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Low Even Configurations in the First Spectrum
of Ruthenium (Rul), part 2

R. E. Trees

(July 29, 1959)

A published calculation for the 4d®, 4d 75s, and 4dS 5s2 configurations of Ru1 (R. E.
Trees, J. Opt. Soc. Am. 49, 838 (1959).) is repeated in steps. Displacements produced by con-
figuration interaction are evaluated, and departures of term positions from familiar expecta-

tions in the absence of configuration interaction are explained.
produced by second-order effects of the spin-orbit interaction are then determined.

The weaker perturbations
It is

shown that the neglect of these effects in published hand computations has obscured the
remarkably good agreement between theory and observation that is obtainable in spectra

of the second long period.

The eigenvectors are based on ‘‘third-order eigenfunctions’

)

which describe the levels simply, and show the degree of L S-coupling in a more quantitative

manner.

1. Introduction

This paper is the fourth in a series of calculations
carried out for complex spectra by utilizing a digital
computer [1, 2, 3.]" In previous calculations the
Standards Eastern Automatic Computer (SEAC)
was used, but this machine is no longer available.
The mathematical operations that were carried out
on the SEAC are described in reference [1].  Similar
codes have now been completed for the IBM 704,
and they have been used to obtain the results in this
paper. The code for the 704 is able to manipulate
the high-order matrices that arise in these calcula-
tions in a general manner, but in particular carries
out the operations described in sections 2, 3, 5, and
6 of reference [1]. An output of linear formulas
that approximate any specified eigenvalues of the
matrices is obtained and used directly as an input
to an orthonormalization code, similar to that de-
scribed in section 4 of reference [1], to obtain im-
proved values of radial parameters.”

The present paper is a continuation of a previous
calculation for the 4d® 4d” 5s, and 4d° 5s* configura-
tions of Ru 1 [3], and part of the previous work has
been repeated. An extension of the discussion of
the agreement between calculated and observed
energy levels and a simplification of the procedure
for assigning designations to levels are also given.

All of the calculations have been carried out to
assist with the experimental analysis of observed
data [4]. The use of the calculations in the analysis
of Ru 1 is discussed in the paper by Kessler which
gives details of the experimental side of the work
that has been done on this spectrum [5]. He found
that even though the analysis was carried out by
using a digital computer, levels were overlooked but
later found after they were predicted by theory.

b

1 Figures in brackets indicate the literature references at the end of this paper.
2 The orthonormalization code has been written by P. J. Walsh and E. V.
Haynsworth and is in general use at the National Bureau of Standards.

These were levels determined from a relatively few,
mostly weak combinations, and in some cases they
would have had to be rejected as unreal in the absence
of theoretical confirmation. This confirmation would
naturally be improved if the low intensities of the
combinations could also be explained by extending
the calculations to include a consideration of the
much more complicated odd configurations in this
spectrum.

2. General Procedure

Radial parameters have already been obtained for
Ru 1 [3], and these are given in table 1. By using
these parameters, the calculation is repeated in four
steps, (a) with configuration interaction and spin-
orbit interaction neglected, (b) with the configura-

TasrLe 1.  Radial parameters for Ru 1%
A (d®) 14752+ 50
A (d7s) 14518 + 40
A (dbs?) 20874 4 106
B (d%) 485. T+ 7
B (d’s) 542. 643
B (dfs?) 596. 744
C (d®) 2412. 6460
C (d's) 2578. 6+ 11
C (dbs?) 2740. 4+ 18
&(d®) 837. 84+30
¢ (d7s) 915. 9+ 16
¢ (dbs?) 970. 6423
G, 1736. 0+ 11
H, 329. 942
« 29. 4141

Mean error= -+ 63 em™!

*R. E. Trees, table 1, reference [3].
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tion interaction included but spin-orbit interaction
still omitted, (¢) with configuration interaction and
the first-order effects of spin-orbit interaction, and
(d) finally with all interactions included. Step (d)
is essentially the result already published, [3], but
the eigenvectors in the present paper are referred to
the more appropriate basis obtained in step (b).
The first three steps were carried out for the even
three-electron configurations of Tiir and Zr1r by
Ufford [6] and the first two steps describe the calcu-
lations carried out by Trees for the even six-electron
configurations of Mo 1 [7]. These were hand com-
putations, and this was a simplifying procedure used
to determine the parameters successively in order of
their decreasing effects on the positions of the levels.
The rigorous approach is, of course, to include all
interactions at the start and determine the par-
ameters simultaneously, but this is a difficult calcu-
lation even with the help of digital computers.
However, after the rigorous determination of param-
eters has been carried out [3], it is instructive to
repeat the calculation by steps. This procedure will
also clarify the interpretation of third long period
spectra [1, 2].

