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The backseattering of fast (0.3, 1, 3, 6, 9, and 14 Mev) neutrons from a semi-infinite
water medium has been calculated by the Monte Carlo method. The information obtained
includes the joint angular and spectral distribution of the reflected neutrons, the dependence
of the number albedo and energy albedo on the source energy and obliquity, and the con-
tributions to the albedo of successive orders of scattering. The spectra were calculated
down to epithermal energies (~0.5 ev). The results for each case are based on the analysis
of 3,000 neutron histories, generated with the use of an IBM-704 computer. In the random
sampling, elastic scattering from hydrogen and oxygen, inelastic scattering from oxygen,
and absorption due to n-« and n-p processes were taken into account. The cross sections
for some of these interactions are not well known. Parallel calculations with different
assumptions about the cross sections were made in order to estimate how sensitively the
albedo depends on the cross sections. The paper inciudes a self-contained deseription of
the Monte Carlo method, its application to the calculation of radiation diffusion and in
particular to the neutron albedo problem. Imphasis is placed on the technique of cor-
related sampling which makes possible an accurate estimate of albedo differences resulting
from different assumptions about the cross sections. The random sampling computations
were supplemented by analytical calculations of the single-scattering albedo. This was
useful for an understanding of the Monte Carlo results because a considerable fraction of
the reflected neutrons return after only one collision.

1. Introduction
1.1. Statement of the Problem

Neutrons that are incident on an extended medium make one or more collisions with
nuclel in each of which they are deflected and lose a fraction of their energv. Thus they
perform a “‘random walk’ until they are either absorbed or re-emerge from the medium with
reduced energy. The probability that an individual neutron will eventually re-emerge from a
semi-infinite medium (i.e., be reflected) is called the albedo, or the differential albedo if the
energy and/or direction of the reflected neutron are specified.

The purpose of this paper is threefold: (1) To calculate the differential albedo and related
quantities for neutrons incident on a semi-infinite water medium; (2) to give a self-contained
exposition of the methods of calculation used (Monte Carlo, single-scattering analysis); (3)
to analyze how the albedo depends on various factors, particularly the cross sections for elastic
and melastic scattering and absorption.

1.2. Background

Exact calculations of the neutron albedo have so far been limited to situations in which
the slowing down of neutrons could be disregarded. With this limitation, and with further
restrictive assumptions, Halpern, Lueneburg, and Clark [1] 2 have given an analytic solution
based on transport theory. A more general solution of the one-velocity problem is also avail-
able from Chandrasekhar’s [2] theory of radiative transfer. Fermi [3] and more recently
Grosjean [4] have given approximate solutions which are in good agreement with the more
rigorous calculations.

When the complicated energy-dependence and directional dependence of the collision
processes must be taken into account, an exact analytical treatment becomes all but impossible.

1 Supported jointly by Armed Forces Special Weapons Project, OCDM, and the Department of the Navy (Bureau of Yards and Docks).
2 Figures in brackets indicate the literature references at the end of this paper.
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Spinney [5] has given an approximate treatment based on age theory which is applicable
mainly to energies lower than those considered in the present work.? Another possible approach
would be to incorporate the exact one-velocity treatment of reference [2] into an energy-group
scheme similar to the multigroup diffusion schemes used in reactor calculations. This has not
been attempted so far.

The Monte Carlo method recommends itself as the simplest and most promising approach.
It has the advantage that the complexity of the calculations is not essentially increased by
adding to the number of variables or by introducing complicated cross sections. Increased
detail merely creates a data-handling problem which requires a computer with sufficient ca-
pacity. A disadvantage of the Monte Carlo method is its purely numerical character which
makes necessary a very careful scrutiny of the results before one can understand their signifi-
cance. We have found that such an analysis is greatly facilitated by parallel analytical
calculations of single scattering. In spite of its promise, the Monte Carlo method has not
vet been used extensively for albedo calculations. Some results for the backscattering of
0.89-Mev neutrons from water have been given by Foderaro and Obenshain [6], but their
work was mainly concerned with transmission through slabs.

One reason for the scarcity of Monte Carlo applications to the albedo problem appears to
be the lack of adequate information on neutron collision cross sections, which may have dis-
couraged extensive numerical work.! For few if any elements (other than hydrogen) are the
cross sections known in the detail and with the accuracy desirable. Only the knowledge of
the total collision cross section is in definitive form for most elements. Information about
the contributions of different processes to the total cross section is reasonably adequate. Much
less is known about differential cross sections. The angular distribution of elastic scattering
deflections—which is highly anisotropic at high energies—is not well known for many elements.
Even less is known about inelastic scattering. There is uncertainty as to the nuclear levels
which are excited, the relative excitation probabilities, and the angular distribution of the
inelastic scattering deflections.

We have chosen water as the medium in our calculations because the cross sections for
hydrogen and oxygen are known better than those of most other elements. In addition to
being of interest in their own right, the results for water will also be typical of those expected
with other hydrogeneous substances. Thus the present work should provide guidance for
future calculations for media such as concrete which are held up now by lack of cross section

data.
2. Variables of the Problem

We consider the reflection of neutrons from a semi-infinite medium occupying the region
z>0. Figure 1 shows a typical trajectory of a neutron which is incident on the medium with
obliquity 6, and which is reflected with obliquity 8. These obliquities are angles between the
direction of motion of the neutron and the positive z-axis. Thus 6, lies between 0 and /2,
and 6 lies between 7/2 and .

We denote by A(E,0;F,6,) sinfddE the probability that a neutron incident with energy
Fy and obliquity 6, will be reflected from the semi-infinite medium, after one or more scatterings,
with an energy between £ and E4dFE and an obliquity between 6 and 6-+df. The function
A(E,0;E,6,) is called the differential albedo. Alternatively, instead of regarding the albedo as
a probability, we may consider it to be the ratio of the average number of neutrons reflected
to the number of neutrons incident. Thus if a beam of N, neutrons is incident with energy
Ey and obliquity 6, and if N(%,0) sinfdfdE neutrons are reflected on the average, then

N(E.0
A(E,e;Eo,e(,):W(E;T?@- @.1)

3 See, however, sec. 7.8.
4 For a survey of the neutron cross section situation in relation to transport calculations, see the recent book by Goldstein [7].
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By integrating the differential albedo one obtains the number albedo Ay (ratio of the number
of all reflected neutrons to the number of incident neutrons):

Ey g ) )

A(Eofy)— f dE f SinddoA(E,0:Ey ). 2.2)
0 /2

Similarly, the energy albedo Ay (ratio of the average reflected to the incident energy) is defined as

Ay (Eo )= J " K J sinddo } A(E8; En 00)- 2.3)
0 /2 ()

T

We shall have occasion to consider the probabilities of reflection after exactly 1,2, . . . n
collisions. The corresponding albedos will be indicated as A (F, 0;/,0,), Ay (£,,6,) and
A" (Eo8,), n=1,2, . . . . The case n=1 (single-scattering albedo) is particulary important.

Fiaure 1. Neutron trajectory.

3. Neutron Cross Sections of Hydrogen and Oxygen
3.1. Integral Cross Sections

The most important parameter characterizing the neutron transport process is the mean
free path between collisions, N(£). It is inversely proportional to the number -4 of target
nuclel per unit volume and the total collision cross section o(F),

The reciprocal of the mean-free path (the attenuation coefficient) is additive for a homogeneous
mixture of different nuclei. For water,

1 1 1 . ) y :
)Tnlo_}:[ }\(;x-—- laou(E) 4+ AMox00x(12), (3:2)

where A5=6.69 <1022 em~? and {5, =23.34 X10*2 cm 3,

We have taken the values of ou(£) and oox(£) from the standard Brookhaven compilation
[8].  The attenuation coefficients for hydrogen and oxygen thus obtained are shown separately in
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figure 2 as functions of the energy. The plots are made in histogram form corresponding to the
approximate manner in which the data were used in the machine computations. It can be scen
that the energy-dependence for hydrogen is smooth, but that the histogram for oxygen has
several sharp peaks and irregularities at high energies.

Next we consider the relative contributions of various processes to the total collision eross
section in the energy region of interest (0.5 ev to 14.0 Mev). For hydrogen, only elastic scat-
tering is important in this region. The (n,y) cross section is smaller than 0.1 percent of the total
cross section at 0.5 ev, and is even less significant at higher energies.
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Fiqure 2. Attenuation coefficients for hydrogen and oxygen.
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o, inelastic scattering (above
~6.4 Mev), and absorption due to (n,«) reactions (above=4 Mev) and (n,p) reactions (above =
10 Mev).  Cross sections for these processes, derived from the best experimental evidence and
theoretical considerations, have been compiled by Lustig, Kalos, and Goldstein [9].°

For oxygen, the processes that matter are elastic scattering

> In table
3.1 we list the values of the various cross sections at selected energies to indicate their relative
mportance. For use in machine calculations, we have fitted cross-section ratios with poly-
nomials in the energy variable. The representations are a smoothed-out version of the data of
reference [9] accurate to 5 percent or better
the data.

