 61. 1:3 97. 84 

- 1828 22470 - 124 62.41 98. 09 

60 22264 -561 37.3 1 57. 89 
- 173 22332 -86 43.65 96.46 
- ] 49 223 3 - ]89 38. 16 95. 31 

81 22425 - 182 92.50 97. 58 
76 23006 -401 78.40 84. 15 

-8 23490 - 4.93 48.56 52.55 

4 23030 367 60.43 75.62 

32 226!l3 792 :3l. 40 64. :34 

- 40 25028 - 141 70. 29 89. OJ 
-2:3 27669 - 131 67. 18 82.72 

- - -- - - 28989 - 1041 62. 26 77. -16 

!l 25'181 -271 57. 72 69. 02 

- 41 25082 480 2. 2 84. 75 
12 25 08 - 15:3 52.27 53. 13 

- 45 263 9 -35 46. 44 46. 77 

22 26833 478 29. 28 62. 15 
.18 2692 607 24.68 65.26 
60 26999 - 124 42. 58 97. 19 

4 29264 357 76.96 8:3. 3-1 
45 29350 47 83. 43 !l0. 12 

-582 2947 -81 91. 23 98.06 

III 29601 J87 97.55 -----------

± 63 [3]. It is the smallest so far published fot' a 
spectrum with configmaLions of Lhis complexity. 
This is a reflection of a fact that is still to be ex­
plained, that better agreement is ob tainable for 
spectra of the second long period than for those of Lhe 
firs t or thil'cllong periods, even though the theory is 
basically the same in all three perlods.3 

Because agreement beLwee n t heory and obscrva­
li on is so good, furLher sLuc\y of Ru I should lead to a 
better unders landing of sources of error in the theory. 
I.t has already been noLed LhaL errors associated wi th 
levels all belongiug Lo th e same Lerm are often simiJar 
in sign and magni t ude, indicating that the source of 

a Rscah has made c11culations for man y spectra of the frrst and second long 
periods and has also found that exceptiona lly close agreement is obtained in 
spectra of the second long period (private communication) . 
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errol' is associated with the electrostatic interactions 
[3]. The arrangement of table 4 brings this out more 
clearly. There arc instances where there is a dis­
similarity bu t it can sometimes be explained as a 
result or" ;videly differing spin-orbi t displacements in 
Lhe difIeren t levels of the term. For instance, the 
large error of 183 in calculating ~he pos~tion of the 
level at 8044 (a SP z) may be assocIated 'Vlth the fact 
that this level undergoes the largest displacement 
from second-order spin-orbi t interactions (i.e., 1371 
wave numbers). Unfortunately, this qualitative 
reasoning does not explain the large error of - 582 for 
the level at 29979 (b 3D3), since the displacements are 
relatively small for all levels of this term. K essler 
only recenth- Iocated a level aL 29617 which might be 
b 3D 1, and the fact tha t the position agrees well with 
theory makes the discrepancy for the level at 29979 
more v puzzling; however , he notes in his paper that 
the reality of this level is poorly established and he 
has not included it in his tables. The large error of 
- 1828 for the level at 24174 is provisionall~T ignored 
because the experimental data do not establish the 
reality beyond question. 

The third-order eigenfunctions are not accurate 
enough for a fully quan ti tati ve understanding ?f the 
spectrum; but. as already shown, they are a SImple 
basis that is adequate for a quali tative u nderstand­
i ng of the term posi tions and energy levels. Referred 
to either second- or third-order eigenfunctions, the 
term intervals show the Lande ratio and can be 
characterized by a single number; in the standard 
notation, this is the splitting factor th,SL) [9].4 1.11 
column (4) of table 2 arc given the values of thIS 
factor when second-order eigenfunctions are used, 
while in column (5) it is evalu ated for the third-order 
eigenfunctions. These col umns compare in a simple 
way the fIrst-order spin-orbit splitting without and 
with configuration interaction. For instance, it 
follows from table 2 that the levels a 3P 2 and a 3P1 

would be separated by 610 wave numbms in the 
absence of configuration interaction , and by 1282 
wave numbers in its presence (the observed separa­
tion is 1162 wave numbers). However, it is difficult 
to estimate the first order splitting from the observed 
data because the second-order interactions cause 
larf;',"e departures of the intervals from the Lande 
ratIO . 

5. Classification 

By using the third-order eigenfunctions as a basis, 
the purity of all levels is greater (or left unaltered 
for levels of terms that occur only once) as shown 
by comparison of columns (9) and (10) in table 4. 
:Vlajor increases of more than 20 percent are found 
in the 14 levels of three pairs of terms, namely, a 3p 
and c 3p ; a ID and b ID; and c 3F and d 3F. There 

• T he term intern.l between two levels wi th co nsecuth-e J-\'alues is equal to the 
prod uct of this factor a.nd the larger of the J-,:alu~s. 'rhe level o[larger J-value IS 
higher if th is product IS POSitive, and lower If It IS ncgatlYC. 

are only three instances wh ere the purity is less than 
50 percent whereas there were 15 instances when t ~l e 
second-order eigenfunctions were used as a baSIS. 
The use of the third-order eigenfunctions thus shows 
more clearly that the majority of Lhe levels in this 
spectrum show good LS-coupling. 

A practical advantage of this is that it simplifies 
the procedure of assigning desigMLtions to levels. 
When the eigenvector is made up of many small 
contributions from different states there may be 
instances where the calculations do flOt indicate a 
strono' preference for one system of designations as 
comp~,recl to another. Examples of this have been 
discussed for the first spectrum of rh enium [2]. In 
ReI the best desi(>'wLtions were chosen by implicitly 
referring the eige~vectors to the third-order ei ge~l­
functions as a basis. M achin e codes were not avall­
able that would do this automaticallv and since it 
was done by inspection it is not cei·tain that the 
best assio'nments were obtained. This led to uncer­
tainty il~ the assignments of 11 levels, as indicated 
in table IX of reference [2]. 

A sLm ilar, somewhat trivia.} example of this is 
found in the c 3F and cl 3F terms of RuT. As shown 
in column (9) of table 4, tbe purities of the six levels 
of these terms are less than 50 percent when referred 
to the second-order eigenfunctions. An interdwnge 
of configuration assignments for the two tl'rms 
results in an average increase of 4 percent in the 
purity of each level (this can be shown from the 
data in reference [3]). But the largest average 
increase in purity, 7 percent , would be obtained by 
interchanging configuration assignments only Jor 
the two pairs of levels with J = 2 and J = 3 If this 
were done, the two 3F terms would not show the 
grouping that is expected in D)-coupling. This 
would be purely the result of using second:-ol'der 
eigenfunctions as a basis and this poor groupmg of 
levels would clearlv be unreasonable . 'iiVhen re­
ferred to the third-order eigenfunctions the puri ties 
of all levels are greater than 50 percent and the 
correct grouping is demonstrated automatically. 
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