A convenient terminology has been used by Ufford
to describe this calculation (footnote 5 of ref. [6]).
His “first-order eigenfunctions” are those in which
the matrix of electrostatic interaction is diagonal in
each configuration with respect to different kinds of
terms occurring in LS coupling. There are pairs of
duplicated terms having the same LS-values, in
both d’s and d°? and the electrostatic interaction
is not diagonal within the configuration for these
pairs when the base vectors are distinguished
by different values of Racah’s seniority number
(seniority numbers arve given as prefixes in table 3)
[8]. The “second order eigenfunctions” are the
basis in which the electrostatic interaction is also
diagonal for each of these pairs (* and ~ sign super-
seript postseripts are usually used to distinguish
the new base vectors, but since our tables refer only
to the “minus’” — component, the sign has been
omitted). These correspond to the classification in
A.E.L., and are obtained in step (a). ‘“Third order
eigenfunctions” are ones for which the matrix of
electrostatic interaction is diagonal for all three con-
figurations d®, d’s, and d°?* taken together and they
are obtained in step (b). There are terms where the
concept of second-order eigenfunction is not needed,
but this concept is applied in general to mean second
or next lower applicable order eigenfunction. Simi-
larly, there are terms that occur only once in all three
configurations for which neither the concept of third-
order or second-order eigenfunction is needed (i.e.,
the °F, °P, 'H, and 'P terms from d’s and the °D and
T terms from d%?), but the terminology will still be
applied in general with a similar interpretation.

3. Configuration Interaction

The matrices were first generated with the spin-
orbit and configuration interactions omitted, by
using the parameters of table 1 with zero values for

the three spin-orbit parameters, zeta, and the three
configuration interaction integrals (the two equal
values of H; and one of the two equal values of G).
The eigenvalues of these matrices were calculated
and they are given as the “unperturbed positions”
in column (1) of table 2 (terms occurring only once in
all three configurations are omitted for brevity).
These are the term positions that would be expected
in Rur if simple comparison were made with a
spectrum having weak configuration interaction,
such as Fe 1. The eigenvectors are the second-order
eigenfunctions; since they can be easily calculated by
hand, they have been omitted for brevity.

The full matrices of electrostatic interaction were
then generated, the three spin-orbit parameters being
the only ones assigned zero values. The eigenvalues
of the matrices obtained in this approximation are
given as the “perturbed positions” in column (2) of
table 2. The corresponding eigenvectors are third-
order eigenfunctions and these are given in table 3.

Tarvre 2. Perturbation by configuration interaction in Ru 1
i Cale. term position | Landé factor
\ { X(=1)
Term 177 -
1 ‘ \ ‘
‘ ‘ ‘
€ R B € B B G B R C ) B B )
| Unpert. | Pert. Diff. | Unpert. | Pert.
* | | —
(*F) a 3F 8468 | 7953 | —515 | 382 | 376
d8 b3F 11219 | 10289 | —930 | 419 | 392
(2P) a 3P 15585 ‘ 10681 | —4904 ‘ 305 | 641
?G) a3G 13401 | 13002 —399 | 137 | 138
(*P) b 3P 16313 14245 | —2068 } 382 ; 207
(G)alG | 16873 14739 | —2134 . __ I
(D) a3D | 17101 | 16526 —575 | 240 223
(H) a 3H 16408 | 16074 | —334 | 92 | 92
(D) a'D 20573 IS0/AHREES 650 S| I——— I
ds8 ¢ 3P 18211 21795 3584 | 419 3317
dbs? ¢ 3F 24038 22315 | —1723 ‘ 86 17
dss? b 3H 22574 22909 335 | 97 97
& b1G 22108 | 23030 922 |____. | ____.
a8 b 1D 18297 | 22693 4396 .. S
dls? d 3P 23627 | 26348 2721 1411 ‘ 1320
(F) a 'F 27490 | 25481 | —2009 | _______ I
ds? b 3G 25263 1 25663 400 | 146 145
(F) d3F 24018 | 26904 @ 2886 | —T76 | 24
dSs? b 3D 29028 | 29392 | 364 | —81 | —43

Terms having a parent indicated in the designation belong to the d7s configura-
tion.