, which is suflicient considering the uncertainty in

TaBLe 3.1.  Neutron cross sections (barns) for oxygen (from reference [9)])

Enerey %0x | %%20x | %p,0x 9pt,0x
Men Total | n,e n.p Inelastic
14 ‘ 1. 58 0. 31 0. 09 0.5)
9 108 L95 21
6| 148 | 19
3 1. 30

Ratio of inelastic to total collision cross section:

T8 1 05173--0.24196 11— 0.013666 ££2-+0.00024009 /2% (6.4 Mev < <18 Mev)

00ox
Ratio of absorption to total collision cross section:

?’a‘ ()x+ 0’[{, Ox_

=—0.40433-+0.13254 £—0.0085614 /£20.00017413 £3 (4 Mev< /<18 Mev).

O0x
Ox 7

The probabilities that a given collision will be with a hydrogen or an oxygen nucleus are
Ner,o(£2) /Ny (12) and N o (£2) /Mo (£), respectively. A collision can have four possible outcomes:
1. With probability
)\”.,(\ ,
N=——~ (3.4
P=y )

H

the neutron is scattered elastically by a hydrogen nucleus.
2. With probability

)‘":" 0ox—0n/,0x 0a,0x Tp,Ox 5=
Po= - —— - ) (37)
Nox 0ox
the neutron is scattered elastically by an oxygen nucleus.
3. With probability
>\H O Oy .
Py 2 Tnt.Ox (3.6)
Aox  Tox
the neutron is scattered inelastically by an oxveen nucleus.
4. With probability
)\l[.() o -~ -
1)4: 2 s a,()\% 7/;.(“) ('§7)

Nox 00x

the neutron is absorbed. Note that p,+ po+ps+pi=1.

5 Due to theoretical and experimental uncertainties, the cross sections given in this publication are subject to revision.  We understand that
Dr. Goldstein and his associates are now engaged in making an improved evaluation.
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3.2. Differential Cross Sections

The outcome of a collision in which a neutron of energy £ is scattered can be specified in
terms of the probability distribution f;(0;£) of the scattering deflections 6, in the center-of-
mass coordinate system. In conformity with the notation in the preceding subsection, we
shall use indices 7=1, 2, and 3 to indicate the distributions for elastic scattering from hydrogen,
elastic scattering from oxygen, and inelastic scattering from oxygen, respectively.

For elastic scattering from hydrogen, the distribution is assumed to be isotropic,®i.e.,

Hi(B5E)=1. (3.8)

The angular distribution for elastic scattering from oxygen is also isotropic at energies
below about 300 kev, but markedly anisotropic at higher energies, particularly in resonance
regions. Above 300 kev we have used the compilation of reference [9] which gives the coef-
ficients f, ;(£) of the Legendre expansion

2141

f._,(ec;E):; —2~f2,,(E)P,(cos 0,). (3.9)

(Note that the normalization is such that f,,,(££)=1.) Typical angular distributions at various
energies are shown in figure 3.

The angular distribution for inelastic scattering from oxygen depends not only on the
energy of the neutron before the collision but also on the excitation energy which the struck
nucleus receives. In O the four lowest levels are 6.06, 6.14, 6.91, and 7.12 Mev above the
ground state, the next is at 8.6 Mev and there are numerous levels between 9 and 14 Mev [11].
It appears from the discussion in reference [9] that neither the relative probabilities for the
excitation of these levels nor the corresponding angular distributions are known. In order
to explore the effect of inelastic scattering on the albedo, we have done three sets of calculations
on the basis of the following assumptions:

(1) The nucleus is excited to a level 6.1 Mev above the ground state. The angular dis-
tribution is isotropic; i.e.,

fs(0,;E)=1. (3.10)

(2) The neutron loses all its energy in an inelastic scattering, so that it is, in effect,
absorbed.

(3) An inelastic scattering is treated as if it were an elastic scattering; i.e., the excitation
energy of the nucleus is set equal to zero.

The assumptions of case (1) seem to us to be the most realistic, and may be expected to
yield reasonable answers when the neutron source energy is not too much above 9 Mev. The
assumptions of case (2) lead to an underestimate of the albedo, and the assumptions of case
(3) lead to an overestimate of the energy of the reflected neutrons.

4. Single-Scattering Albedo

4.1. Formulation

The probability that a neutron, incident on a semi-infinite medium with energy E; and
obliquity 6,, will be reflected with energy £ and obliquity 6 after exactly one collision is

@ > 3
AD(F,0 oy ) — f =508 S p H(E0: By po)e=>"P if n2<0<,
0 Mo j=1 4.1)
—0 if 0<6<n/2.

6 This assumption is open to doubt at energies above, say, 5 Mev. See Goldstein, Zweifel and Foster [10].

106



| Mev
3Mev

.3 Mev

5
;-TTTTT&T—I"—{_TV
N
m

w
o
® 14 Mev
s
o
9 Mev
ol 6Mev
i /
N
-1.0 1.0

cos®c

Fraure 3. Angular distribution of elastic scattering from oxygen (according to ref. [9]).

In this expression, the factor e‘s“ﬂ% represents the probability that the incident neutron will
0

travel a pathlength s and then undergo its first collision between s and s-tds, Ny=\(F)) being
the mean-free path. The collision can be of type 1 (elastic scattering from hydrogen), type 2
(elastic scattering from oxygen), or type 3 (inelastic scattering from oxygen). The fourth
type (absorption) need not be considered. The factor p, (defined by (3.4, 3.5, and 3.6))
represents the probability that the collision will be of type 7. The function H,(E,0:F,0,) is
called the scattering function and denotes the probability that in a collision of type j the energy
of the neutron will change from %, to % and the obliquity from 6, to 6. Finally, exp(—s’/N)
is the probability that the neutron will travel from the point of collision to the boundary
without making any more collisions (X is the mean free path at the energy £). The pathlength
to the boundary is

A 2
* § cos )
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Using this relation, and carrying out the integration with respect to s in (4.1), we obtain the
equation
3 p,(Ey)H;(E.0;E6,) cos @
AV(E 9:E,.00) — Pi\Lg) 11 ;14,05 Fg, U
(& ,8; Eo,fo) ,:ZI cos 8— (No/N) cos 6,

if m2<0<m,

(4.3)
=0 if0<o<n/2.

4.2. Scattering Function

The function H;(E,0;F,,0,) to be inserted into (4.3) can be derived from the corresponding
distribution f,(0.;E,) for the deflections in the center-of-mass coordinate system. To establish
the connection, we need the relations between 0., the corresponding deflection angle 6 in the
laboratory coordinate system, and the ratio of energies before and after the collision, £%//.
These relations are a consequence of the conservation of momentum and energy in the collision
of a neutron with a nucleus. “’9 state them for the case of inelastic scattering, characterized
by the transfer of an amount ¢}, of energy to the target nucleus as excitation.” The same

relations also apply to elastic scattering if we set 4;,=0.

The energy of the neutron after the collision is given by

14+2M;,K; cos 0,+M3K?

E=Ek 1+2M,+M?

; (4.4)

and the deflection in the laboratory system is

|Ey 14+M,K, cos 6, v,+1 /]V \1K~—1 /B,

CSONE T M, T 2 VE 20 ) VE i

w here M; is the mass of the target nucleus and where
_ [ Q1+M; N
Kj_\/l Yo Ts (4.6)

Let F;(£;:15)dE denote the probability that the energy of the neutron after the collision
lies between £ and F+dE. Using (4.4) we have

40, (M, t1) (06 Ey). (4.7)

Fj(E;EO f]((_)c;FO) Sl 1 ec IE —A‘IJK]'ETO J

According to (4.5), the deflection O is determined by the value of £/E,. The joint distribution
of £ and 6 can, therefore, be expressed formally with the use of a Dirac delta function, as

i1y (con 0 MLEL [ MG [T)

B 20, +1) (4.8)
Let th(‘ (luectlon of the neutron before the collision be represented by a unit vector
(sinf, cos e, sind, sing, cosfy), and its direction after the collision by a unit vector (sind
cosg, sinf sing, cosd). Then the cosine of the deflection angle is the inner product of the

two vectors,®
08O =c0sb, cosf-+sinb, sinf cos(gy— ). (4.9)

(The angles ¢, and ¢ are azimuths with respect to the z-z plane.) If we insert (4.9) into
(4.8), mtroduce the abbreviation

1[+1 M:K:—1 [E,
NER w10

cos a 20M 1)

7 For a derivation, see, e.g., Bethe [12].
8 See also figure 5.
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and carry out an azimuthal average with respect to ¢ =¢,—¢, we obtain the scattering
function
H,(E\0;E,,60) =1F;(E; E,) — j de'5(cos By cos 0-F-sin O, sin 6 cos ¢’ —cos a;)
m™Jo
F,(E;E,)
= = I J — (4.11)

S o Nl
m{ cos(a,—0p) — c0s0 } 2 { cosf— cos (a;+6p) } 2

The square roots in (4.11) must not become imaginary, which requires that
cos(a;+0,) <cosl <cos(a;—6b,). (4.12)

In the case of perpendicular incidence (6,=0), the region (4.12) shrinks to a single value
cos a;, and the scattering function becomes

H,(E,0;E,0)=F,(E;E)é(cos 6—cos ;). (4.13)
In the limiting case of grazing incidence (6,=90°), the scattering function becomes
t=] t=) tel ) t=)

- PR .
T +/sin? —cos? a; (4.14)

H,(E, 6; Eo,m[2)=

4.3. Spectra and Angular Distributions

When using the single-scattering results as a guide for interpreting the Monte Carlo
results, it is useful to have the differential albedo with one of the variables integrated out;
1.e., the energy spectrum

,'1(1)( '4‘,' l’;‘ulen) 7"J Sille(/l?;l(l)( 2‘,0;[’;‘().0()), (4]5)
and the angular distribution
A® (6;Eo,0) ;J dEAD (E,0;Fy,00). (4.16)

In the evaluation of these expressions the range of integration must include all values
of 0 for given /£ (or of £ for given 6) for which the condition (4.12) is satisfied. Moreover,
cosf must be negative.  The resultant formulas are somewhat complex.  We give them in
appendix A, confining ourselves here to some qualitative remarks.