The differences between columns (1) and (2) of
table 2 are given in column (3) and represent the
displacements produced by configuration interaction.
In half the terms these displacements are greater than
2,000 wave numbers, and in three the displacements
exceed 4,000 wave numbers, i.e., @®P, ¢'D, and
b'D. The simple procedure of comparing Ru 1 and
Fe 1 demonstrates the strong interaction in a *°P very
easily. However, this procedure may not show that
the singlet term @ 'D appears below the correspond-
ing triplet, the @ *D, from the same parent in d’. In
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TaBLE 3.

Eigenvectors of maotrices of electrostatic interaction in Ru 1

4d75s 48 45552 4d® 46552
Il
(2P) 3P (*P) 3P 3P 43P 23pP ; 18 418 018
S —— B s S S |
a3P | .7367 —.2166 . 5576 L2210 —. 2250 alS | .3482 L8306  —. 4347
b3P | .2249 . 8877 .2113  —. 3325 L0790 b1S | 9300 —. 3643 . 0488
¢ 3P ‘ —. 6048  —. 0540 L7926 —. 0536 —. 0166 c18 . 1178 L o) . 8993
d3P | —. 1998 3838 —. 0909 . 6977  —. 5637
e3P | .0320 . 1222 . 0894 . 5924 . 7906 A . B
\
4d7 5s 4d5 5s?
‘ - D I |
1 (3*D) *D (12D) 3D 43D
‘ (32D) 1D (12D) D 1D 41D 21D [ .
a'D | —.6028 . 2448 . 7249 C1949 — 1145 a3D | .8912 —. 4018 . 2103
b 1D . 6357  —. 2366 L6851 —. 2629 0378 biD | —. 1188 . 2408 . 9633
¢1D L0601  —. 6138 L0119 L6689 —. 4148 ¢3D . 4377 .8835  —. 1669
diD | . 4785 . 6998 L0017 L5110 —. 1422 1
e'D | —.0001 —.1326 . 0699 . 4294 8906
| I |
1 | (F) 1F 4 1F
2 ) 3F 1) 3F 3R A3F 9 3F a'F | 9265 3762
CF) (F) b1F —. 3762 9265
| - 000 —
| a'F | —. 0401 . 9803 . 0759 L1710 —. 0483
b3F | —.2029 —. 0998 . 9640 L0616 —. 1258 7
¢ 3F . 6881 . 1308 .2340  —. 6140 . 2786 ©G) 3G 133
d 3F . 6954 —. 1026 . 0552 L6411 —. 3030 ,
esF | —. 0094 —. 0363 . 0849 . 4230 . 9014
N . - 3G L9841 —. 1776
bh3G 1776 . 0841
1 ‘ - - , -
| (@G 1G 1G 41G 2 1G
- i R | (H)SH  43H
’ alG | . 8926 . 4312 L1061 —. 0776 | f"*f”’
| b1G | —. 4087 . 8670 2191 —. 1826 al | . 9752 . 2213
L oclG 1642 — 235 8047 5197 | b3H — L) 9752
| d1G | 0962 . 0835 5415 8310 )

AE.L. and the paper by Kessler the level at 15054
is assigned to the @ *D term and the level at 17046 is
given the designation @ 'D,; except for this, the
assignments of the present paper agree with those in
AEL. and in Kessler's paper. The interesting
perturbation of « 'D is obscured when this is done.
It also leaves unexplained the appearance of 4d® 'D
above the term 4d® b'G, the respective positions of
these being 23453 and 23393. When the data is
interpreted so that a'D is lower than a®D, the
unexpectedly high position of b'D is explained as a
compensation for the low position of @ 'D.

The eigenvectors given in reference [3] were avail-
able when the classification used in A E.1i. was made,
and they indicated that the assignments should be as
given in this paper. However, the calculated
eigenvector for the level at 15054 has an unde-
termined error which corresponds to a difference of
0.01 between observed and calculated g-values.
Since the accuracy of the calculated eigenvector was

in question, it was difficult to be sure of the correct
designations for the levels because slight changes in
the parameters sometimes produce large changes in
the eigenvectors. It was not likely that the error
could be large enough to call for the designations used
in AE.L., but this opinion is confirmed only now
after it is established that the a 'D is perturbed by
strong configuration interaction rather than by an
unexpectedly large second-order spin-orbit effect.
On the same theme, it may be added that it would
be more consistent in both A.K.1.. and this paper if
the configuration assignments for ¢ *F and ¢ *F were
interchanged. This would put the a 'K term based
on the 447 2K parent above ¢ °F (which would then be)
based on the same parent, in agreement with expecta-
tion. The third-order ecigenvectors (table 3) show
that by a small margin of 2 percent the overall
purity would be increased if this interchange were
made; i.e., ¢®F has 2 percent more of d"(*F)s*F in
its composition than it has d%?*F, and the reverse is
true for d °F.

257



4. Spin-Orbit Interaction

The matrices were next set up with the electro-
static and spin-orbit interactions fully included by
utilizing all the parameters of table 1. The same
matrices were used to obtain the results in reference
[3]. Since they are referred to the first-order eigen-
functions as basis, each matrix has large off-diagonal
elements arising from the configuration interaction,
the largest elements being the order of 5,000 or 6,000
wave numbers. By transforming the matrices to the
third-order eigenfunctions of table 3 as basis, these
large elements are eliminated and only the smaller
nondiagonal matrix elements arising from the spin-
orbit interaction remain. The largest of these ele-
ments are about 2,000 wave numbers. The diagonal

elements of the transformed matrices given in column
(7) of table 4, are, therefore, good approximations to
the eigenvalues. The eigenvalues of the matrices
are given in column (5) of table 4; since eigenvalues
are, of course, independent of the vector basis, they
are the same as those given in reference [3]. The
eigenvectors are omitted for brevity, except that in
column (10) we give the percentage composition
corresponding to the dominant component, the latter
being specified by column (2) of table 4, along with
the eigenvectors in table 3. Tables 2 to 8 of refer-
ence [3] give the eigenvectors referred to second-order
eigenfunctions as basis, and for comparison the
dominant percentage composition referred to this
basis is given in column (9) of table 4—in this case
the component is fully specified by columns (1) and

(2).

TasrLe 4. Second-order spin-orbit perturbations and purity of levels in Ru 1

(1) (2) (3) (4) Eigenvalue Diag. element Purity
Config. Desig. J Obs.
(5)* (6)* (7 (8) (9* (10) t
Cale. Diff. Cale. Diff. One conf. | Mixed conf.
5 0 —17 —17 150 —167 98.67 |
4 1191 1166 —25 1295 —129 98.38 | ____ I
d'(*F)s a sk 3 2092 2073 —19 2211 —138 98.77 |-
2 S 2703 —-10 2898 —195 98.56 | ___
1 3105 3102 -3 3356 — 254 98.24 |_____ [
4 6545 6530 —15 6826 — 296 79. 24 84. 32
d'(4F)s a3F 3 8084 8083 —1 8329 — 246 65. 77 69. 97
9 9184 9167 —17 9456 — 289 73. 34 74. 95
4 7483 7413 —70 7549 —136 85.24 | __________
3 8575 8502 —73 8520 —18 72.03 | _________
dbs? a’D 2 9058 9047 —11 9248 — 201 59.50 | - ______
1 9073 9165 92 9733 — 568 57.24 | __________
0 9492 9503 11 9976 —473 91.22 |___________
3 8771 8812 41 8911 —99 96.91 | __________
d'(*P)s a 5P 2 8044 8227 183 9598 —1371 S15h 76 |
1 9620 9619 —1 10056 —437 55.82 | __________
4 9121 9084 —37 9114 —30 91. 91 97. 48
d® b3F 3 10655 10682 27 10681 1 92. 03 99. 41
2 11447 11481 34 11856 —375 77. 05 82. 74
2 10624 10660 36 10040 620 18. 61 45.13
d'(?P)s a 3P 1 11786 11766 —20 11321 445 40. 60 70.11
0 11753 i1l'7a%s —20 11962 —229 57. 20 82. 91
5 12207 12244 B 12451 — 207 89. 16 91. 94
d(2G)s a3G 4 12817 12802 —-15 13140 — 338 77. 63 79. 82
3 13699 13697 —2 13690 7 94. 89 98. 01
2 13646 13670 24 14038 — 368 48. 55 62. 70
d'(*P)s b 3P 1 13982 14044 62 14452 —408 [ONIE2 83. 16
0 14828 14904 76 14659 245 84. 38 88. 29
d'(2G)s alG 4 14700 14691 -9 14739 —48 61. 15 76. 45
g 16191 16239 48 16080 159 93. 69 07455
d'(?D)s a 3D % 170468 17055 9 16750 305 81.19 85. 50
il 16713 16723 10 17196 —473 69. 47 73. 08
6 15550 15609 59 15614 -5 94. 89 99. 96
d’(CH)s a3H 5 16240 16270 30 16166 104 86. 65 91. 90
4 17097 17101 4 16625 — 476 77. 66 83. 25