The chief characteristic of the energy spectrum is that it is confined to limits which are
wide for the case of hydrogen but very narrow for somewhat heavier nuclei such as oxygen.
The upper limit of the spectrum follows from the condition that the neutron must be deflected
sufficiently to acquire a velocity component in the negative z-direction. This implies, as a
consequence of (4.12), that /£ cannot exceed

. MK — cos? 0,+sin 0'.}” —
TSN 0 G et R o el Y (4.17)
“{ M+1

The lower limit of the spectrum is determined by the conservation of momentum and energy
which implies, according to (4.4), that /£ cannot be smaller than

(MK, —1\
It‘.,m:E< ’WL—)- (4.18
'\ M,+1 )
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The allowed energy regions between FE,,, and Ey;, are indicated in figure 4 as functions of the
obliquity of incidence 6.

The angular distribution cannot be described by any one simple law. For perpendicular
incidence, the distribution follows approximately a cosine law; i.e., it peaks in directions corre-
sponding to perpendicular emergence from the medium. As the direction of incidence becomes
more oblique, this peak tends to disappear. In the limiting case of grazing incidence the angular
distribution becomes flat or may even peak in directions corresponding to emergence parallel
to the boundary of the semi-infinite medium. The angular distribution under these circum-
stances also becomes a sensitive function of the distribution f(6,;E,) of scattering deflections.
For details, see appendix A.
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Ficure 4. Possible energies which a neutron may have if it is reflected after a single scattering.

The allowed energy regions for elastic scattering hold for all FEo, whereas the indicated region for inelastic scattering applies only to Eo=14
Mev and 6.1-Mev excitation.

5. Monte Carlo Method
5.1. Generalities

Although the general principles of the Monte Carlo method are well known,® we give a
brief review to make this paper self-contained. The usual assumption is made that a neutron
undergoing multiple scattering travels in a straight line until it makes a collision with a nucleus,
is then suddenly deflected, travels again in a straight line till the next collision, and so on.
The trajectory of a neutron is, therefore, completely described by a specification of the initial
conditions and of the energies, obliquities, and positions of the neutron immediately after
successive collisions. In the physical process, these characteristics are chance variables whose
probability distributions are determined by the neutron cross sections. The Monte Carlo
method consists of imitating nature by playing a game of chance. With the use of random
numbers, the parameters of model neutron trajectories are calculated according to the appro-
priate probability distributions. Such a procedure is called random sampling, and a neutron
trajectory thus generated is usually called a neutron history.

9 See, e.g., reference [13] for background and bibliography.
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By examining a sufficiently large number of neutron histories, one can obtain statistical
estimates of various transport phenomena. For example, if NV, histories are generated in each
of which the neutron starts at the boundary of a semi-infinite medium, and if in N of these
histories the neutron eventually emerges from the medium, then the ratio N/N,is an estimate of
the number albedo Ay.

5.2. Random Sampling of Neutron Histories

If we let £, 6,, and z, represent the energy, obliquity, and distance from the boundary
immediately after the n’th collision, the neutron trajectory or history can be described by the
array

By, By, . . ., B, .
B, Oy - o oy O . . . (5.1)
Z(), 2], . - ) E,l, .

in which £, 6,, and z,=0 indicate the initial conditions. The history ends when the neutron
is absorbed or reflected from the semi-infinite medium. We have adopted an additional termi-
nation rule in the present work, ending a history when the energy of the neutron drops below
0.5 ev. In order to generate a history, one must proceed from collision to collision, computing
(42, 41,0041,2041) from (£),,6,,2,) recursively by random sampling.

By “random sampling from a distribution f(x)”’ we mean, in principle, the following
procedure. A set of numbers, z;, ,, . . ., is prepared whose frequency distribution is made
to approximate f(x) as closely as possible. One of these numbers is then selected at random
and is called a random variate from the distribution f(z). It is, in fact, sufficient to prepare
only a single set of random variates, from a uniform distribution f(z)=10<z<1). These
numbers, distributed uniformly between zero and one, are called random numbers.  When
suitably manipulated they can be made to yield random variates from any distribution, as
shown below.

In a machine calculation requiring many random numbers it would be awkward to prepare
and store a large set of random numbers. Instead, it is customary to use so-called pseudorandom
numbers which are generated systematically but have, nevertheless, sufficient randommess
for Monte Carlo calculations.  We have employed the method of congruential multiplication®
in order to produce a sequence of pseudorandom numbers

gl) EZ, LIS gn, oo e (;).2)
These numbers are fractions (between zero and one) which are obtained by normalizing a set
of integers z,,

&-":2—35.1.”. (’.)3)

The integers, in turn, are obtained from the following recursive scheme:

To—C
_ . (5.4)
Lpy1= 5%, mod 2"",}

where ¢ and £ are odd integers. The last equation states that x,,, is congruent to 5%, modulo
2% in other words, that x,., is the remainder obtained upon division of 5%z, by 2%. In the
course of our Monte Carlo calculations we have used three pseudorandom number sequences
of the type (5.2), with k=11, 13, and 15. This will be discussed more fully in section 5.4.

10 See, e.g., the article by J. Todd in reference [13c].
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It can be proved (see app. B) that the sequence (5.2) contains 2* different numbers which
are distributed with uniform density between zero and one. The successive random numbers
used in the Monte Carlo calculation have been obtained by picking successive numbers in the
pseudorandom number sequence (5.2). This is equivalent to a random choice, because the
pseudorandom number sequence closely resembles a true random number sequence in the sense
that there is no noticeable correlation between successive numbers. This lack of correlation
has not been proved, but is an empirical fact that can be demonstrated by statistical tests.
In appendix B, section 9, we present the results of such tests for 237,000 pseudorandom numbers
actually used in our calculations.

One procedure for selecting a random variate z from a distribution f(z) by the manipulation
of random numbers depends on the possibility of finding a random variate y(z) which is dis-
tributed uniformly between 0 and 1. We let

4= | fayas, (5.5)
xr
i.e., y(x) is the cumulative probability distribution associated with f(x). Note that
probability {y<(y’ } = probability {x>z(y’) } :J f@")de' =y, (5.6)
z(y”)

so that y is equally likely to have any value between 0 and 1. We therefore identify » with a
random number £ and determine a random variate x by inverting the equation

- fm e 5.7)

'

A second method, called the “rejection technique” applies to distributions with a finite
range, say 0 <z<a. Lt L be the maximum of f(z). The sampling procedure consists of the
following steps. First, two random numbers, say & and &, are selected. If L& <f(af) we
chose the number ag, as a random variate from f(x). If L& >f(a&,), we reject the random num-
bers & and & and repeat the testing process with a new pair of random numbers. The
justification for this selection procedure is supplied by the observation that

et o . . - . ThCET J(x) -
probability {acceptance of r=a¢, } =probability { L& >f(ag)}= (lg2=7;- (5.8)
0

The average number of random number pairs that must be tested before finding an acceptable
random variate is given by
1

7 ), stasne,
2 Jo

We shall now deseribe the actual sampling procedure for generating a neutron history;
i.e., the rule for going from (%,,6,,2,) to (£,.1,0,41,2n11)-

a. Location of the Next Collision

The probability distribution of z,., is

l 1 _ifl-:n 1
_ ; o)
o= S A E) — — cos b, N(Ey), 5.10
NE,) NE,) (5.10)
where
___Zn—i-l'_"zn
R (5.11)
n
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is the pathlength traveled by the neutron between the nth and n-1st collision. The distribu-
tion (5.10) is derived from the assumption that the spatial distribution of target nuclei is random
and that the probability of a collision per unit pathlength is 1/X(£,). Applying the cumulative-
probability method, we select a random number &,, and determine s, from the equation

L) (/\A
= o~ SINER) ' =g Satt/MNEY) (5 ]‘))
i ) - . 5812
J N[,

£ H/}\(h‘n)

The pathlength determines the position of the next collision, which is given by

Znp1=2n 1 080,811 =2, — cost,\([,) log &.. (5.13)
b. Type cf Collision

The probabilities p,;(j=1, 2, 3, 4) for the occurrence of each of the four possible types of
collisions are given by (3.4), (3.5), (3.6), and (3.7). To make a random selection, we divide
the region between 0 and 1 into four intervals proportional to the probability for each process.
A random number & is then picked and the type of collision is determined by the interval into
which & falls:

0<&<p . elastie seattering from hydrogen
<& <pitp . elastic scattering from oxygen
Pt P& S i+ potps ¢ inelastic seattering from oxygen
prt Pt ps<Es <pit patpstpi=1 : absorption.

c. Energy Loss

If the n+ 1st collision results in a scattering, the energy of the neutron is changed from /7,
to 1, according to the single-scattering law (4.7); i.e., the probability distribution of 77, is

(M;+1)2

](VJ(ICH%»I; 1"’//)__‘-2 A\[j [\—/ 1':”

’/(()4. n-l-l; 14;:1)) (514)

where

COS O¢, yi1= (M1 7):1(:)" {[I;\:I];M‘h[&a = (5.15)
2M ;K ;E,

The choice of the energy loss can be made indirectly through the choice of the center-of-mass
deflection 0,,,.  When the distribution of deflections is isotropie (for collisions of type 1 and
3), we set

cos O p1=28—1, (5.16)

where £, is a random number. For elastic scattering from oxygen, the angular distribution is
anisotropic and is given by the Legendre expansion (3.9). In this case it is convenient to use
the rejection technique.  Provisionally, a deflection angle is chosen according to (5.16). An
additional random number, 5;”, is then selected and a test is made to determine if

folcos™!(28,—1);E,} > L(E,)E,, (5.17)
where L(£,) is the largest possible value of /,(0.;#,). If the inequality (5.17) is satisfied, the

provisional random variate given by (5.16) is accepted; if not, the selection procedure is re-
peated with two new random numbers."

11 Using formula (5.9), noting that the range of the angular distribution (in cos© ,) is a==2, and using the differential cross sections as shown in
figure 3, we find that the average number of random number pairs that must be tested to make a selection has the following values: 6.8 at 14
Mev, 4.3 at 9 Mev, 2.2at 6 Mev, 2.6 at 3 Mev, 2.8at 1 Mev, and 1.03at 0.3 Mev. The sampling efficiency at higher energies could be improved by
more elaborate schemes, but we have not considered this worthwhile. .
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d Chang: cf Obliquity

The preseription for selecting the obliquity after the n--1st collision can be obtained in
two different ways: by a direct geometrical argument, or by an application of the scattering
function derived in section 4. Starting with the latter, we note that, according to (4.11) the
probability dist,ributionjof 8, (for fixed O,,., and 6,) is given by

1
, : - (5.18)
m{cos(a;,—0,)—cos0,.,}2{cosb, ;—cos(e,,+0,)}2
where
M,+1 ‘/F o M:K:—1 [E .
S e nt1__ n 019
cos a,, 5 £, 20641 VE.. (5.19)
and
cos(a;,+0,) <cosb, < cos(a;,—0,). (5.20)
Applying the cumulative-probability method, we pick a random number, &, and set
: 1 (intba sinfdo
__5647; ff)n+1 {Cos(a]'n_an) _COSB}% { cosf—cos (an+01n) }JZ
1 —c in C
L 005_1{0050,,#1 cosay, <os(9n}_ (5.21)
™ sinay, sing,
The inversion of this equation yields the rule for calculating 6,.;:
€080, 1=08a;,c0s 0,-sina,, sinf, cos(r;). (5.22)

The geometrical derivation goes as follows. Let 6,,; be the polar deflection and x,;; the
associated azimuthal deflection in the laboratory system, resulting from the n--1st collision.
w1 is assumed to be measured with respect to a plane that contains the z-axis and the direction
of motion of the neutron before the n-1st collision.) The various deflection angles and
obliquities form a spherical triangle that is sketched in figure 5. The application of the law
of cosines to this triangle yields the relation

€080, 1=0080,; c0s8,+sInO,; Sinfd, COSxY,11. (6823)
NEUTRON DIRECTION
z -DIRECTION AFTER h'th COLLISION
A

NEUTRON .DIRECTION
AFTER n+l'st COLLISION

POINT OF hsl'st
COLLISION

Fiqure 5.  Spherical triangle illustrating the kinematics of a neutron scattering.
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Now, according to (4.5) and (4.10), 6, is identical with «;,. Furthermore, it can be assumed
that the azimuthal deflection angle x,, is distributed randomly between 0 and 27, so that it is
legitimate to replace cosx,; in (5.23) by coswés, where & is a random number. Thus (5.23)
is in fact identical with (5.22).

5.3. Albedo Estimates

The estimate of the number albedo Ay involves merely the determination of the fraction
N/N, of the number of histories that end in reflection.” To obtain an expression for the
statistical error of such an estimate we shall be somewhat formal and assign to each sampled
history a ‘‘score” R, which has the value 1 in case of reflection and is 0 otherwise. Thus, 2 is
a random variable which assumes the value 1 with probability Ay and the value 0 with proba-
bility 1— Ay.

The mean value of R is

R=An14+(1—Ay)-0=Ay (5.24)
— 3
and its variance (defined as *— R ) is
var R=Ax(1—Ay). (5.25)

Suppose now that we sample and examine N, histories with scores R, R, . . . Ryo. An esti-
mate of the number albedo is given by the average score

N o
N—N (111+112+ +Il\v> ﬁ (3)26)
The variance of this estimate® is
var A¥=-=var In’*—l-—zlv(l —Ay). (5.27)
Ao Ny

An estimate of the energy albedo can be obtained by multiplying the number albedo
estimate N/N, by the quantity 1'/14,, where /4 1s the average energy of the reflected neutrons.
More formally, we assign to each history a score 7" which is equal to ££/F, in case of reflection
and which vanishes otherwise. The random variable 7" has the mean value

4
[—ANE (5.28)
and a variance
var T=T— TQIJ%, (AyE— AZED). (5.29)
0

An estimate of the energy albedo is provided by the average score

L] . : TZ -
‘1E:77 (T1+[2+ . +] ) Ar (e)..,i())
4V0
The variance of this estimate is
1 T2 2 —72
var 41;:m,6; (4‘11\' ’42*4‘1:'\'[4 )
o (£ var R+ Ay var E ). {5.31)

No

12 Crude estimates of the differential albedo can be obtained by counting the neutrons that are reflected with energies and obliquities in speci-
fied energy-angle intervals. The statistical accuracy of such estimates is given by formulas analogous to those for the number albedo.

13 Actually one does not know the exact value of Ay, but an estimate of var (A%) is obtained through replacing Ay in (5.27) by Ay, and No
by No—1 in order to make the estimate unbiased.
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The two terms contributing to this variance are both non-negative. The first arises from
fluctuations of the number of reflected neutrons and the second from variations of the energies
of the reflected neutrons.

The significance of the variances var A% and var A% must be interpreted with reference
to the probability distributions of Ay and Aj. Both of these quantities are the averages of
N, identically distributed independent random variables. According to the central limit
theorem of statistics [14] their distributions approach a Gaussian distribution in the limit of
large N,.** One can therefore make the following statements about the deviations of the

albedo estimates from the true albedo values:
. N
Af—Ag| >kyvar A} =+ /= e
™ Jk

5.4. Correlated Random Sampling

Probability { | AF— Ay| >kyvar A%} =Probability {

(5.32)

To establish the dependence of the albedo on the assumed conditions (source energy and
obliquity, collision cross sections, ete.), it is better to use a difference method than to make
two or more separate calculations. The difference method can be designed to eliminate
irrelevant statistical fluctuations, by keeping constant all random elements in the calculation
which are not affected by the change of assumed conditions. Thereby greater accuracy can
be achieved with a given amount of computation.

We recall from section 5.2. that the following random numbers specify the nature and
outcome of a collision: &, determines the quantity s,./N(#,) which is the distance (in mean
free paths) traveled by the neutron between the previous collision and the collision under
consideration; & determines the type of collision; &, and, for anisotropic elastic scattering
from oxygen, additional numbers £, &7, .. . determines the center-of-mass deflection 0, ,;
finally, & determines the azimuthal scattering deflection x,.;. The above characteristics,
together with the initial conditions, specify a history completely.

Suppose now that we want to make a direct determination of the difference in the albedo
brought about by a change of the obliquity of the incident radiation. We can do this by
generating simultaneously two correlated sets of histories, one set with one initial obliquity,
the second set with another. The sets should be correlated in the sense that for each history
in one set there exists a counterpart in the second set in which exactly the same random numbers
are used for determining the outcomes of corresponding collisions. Thus two matched
histories are alike, except that one of them is “rotated with respect to the other” and may
be shorter because of the different initial obliquity. We call this case one of maxrimal cor-
relation.’