See footnotes at end of table,
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Tasre 4. Second-order spin-orbit perturbations and purity of levels in Ru —Continued
(1) (2) 3) (4) Eigenvalue Diag. element Purity
Config. Desig. I Obs. -
(5)* (6)* (7 (8) (9)* (10) 1
Cale Diff. Cale. Diff. One conf. | Mixed conf.
d(?D)s a'D 2 150548 14970 — 84 13975 995 21. 46 52. 03
d'(*H)s a'H H 20056 20080 24 19880 200 94. 55 |- __
d'(?P)s alP 1 20242 20224 —18 19057 1167 T3 R2 (8 S
2 20934 20934 0 21458 —524 40. 50 66. 43
d8 ¢ P 1 22293 22282 —11 22133 149 61. 13 97. 84
0 24174? 22346 — 1828 22470 —124 62. 41 98. 09
| 4 21643 21703 60 22264 — 561 37. 31 57. 89
dbs? | ¢3F 3 22419 22246 —173 22332 — 86 43. 65 96. 46
2 22343 22194 —149 22383 —189 38. 16 95. 31
6 22162 22243 81 22425 —182 92. 50 97. 58
dbs? b3H 5 | 22519 22595 76 23006 —401 78. 40 84. 15
4 | 23005 22997 —8 23490 —493 48. 56 52. 55
s b1G 4 23393 23397 4 23030 367 60. 43 75. 62
d® b1D %) 23453 23485 a5 22693 792 31. 40 64. 34
2 24927 24887 =4 | 25028 —141 70. 29 89. 01
dbs? d 3P | 27561 27538 —23 | 27669 —131 67. 18 82. 72
0| - __. 27948 N 28989 —1041 62. 26 77. 46
d'(2F)s a'F 3 25201# 25210 9 25481 —271 57. 72 69. 02
5 25603 25562 —41 25082 480 82. 28 84. 75
dbs? b3G 4 25643 25655 12 25808 —153 52. 27 53013
g 3 26076 26031 —45 26389 — 358 46. 44 46. 77
4 27289 2731 22 26833 478 29. 28 62. 15
dT(2F)s d3F 3 DTN D80, 18 26928 607 24. 68 65. 26
2 2681 5# 26875 60 26999 —124 42. 58 97. 19
1 29617 7% 29621 4 29264 St 76. 96 83. 34
dbs? b3D 2 29352 29397 45 29350 47 83. 43 90. 12
5 29979 29397 — 582 29478 — 81 91. 23 98. 06
dfs? a I 6 29677# 20788 111 29601 187 O | —
I
*R. E. Trees, tables 2 to 8, reference [3].
iMixture of configurations defined by eigenveectors in table 3.
§These two levels have designations interchanged from those given in A.E.L.
#These levels given by Kessler, reference [5].
The differences between the eigenvalues and the | £63 [3]. It is the smallest so far published for a

diagonal elements of the matrices are given in column
(8) of table 4; these differences are the displacements
produced by second- and higher-order spin-orbit
interactions. The displacements are considerably
smaller than those produced by configuration inter-
action, but they are still too large to ignore if the best
significant agreement between theory and experiment
is desired. Since hand computations have ignored
them, best agreement was not obtained; for instance,
a mean error well over 200 wave numbers was
found for the calculation carried out in reference [7].
The differences between the observed energy levels
and the calculated eigenvalues are given in column
(6) of table 4, and the mean error in this case is only

spectrum with configurations of this complexity.
This is a reflection of a fact that is still to be ex-
plained, that better agreement is obtainable for
spectra of the second long period than for those of the
first or third long periods, even though the theory is

basically the same in all three periods.®
Because agreement between theory and observa-
tion is so good, further study of Ru 1 should lead to a
better understanding of sources of error in the theory.
[t has already been noted that errors associated with
levels all belonging to the same term are often similar
in sign and magnitude, indicating that the source of
3 Racah has made calculations for many spectra of the first and second long