In order to find out how a change in the assumed cross sections affects the albedo, we
may again generate two (or more) correlated sets of histories, using identical random numbers
for corresponding choices. Then two matched histories will at least be identical in regard to
the distances (in mean free paths) between successive collisions, and in regard to successive
azimuthal deflections. However, energy losses in corresponding collisions may be different.
Consequently all the parameters of a history which depend on the energy may also be different.
We call this case one of partial correlation. Even in this case, the use of identical random
numbers tends to minimize accidental differences.

It is most economical, but not absolutely necessary, to generate several correlated sets
of histories simultaneously. In the present work we wanted to compare the albedo under
many different conditions, and used the neutron histories also for the solution of other prob-
lems, so that simultaneous computation of all correlated histories was not practicable. We

14 In fact, the distribution of A4 is the No-fold convolution of a binomial distribution with itself, and is very closely approximated by a Gaussian
even for Np as low as 10. The numerical results for the energy albedo indicate that the distribution of A} is a reasonable approximation to a
Gaussian for Ne~100.

15 This case also arises in the comparison of the reflection of neutrons after 1, 2, . . . » collisions.
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therefore had to devise a technique for doing separate but correlated calculations.  This was
facilitated by the use of pseudorandom number sequences, which according to (5.3) and (5.4),
are completely determined by a “starting value” ¢ and a “multiplier”” 5%, and can be conven-
iently regenerated provided we remember these two parameters

The number of different random numbers required to generate two histories is usually
not the same, even when they are correlated. 1In the first place, even in the case of maximal
correlation, the two histories will tend to differ in length. Secondly, in the case of partial
correlation there is a statistical variability in the number of random numbers £, &7
that may be required to select a scattering deflection by the rejection technique, according
to (5.17). Thus it could happen that in spite of the use of the same pseudorandom number
sequence (with the same ¢ and k), different portions of this sequence would be used for
supposedly correlated histories. This difficulty was circumvented by the use of many
sequences of pseudorandom numbers instead of just one. A primary sequence was introduced
with an arbitrary odd starting value ¢ and a multiplier 5.  Successive members of the primary
sequence were then used as the starting values of secondary sequences generated with a

multiplier 5. Successive secondary sequences were used for the calculation of successive
histories.  When the need arose for random sampling by the rejection technique, the requisite

-andom numbers €7, £7 .. . were obtained from a tertiary sequence. The tertiary sequence

used a multiplier 5%, and a starting value equal to the last member of the secondary sequence
currently being used.'

We now discuss the effect of correlated sampling on Monte Clarlo estimates of AIAV—ATX and
;l,,;—;T,,,, where Ay and <z are albedos under condition 1, and ‘T‘\v and <~l, the albedos under
condition 2. Proceeding as in section 5.3, we assign to histories generated under condition 1
the scores 2 and 7, and to the histories generated under condition 2 the scores Fand T. Albedo
differences can then be estimated as follows:

AF— A= {(R—R)+Ry— )+ . . . +(Ryy— Ry}, (5.33)

\
Ap— A= f('ll—llwf T+ ... +(Twy— Ty} (5.34)

The variances of these difference estimates are

var (A¥— l*) { ar R— Hp(lu’,lt’)\//\jnirwla’ var I} + var IT’J (5.35)
v,n (44 AE)V?\— {var T—2p5(T, T)\/\ ar—]?\:r[—k\ar T} (5.36)

The quantity
o (R — RE-R-I (5.37)

\/vm Rvar I}

is the correlation coefficient of R and R.  Similarly,

V’V /[Y /IV
pu(T, ’l') o I = (5.38)
‘yvm' I’\:Lr T

o

16 We have set ky==11, ko=15, and k3=13.
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is the correlation coefficient of 7 and 7. For uncorrelated pairs of histories, the correlation
coeflicients vanish. The objective of correlated sampling is to reduce var (A;éf—zﬁ“v) and var

(Af— A% by making the correlation coefficients positive and as large as possible.

The magnitude of the actual correlation coefficients must, in general, be estimated from
the sampled data, and some typical values will be given in section 7. It is possible, however,
to put a theoretical upper limit on p(R,f?). Using (5.25) and (5.37) we find that

RR— Ay,

p(R, )= L - (5.39)
'\/AN(l_AN)AN(l_AN)
Without loss of generality we may assume that A~N§ Ay,
Therefore
probability { R=1 and R=1}<probability{ F=1}= Ay, (5.40)
so that
RE<A,. (5.41)
Accordingly the correlation coefficient must obey the inequality
~ Te(1—Ay)
p([f,]f)ﬁ\/ii,wzv)gl. (5.42)
Ay(1—Ay)

The greatest possible value of p(]{,ﬁ) corresponds to the case of maximal correlation discussed
above. It leads to a reduction of var (Ay—AY) by a factor

%
1— —
[37N+1_AN (5.43)
Ay 1—Ay

6. Computations and Results

6.1. Machine Computations

The Monte Carlo calculations were programed for the IBM-704 computer at the National
Bureau of Standards.'” The neutron histories, generated in order to determine the albedo,
were concurrently used for the calculation of the neutron flux in infinite media and in slabs,*®
so that it is difficult to state how much computer memory and computing time were required
for the albedo problem alone. Altogether, a little more than 5,000 words of magnetic core
memory were required of which not less than one-third were allocated to the albedo problem.
For each case treated, 3,000 neutron histories were generated and analyzed. This amount of
computation gave the desired accuracy and required approximately 45 min of computer time.
Not more than half of this time was required by the albedo problem. The use of magnetic tapes
was not necessary, but was an optional device for storing the results of one machine run and
combining them with the results of a later run. Intermediate print-outs of the results were
made after groups of 1,000 histories had been processed, in order to follow the course of the
computations and to have a check on the performance of the computer.

In line with the exploratory nature of the investigation, the machine program was kept
flexible. This made possible the exploration of new aspects of the problem as they emerged in

17 The program was based in part on an earlier code [15] developed at the Westinghouse Atomic Power Division. The authors are indebted to
Dr. B. H. Mount and Mrs. Heidi Kuehn who very graciously made their code available to us.
18 To be reported in a later publication.
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the course of the work. In the simplest version of the program only elastic scattering from
hydrogen and oxygen was taken into account, and the print-out of results was limited to tables
of the differential albedo. In the latest version all relevant collision cross sections were in-
cluded, and much additional information was printed out that had been found necessary for an
understanding of the physical and statistical significance of the Monte Carlo results. This
additional information included the mean and mean square energy of the reflected neutrons,
the contributions of different orders of scattering to the number albedo and energy albedo,
listings of the particular histories in which reflection occurred and of the energies of the reflected
neutrons, and a statistical analysis of the pseudorandom numbers used. Intermediate versions
of the program yielded only some of this information.

The analytical formulas for the single-scattering albedo, developed in section 4, were used
mainly for the interpolation of results, and single-scattering computations were done with the
Monte Carlo code. This was simpler to do once the machine program was available but slightly
less accurate.

Altogether 38 different cases were treated which are listed in table 6.1. This table contains
the source energy and obliquity as well as a brief indication of the assumptions about the cross
sections. The computations fall into two groups: 30 cases were done with one set of pseudo-
random numbers (analyzed in app. B), and the remaining 8 cases with another set. A high
degree of correlation was introduced by the repeated use of the same set of pseudorandom num-
bers in order to increase the accuracy of intercomparisons. We believed this to be a sound
procedure, because the set was large enough (consisting of approximately 237,000 numbers)
to be statistically representative.

TasrLe 6.1. Summary of calculations

The entry in the left column serves as index to the differential-albedo tables in appendix C. Each result for the number albedo Ay and the
energy albedo A g is based on the analysis of 3,000 neutron histories, with 64 x and 64 g indicating the statistical standard deviations. All runs
were done with the same set of pseudorandom numbers (described in app. B), except the runs indicated by an asterisk (*) which were all done with
another set of pseudorandom numbers.

Table Eoy(Mev) l 0, ‘ A e 6A N ! A . ‘ 8A B Assumptions
ST S S (S — | — — — e ——_—
0.3 0° 0. 296 0. 008 0:0480 o2 o oos o (6D
None 1 0° . 370 . 009 (S135) | SNEOERE ()
2a 1 0° . 361 . 009 (GILLS) | ST (*); elastic scattering from oxygen assumed isotropic.
2b ‘ 1 0° 381 . 009 . 148 0.005 |
2¢ 1 0° L1113 . 006 091 | Single scattering.
3a ’ 1 45° . 450 . 009 LU | ———
3b 1 45° 114 . 006 SOSh | S —— Single scattering.
4a 1 60° . 518 . 009 S0 50 N | NN —
4b 1 60° . 142 . 006 L099 | Single scattering.
ba 1l 75° . 619 . 009 .241
5b 1 75° .213 . 007 .144 Single scattering.
6a 1 90° L 767 . 008 S41 53| SrETTEe—
6b 1 90° . 493 009 V34T | Single scattering.
7a 3 0° . 061 . 004 2023 3| U 2-cm slab; see section 7.9; (*).
7b 3 0° . 131 . 006 MOSR B A 5-cm slab; see section 7.9; (*).
7c 3 0° . 163 . 007 044 |- ___ 10-em slab; see section 7.9; (*).
None 3 0° 168 007 (044) |- *).
8a 3 08 . 178 . 007 (2040 N (*); elastic scattering from oxygen assumed isotropic.
8bh 3 0° . 167 . 007 .041 . 003
8¢ 3 0° 028 . 003 (23— Single scattering.
9a 3 45° . 232 . 008 ~ (052 S |SEREE s
9b 3 45° . 035 . 003 50235 HETEE Single scattering.
10a 3 60° 315 008 (.080) |-ccoeee
10b 3 60° . 066 . 005 (039) | oo Single scattering.
11a 3 75° . 472 . 009 {7 ) R
11b 3 75° . 143 . 006 17 R Single scattering.
12a 3 90° .728 . 008 (@21 R
12b 3 90° L 480 . 009 (.290) | oo Single scattering.
13 3 @) . 371 . 009 (G5 10) ) E—
14a 6 0° . 157 . 007 . 052 .003
14b 6 02 L 171 . 007 . 059 .004 | Absorption disregarded.
15a 9 0° . 107 006 . 027 .002 | Excitation of 6.1-Mev level in oxygen by inelastic scatter-
ing.
15b 9 0° .138 . 006 .041 .003 | Absorption disregarded.
15¢ 9 02 . 131 006 %0470 | DEmr Absorption disregarded. Inelasticscattering from oxygen
treated as elastic.
16a 14 0° . 124 . 006 . 040 .003 | Excitation of 6.1-Mev level in oxygen by inelastic scatter-
ing.
16b 14 0° . 163 . 007 . 038 .002 | Elastic scattering from oxygen assumed isotropic; excita-
tion of 6.1-Mev level in oxygen by inelastic scattering.
16¢ 14 (0 . 165 . 007 .079 .004 | Absorption disregarded. Inelastic scattering from oxygen
treated as elastic.
16d 14 0° . 064 . 004 .023 | .002 | Inelastic scattering treated as absorption.

(1) Isotropic source.
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6.2. Differential Albedo

Tables 1 to 16d of appendix C contain the Monte Carlo results for the differential albedo
in the form in which they were printed out by the computer. The number of reflected neutrons
(for Ny=3,000 neutrons) is given in a two-way classification according to the spectral energy,
F, and the cosine of the obliquity of emergence, cos . By normalizing the entries in the tables,
i.e., by dividing through by N, one obtains an estimate of the differential albedo averaged over
a small energy-angle interval. Unnormalized numbers are given in the tables in order to pre-
serve their statistical significance, the standard deviation of each entry being proportional to its
square root. The energy classification is divided into 10 intervals, labeled i=1, 2, ... 10, such
that the 7th interval pertains to neutrons with energies between (11—7)/10/, and (10—17)/10£,.
The last interval extends from 7;/10 to 0.5 ev rather than to zero energy. The obliquity
classification is also divided into 10 intervals, labeled k=1, 2, ..., 10, such that the kth
interval pertains to neutrons with obliquity cosines between (1—£)/10 and —£/10. Two sets
of margimal totals are also given which represent the angular distribution integrated over all
energies, and the spectral distribution integrated overall directions, respectively.

6.3. Number Albedo and Energy Albedo

Table 6.1 contains all the results obtained for the number albedo Ay and the energy albedo
Ag' The number albedo was obtained by adding the marginal totals in the corresponding
differential-albedo tables and dividing the result by Ny=3,000. The energy albedo was obtained
as the product of the number albedo and the average energy £ of the reflected neutrons. In
most of the calculations A, was computed directly in the course of the machine calculations.
In some of the earlier cases, Z had to be estimated from the differential-albedo tables.?? Nu-
merical experimentation indicated that such estimates could be made with an accuracy of
approximately 1 percent. Values of the energy albedo based on such estimates of /£ are indicated
in table 6.1. by being placed in parentheses.

The standard deviations BAN~\/VM' Ay and BAEZ\/ rar Ay are also shown in table 6.1-
They were computed according to (5.27) and (5.31), respectively. The determination of 5.4,

required knowledge of £ as well as of E% Accordingly, 64, is given only for those cases in
which £ was obtained as direct output of the machine program. The relative standard devia-
tion 6Ay/Ay, obtained with 3,000 histories, is of the order of 0.05. The corresponding relative
standard deviation 64,/A,, in the cases examined and presumably also in the other cases, is
roughly 1% times greater than 6Ay/Ay.

7. Analysis of the Results
7.1. Single-Scattering Contribution to the Albedo

Table 7.1 contains asummary of theratios A% /Ay and A% /A, for various cases. In general,
single scattering contributes about 20 percent of the number albedo and more than 50 percent
of the energy albedo. The contributions are particularly large at 1 Mev, because at this energy
the ratio of the scattering cross section of oxygen to that of hydrogen is large, and the differential
oxygen scattering cross section has a peak in the backward direction.

1 In sec. 5.3. the albedo estimates were indicated by A*y and A*g in order to distinguish them from the true values Ay and 4g. In the

following, we shall ignore this distinction and simply use Ax and A g to label the Monte Carlo results.
*

E
2 The most accurate estimation procedure was found to be one based on the “cumulative albedo’ f dE’ sinbdo A(E’,0; Ey,0), which can
0 x/e
be obtained from the differential-albedo tables for E:=i/10Fo, i=1, 2. . . . 10, and by interpolation for other values of Z. It was also necessary to
take into account the characteristics of the spectrum of the single-scattering albedo, in order to obtain good accuracy.
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The estimation of the albedo ratios 1s a problem with maximal correlation as defined in
section 5.4. We have estimated the standard deviations of these ratios in a few typical cases
and find, for example, that A /Ay=0.304+0.03 and A, /A,=0.61+-0.02 for E,—1 Mev
and 6,=0°.

The ratio A’ /Azis arelatively slowly varying function of the source energy, whereas A}’
and Ay separately vary rapidly. This suggests that the energy albedo for arbitrary energies
could be obtained with fair accuracy by combining a single-scattering calculation with an
interpolated value of A} /Ag.

TasLe 7.1. Ratio of single-scattering albedo to total albedo. (The results for 6, 9, and 14 Mev correspond to cases
1ja, 15a, and 16a, respectively, as listed in table 6.1).

1y (D 1g
TAx L
8 — B I —
AN [ [
> 0° 45° 60° 75° 90° 0° | 45 60° 75° 90°
Ec \
(Mev) |
0.3 0.11 0.3 0. 54
1 .30 0.25 0.27 0. 34 0. 64 1 . 61 0. 54 0. 54 0. 60 0. 84
3 (it .15 .21 .30 .66 3 .55 .45 .48 .58 .85
6 22 6 5
9 il 9 42
14 <27 14 50

7.2. Contribution of Higher Orders of Scattering

Figure 6 shows the contributions of successive orders of scattering to the albedo for a few
typical cases. As many as twenty orders are shown to contribute to the number albedo,”
whereas only about five orders contribute significantly to the energy albedo. The relative
importance of the first few orders of scattering inereases with the source obliquity and energy.
In general, an analytical orders-of-scattering approach does not seem to provide a practical
alternative to a Monte Carlo calculation. The contribution of the second order of scattering
is not sufficient for a precise albedo determination, and calculations for the higher orders would
be prohibitively complex.

7.3. Energy Spectra of Reflected Neutrons

-

Figure 7 contains histograms of the energy distribution of reflected neutrons for incident
1-Mev beams with various obliquities. The contributions of single scattering and multiple
scattering to the spectra are indicated. The spectra are characterized by two rather sharp
peaks: one, primarily due to single scattering, occurs at the upper end of the spectra; the other,
due to multiple scattering, at the low-energy end. The single-scattering contribution can in
turn be resolved into two components, due to scattering from oxygen and hydrogen. For
perpendicular incidence, only single-scattering reflection from oxyvgen occurs. As the source
obliquity is increased, hydrogen scattering becomes possible, and the oxygen contribution is
shifted toward higher energies. At 45° and 60° the oxygen and hydrogen components are
clearly separated, whereas at 75° and 90° they merge. In the limiting case of grazing incidence
there is a hydrogen component distributed uniformly over all energies, and an oxygen component
which gives rise to a peak at an energy slightly below the source energy. Further details about
the oxygen single-scattering contribution can be obtained from appendix B (fig. 15). The
energy spectra for other cases are similar to those shown in figure 7 and can be obtained from
the tables in appendix C.

21 Some contributions from orders beyond the twentieth would have occurred if our calculations had not been cut off at an energy of 0.5 ev.
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Ficure 6. Contributions of successive orders of scattering to the albedo.