periods and has also found that exceptionally close agreement is obtained in
spectra of the second long period (private communication).
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error is assoclated with the electrostatic interactions
[3].  The arrangement of table 4 brings this out more
clearly. There are instances where there is a dis-
similarity, but it can sometimes be explained as a
result of widely differing spin-orbit displacements in
the different levels of the term. For instance, the
large error of 183 in calculating the position of the
level at 8044 (a °P,) may be associated with the fact
that this level undergoes the largest displacement
from second-order spin-orbit interactions (i.e., 1371
wave numbers). Unfortunately, this qualltatlve
reasoning does not explain the large error of —582 for
the level at 29979 (b ®D,), since the displacements are
relatively small for all levels of this term. Kessler
only recently located a level at 29617 which might be
b#Dy, and the fact that the position agrees w ell with
theory makes the discrepancy for the level at 29979
more puzzling; however, he notes in his paper that
the reality of this level 1s poorly established and he
has not included it in his tables. The large error of
—1828 for the level at 24174 is provisionally ignored
because the experimental data do not establish the
reality beyond question.

The third-order eigenfunctions are not accurate
enough for a fully quantitative understanding of the
spectrum; but. as already shown, they are a simple
basis that is adequate for a qualitative understand-
ing of the term positions and energy levels. Referred
to either second- or third-order eigenfunctions, the
term intervals show the Landé ratio and can be
characterized by a single number; in the standard
notation, this is the splitting factor ¢(ySL) [9].4 In
column (4) of table 2 are given the values of this
factor when second- 01(10 eigenfunctions are used,
while in column (5) it is evaluated for the third-order
eigenfunctions. These columns compare in a simple
way the first-order spin-orbit splitting without and
with configuration interaction. For instance, it
follows from table 2 that the levels a*P, and a P,
would be separated by 610 wave numbeis in the
absence of configuration interaction, and by 1282
wave numbers in its presence (the observed separa-
tion is 1162 wave numbers). However, it is difficult
to estimate the first order splitting from the observed
data because the second-order interactions cause
large departures of the intervals from the Landé
ratio.

5. Classification

By using the third-order eigenfunctions as a basis,
the purity of all levels is greater (or left unaltered
for levels of terms that occur only once) as shown
by comparison of columns (9) and (10) in table 4.
Major increases of more than 20 percent are found
in the 14 levels of three pairs of terms, namely, a *P
and ¢ *P; @ 'D and b 'D; and ¢ °F and d *F. There

4 The term interval between two levels with consecutive J-values is equal to the
product of this factor and the larger of the J-\'alugs, Th(_\ level of larger J-value is
higher if this produect is positive, and lower if it is negative.

are only three instances where the purity is less than
50 percent whereas there were 15 instances when the
second-order eigenfunctions were used as a basis.
The use of the third-order eigeafunctions thus shows
more clearly that the majority of the levels in this
spectrum show good LS-coupling.

A practical advantage of this is that it simplifies
the procedure of assigning designations to levels.
When the eigenvector is made up of many small
contributions from different states there may be
instances where the calculations do not indicate :
strong preference for one system of designations as
compared to another. Examples of this have been
discussed for the first spectrum of rhenium [2]. In
Rer the best designations were chosen by implicitly
referring the eigenvectors to the third-order eigen-
functions as a basis. Machine codes were not avail-
able that would do this automatically and since it
was done by inspection it is not certain that the
best assignments were obtained. This led to uncer-
tainty in the assignments of 11 levels, as indicated
in table IX of reference [2].

A similar, somewhat trivial example of this is
found in the ¢ °F and d °F terms of Rui. Asshown
in column (9) of table 4, the purities of the six levels
of these terms are less than 50 percent when referred
to the second-order eigenfunctions. An interchange
of configuration assignments for the two terms
results in an average increase of 4 percent in the
purity of each level (this can be shown from the
data in reference [3]). But the largest average
increase in purity, 7 percent, would be obtained by
interchanging configuration assignments only for
the two pairs of levels with J=2 and J=3 1f this
were done, the two °F terms would not show the
grouping that is expected in LS-coupling. This
would be purely the result of using second-order
eigenfunctions as a basis and this poor grouping of
levels would clearly be unreasonable. When re-
ferred to the third-order eigenfunctions the purities
of all levels are greater than 50 percent and the
correct grouping is demonstrated automatically.
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