7.4. Angular Distribution of Reflected Energy

Figure 8 shows plots, in histogram form, of the quantity
Ey E
(65 Eoy00)— | "ACE, 0; 1 0 2 (7.1)
0 0

for £y=3 Mev and various values of 6,22 The angular distribution is dominated by the single-
scattering contribution. In particular, it should be noted that for large source obliquities the
distribution does not follow the cosine-law which holds for perpendicular incidence and has
often been assumed to be universally valid. Rather the emerging radiation tends to peak for
c0s§=0; i.e., in directions parallel to the boundary of the semi-infinite medium. This is due to

22 The histograms are a somewhat crude estimate of the angular distribution, because each angular element was obtained by multiplying the

d‘!}:’l‘erenltial element of the corresponding table in app. C by the midpoint of the appropriate energy interval and then summing over-all energy
ervals,
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FiGUure 7. HEnergy spectra of reflected neutrons.

The shaded areas indicate the contribution of single-scattering. Source energy 1 Mev.

the behavior of the single-scattering component. For E;=3 Mev and 6,=90°, we find from
eq (A.21), (A.22), and (A.24) of appendix A, and from the cross sections given in figure 2, that

A ~0.049(1.0041.05 sin 2 4-+7.14 sin * 9), (7.2)
which is in agreement with the Monte Carlo calculations.

7.5. Dependence of Albedo on Source Energy and Obliquity

The dependence on the source energy is irregular. It is correlated with the complicated
energy-dependence of the attenuation coefficient for water, and is further influenced by the
relative probabilities for scattering by hydrogen and oxygen, and by the energy-dependent
anisotropy of elastic scattering from oxygen. Just like the attenuation coefficient, the number
albedo and energy albedo have a peak at 1 Mev where they are 2 to 3 times larger than at the
other energies considered. The correlation between attenuation coefficients and albedo is
complicated, however, by the interaction of the various factors, so that interpolation with
respect to source energy is not easy, and is perhaps done best by the single-scattering analysis
indicated in section 7.1.%

2 For the analysis of an albedo experiment with a broad source spectrum (such as the Po-Be source used by Strickler, Gilbert, and Auxier

[16]), it might be preferable to make a Monte Carlo calculation with a realistic source spectrum instead of combining the results of calculations for
monoenergetic sources.
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Ficure 8.  Angular distribution of reflected energy.

Source energy 3 Mev. A single-scattering curve for fp=90° is shown which corresponds to eq (7.2).

The dependence on the source obliquity is smooth and interpolation should be easy. By
way of example, figure 9 contains curves of Ay and A, as functions of 6, for source energies of 1
and 3 Mev. All four curves shown have similar shapes, starting out with a rather flat slope
near 6,=0° and rising very steeply near 6,=90°. The closer 6, is to grazing incidence, the
smaller are the differences of the albedos for different source energies.

7.6. Effect of Absorption and Inelastic Scattering

If absorption were disregarded, the number albedo at 6 Mev would be increased by 9 per-
cent and the energy albedo by 13 percent. At 9 Mev, the corresponding increases would be 29
percent and 52 percent, respectively. The effect of absorption is greater on the energy albedo
than on the number albedo because the relative probability of absorption is an increasing func-
tion of the energy (up to 14 Mev). The effect of absorption on the energy spectrum is shown in
figure 10.  Although the effect is large, it introduces no large uncertainty into the calculations
because the cross section for n—a and n—p processes are reasonably well-known.

The effect of inelastic scattering is more difficult to determine because so little is known
about the cross section for this process. We have made computations under three different
assumptions: (1) Absorption taken into account, inelastic scattering assumed to excite oxygen
to alevel 6.1 Mev above the ground state; (2) absorption taken into account, inelastic scattering
also treated as absorption; (3) absorption disregarded, inelastic scattering treated as if it were
elastic.

As has been discussed in section 3.2, assumption (1) is presumably the most realistic.
Assumption (3) is the least realistic and has been included mainly because it has often been made
in previous neutron transport calculations. Assumptions (1) and (2) are limiting assumptions
in the sense that they allow for the minimum and maximum possible energy loss that a neutron
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Fieure 10.  Reduction of energy spectrum due to absorption, indicated by shaded areas.

Perpendicular incidence.
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could suffer in an inelastic collision. The albedo calculated on assumption (3) is almost twice
as great as that calculated on the realistic assumption (1), whereas the albedo calculated on
assumption (2) is only about half as large. These extreme variations point up the need for
accurate knowledge of the inelastic scattering cross section.

The energy spectra obtained with a 14-Mev source under the three assumptions are shown
in figure 11. The spectrum in case (1) shows three peaks, due to elastic single scattering, in-
elastic single scattering, and multiple scattering. The inelastic scattering peak disappears in
case (2) and merges with the peak due to elastic single scattering in case (3). More accurate
treatment of inelastic scattering would probably give a spectrum similar to that of case (1), but
with the middle peak reduced in size and “smeared out” over the lower part of the spectrum.

: : i e e
7]
045 = - = -
L] 1
(i) (i) 3 7] i)
7]
A(E) g
02H] - 2 . £ -
.
Ol - 7 - 7 -

O%Ill a1 004 11111/
.

0 70 140 0 70 140 0 70 Ko
E, Mev

Ficure 11. Effect of inelastic scattering on the energy spectrum.

Source energy 14 Mev. Histograms (i), (ii), and (iii) correspond to the different assumptions in sec. 7.6, and were obtained from tables 16a
16d, and 16¢c of app. C, respectively. Perpendicular incidence.

7.7. Effect of the Anisotropy of Elastic Scattering

The differential elastic scattering cross section is not well-known for most elements. Tt is
therefore of interest to know how much the albedo would be changed by a change of the assumed
distribution of elastic scattering deflections. To explore this situation, we have compared the
albedo calculated with the best available cross sections for oxygen (reference [9], see also fig. 3)
with the albedo calculated on the assumption that the elastic scattering deflections from oxygen
are isotropic in the center-of-mass system. The difference between the two assumptions is
greater than any expected realistic modification of the oxygen cross sections. Comparisons
were made for source energies at 1, 3, and 14 Mev. At 1 Mev, Ay is decreased by 2.5 percent
and Az by 11 percent. Finally, at 14 Mev, Ay is increased by 31 percent, whereas Ay is de-
creased by 5 percent. In figure 12 the spectra obtained under the two different assumptions
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Fiaure 12,  Effect of anisotropy of elastic scattering from oxygen on the energy spectrum.

Perpendicular incidence.

are compared. There is relatively little change, the main effect being a shift of the single-
scattering peak toward higher energies in the case of isotropic scattering.

The albedo differences quoted above were obtained by correlated sampling (case of partial
correlation). A listing of all significant statistical parameters for the comparison at 14 Mev is
given in table 7.2 from which it appears that by means of correlated sampling an accuracy was
achieved that would have required a sample size 3 to 4 times as large with ordinary sampling.

TaBLE 7.2. Estimate of albedo difference by correlated sampling

Source energy 14 Mev, perpendicular incidence. Elastic scattering from oxygen assumed to be anisotropic in case 16a, isotropic in case 16b.

Number albedo: Energy albedo:
Ay, case 16a, A, case 16a,
An, case 16b, Ag, case 16b,
An—Ax=0.0392:0.005 (with correlated sampling), Ag—A g=—0.0012-:0.0016 (with correlated sampling),
=+0.009 (without correlated sampling), +0.0033 (without correlated sampling),
Correlated sampling increases effective sample size by factor 2.9, Correlated sampling increases effective sample size by factor 3.9,
Correlation coefficient p=0.664, Correlation coefficient pg=0.771.

Maximal correlation coeflicient pmax=0.853,
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7.8. Low-Energy End of the Spectrum

Details of the low-energy part of the spectrum were obtained as a byproduct of the detailed
information obtained for the statistical analysis of the correlated calculations at 14 Mev.
Figure 13 shows a plot of the spectrum on a logarithmic scale which emphasizes the low energies.
The spectral shape at low energies is quite similar to that obtained by Spinney [5] who calculated
by age theory the albedo for 2-Mev neutrons incident on concrete. This suggests that com-
putations of the spectrum down to very low energies could advantageously be done by a
combination of Monte Carlo and age theory, with Monte Carlo covering the energy region
not very far below the source energy in which age theory does not apply.

.08 =

05 |~ —

A(E)

.03 [~ ]
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6
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Fraure 13. Energy spectrum of reflected neutrons on semilog scale.

Source energy 14 Mev, perpendicular incidence.

7.9. Slab Albedo

The deeper a neutron penetrates into the medium, the smaller is its chance of returning.
Therefore, the collisions leading to reflection take place rather close to the surface of the
medium, and thin slabs have nearly the same reflecting power as a semi-infinite medium.
This is shown by the results in figure 14 pertaining to the reflection of 3-Mev neutrons incident
on slabs with thicknesses of 2, 5, 10, and 20 em. (These thicknesses are to be compared with
the transport mean-free path in water at 3 Mev which is 5.1 em.) The dependence of the
number albedo on the slab thickness is similar to that found by Foderaro and Obenshain [6]
at 0.89 Mev. The energy albedo reaches a limiting value at an even smaller slab thickness
than the number albedo, because the energy degradation in successive collisions makes it
necessary for a neutron to be reflected very early in its history if it is to carry back an appre-
ciable amount of energy.
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8. Appendix A. Integrals Over the Differential Single-Scattering Albedo
8.1. Energy Spectrum

The evaluation of (4.15) leads to the following expression for the energy spectrum of neu-
trons reflected from a semi-infinite medium after exactly one collision:

3
AD(E; By ) =3 p (B F /() {U(a,b,) —kV(a b)), (A1)
=1

where
a;=cos (a;+6)

b,=cos (a;—0b)) (A.2)
fe=(No/N) cos by,

and where U(a;,b;) and V(a,b;) are defined as follows:

o [VMZKE—cos?6,+sin 6, | :
7 7\7””1 o = ) > Yo )] 7
(1) It I,‘,[ M,+1 :l <ELE,
(v((lhbj) T 17((1’1‘;b1) 0. (2&3)
' M2 —cos?0,—sin 6, | . IM2K2—cos? 6,+sin 6, |
7 :\77 JL£3.47CUS WWo— 11 U ol y AY f et = YpT—sail U ;
(2) 1f Lo [ ;‘1]- 1 S E Sl(‘O A‘[j—{"l
; 1 1. ibita
U ((Lj,b,)—2 - sin e (A.4)
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X
Hk<h,, Viggh)=—— {log (b,—a,)k—log [(b,+a)k—2a,

™ (b;—k) (k—a))
@) @B}

b v ___2 =) > (A5
if k=b,, ‘(aj;bj)‘"(bj_aj)\/ b, (A.5)
. , (b, +a k— 2a,b:]}
£k>b; Ve b)————— - 1
b, Viesh) = g my{ LT 60k J
> " [MK,—1TF g VM2E2—cos? 6,—sin 6, |
@ T E W] g@gﬁo[ T
(A.6)
Ula;b;)=1
Via b-)—————_l__ (A7)
e \""(lc—b,»)(_lc——a,) .
o TME,—1T
4) If ELE, W]

U(a;,b;)=V(a;b;)=0. (A.8)

In certain limiting cases, the formula for the energy spectrum becomes much simpler than
the above expressions. For perpendicular incidence, the energy must lie in the range

MK ;—1 M;K3—
m [N | <E<m i A
and the spectrum is
3
A (; Eol0) =3, (Bo) B (; ) —— (A.10)
J= —_— =
N\ €OS
For grazing incidence (6,—m/2), the energy range is
o [ME,—1T AMJKj—}—l:r
K, W:I <ELE [_——Mj+l (A.11)
and the spectrum is
3
40 (E; E,, §)=ij<Eo) % Fy(E; Ey). (A.12)
i=1

Figure 15 shows energy spectra of neutrons reflected after a single scattering from a semi-
infinite medium of pure oxygen (f,=1 Mev, 6,=0° 45° and 90°). These spectra were
obtained by numerical evaluation of the factor

Fy(E; Epy) {U(a2, 62)—kV(a2,bg)}

in (A.1). They are characterized by a peak at the low-energy limit which is rather independent
of the source obliquity 6, In addition there is another peak at the high-energy limit in the
case of grazing incidence.

For perpendicular and grazing incidence the spectrum for reflection from water can be
derived very simply from the corresponding spectrum for oxygen. For 6,=0°, reflection from
hydrogen is impossible after one scattering, and it is sufficient to renormalize the oxgyen
spectrum in figure 15, multiplying it by p.(#,)=0.485. For §,=90°, one must not only normal-
ize the oxygen contribution but also add a hydrogen contribution which is energy-independent
and has the value p,(#,) % F, (E;E,) =0.515 (1/2E,)=0.2575.
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Ficure 15.  Energy spectrum of neutrons reflected after one collision.

Source energy 1 Mev, oxygen medium.

8.2. Angular Distribution

The angular distribution of neutrons reflected after one collision is even more complicated
than their energy spectrum.  We shall confine ourselves to the discussion of some limiting
cases. 'The characteristics of the angular distribution are expressible in terms of the integrals

I[ (1’ 0 14(),00) (()%0

U = 27
(63 20,0) €08 0— (Ao/A) cos b,

dE (A.13)

which are needed for the evaluation of (4.16). The angular distribution of reflected energy,
Ay’ (0;Ey,0,), depends on the integrals

.[II(E>07E0; 00) cosf
€08 6 — (No/N) cos b,

th(e;ED,BO):— E([E‘- (A.14)

The integrations in (A.13) and (A.14) are facilitated by changing the variable of integration
from I to cos a;, noting that

E—E, |:005a,+\ c(;sl ji—ll_JﬁK —1] (A.15)
J
and that
dr 21, R cos? @
dcosa; (M]+1)2{2‘°s"‘7+\ M3 K3— sin’ a’+\—MlK e (A.16)

We now take up limiting cases, and drop the index j for simplicity.

Case (1): Heavy nucleus, M> 1
Perpendicular incidence, 6,=0°
Elastic scattering, K=1.
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Note that

EzE(), )\z)\o, b
(IF "FO
dcosa M’ (A.17)

M
0,~a, F(E;Eo)zm f(a;Eo)J

Substituting expression (4.13) for H([,0; F,,0), we find that

cos 208 0f (e EO)

h(8;Ey,0) = cos 0—1 (A.18)
and that
hb(e,E(),O) z[ﬂ‘(}h(ﬁ,E@,O) (Alg)

Case (2): Heavy nucleus, M>1
Grazing incidence, 6,=90°
Elastic scattering, K=1.

: . - . T . .
The approximations (A.17) may again be used. For H(E,O;EO,5> we substitute expression

sin
h(eLg,‘)> f A EO)(Z‘O““- (A.20)

sin 04/SIN sin? §— cos? o

(4.14), the result being

Assuming for f(a;l) a Legendre expansion of the type (3.9), with expansion coeflicients
fl (F,), we can integrate (A.20) and find that

o 4l 41 27 )1 \
/z,(e;]:n,g> —32 2 i (— 1)f g Pacos 0) (A.21)

and that
/LE<0;E’0,72£>onlz(e;EO,g)- (A.22)

Casr (3): Hydrogen nucleus, M=1
Grazing incidence, §,==90°.

We have f(0.;£,)=1/2 and 0 <a<w/2. Using (A.14), (A.15), and (A.16), we find that

Su]a ()
h(OFO,‘)) f _995q(1(0$a ==siné, (A.23)

bl]l 0—cos’a T
and that

sin @ L3 s
a0, )= 25 f Sbelie B (A.24)

[~ < L
T Jo  4sin?f—cosia 3T

9. Appendix B. Pseudorandom Numbers Generated by Congruential
Multiplication

9.1. Proof of Their Uniform Distribution

We consider the pseudorandom number sequence {En:2‘35x,,} (n=0,1, . .. 2%¥—1)
derived from a sequence of integers {z,} which is generated according to (5.4) or by the
equivalent rule

Py iatexe | (B.1)
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where ¢ and £ are odd integers. The sequence {E,,} consists of 2% different numbers which are
distributed with uniform density over the interval (0,1). This can be proved with the use of
standard number-theoretical results [17].  However, Dr. Morris Newman?* has given a simple
proof proceeding from first principles which we reproduce here in a somewhat amplified form.

The uniformity of the distribution of the pseudorandom numbers obtained by congruential
multiplication is a consequence of the following theorem.

Turorem: The sequence of integers

33 1\

{20, 21, 22y « - ., 231} (B.2)
generated according to (B.1), is a permutation of the sequence

{1,5,9, ... 2%-3} (B.3)
or of the sequence

{3,7,11,. . ., 2%-1} (B.4)

depending on whether the starting number ry=c has remainder 1 or 3 when divided by /.
The proof of this theorem is based on the following lemma:
y . oM . o o e q s . . .
The integer 5" —1 is divisible by 2% but by no higher power of 2, if k is an odd integer.

To see this we consider the factorization

BRAM ] — (5R2M-1 1) (BRM1— 1) = (5R2M-1 1) (5RM=2 1) . (5F-1)(5F—1). (B.5)
The factor

;—k-—— == Kk :4” . 2 13'
k1 — (14-4)*—1 A+f§;<j>4 (B.6)

is divisible by 4 but by no higher power of 2. The other factors in (B.5) have the form
ym R R
5Rm 1 — (1) +1x2+2(]. >4f,0§m§]\/[—-1 B.7)
Jj=1

and are each divisible by 2 but by no higher power of 2. By combining all the factors we obtain
the lemma.

We now consider the sequence {05’"‘}, n=0,1, . . .2%—1. The difference between any
two terms in this sequence, say ¢5*") and ¢5%" can be expressed as

A(n,n’)=c5**(5** —1). (B.8)
We may set

n' =29, (B.9)

where a is an integer < 2% and where b is an odd integer. By application of the lemma it
follows that 5% —1, and therefore A(n,n’), is divisible only by powers of 2 smaller than 2%,
This implies that the integers z, in the sequence (B.2) are all different from each other.

It can be seen from (B.8) that the differences between the z,’s are all multiples of 4. Thus
two different sequences {r,} can be formed, one of which is a permutation of (B.3) and the other
of (B.4), depending on the starting number ¢.  Each of the two sequences contains 2% num-
bers, and there is no overlap between them, so that together they exhaust the 23* odd integers
< 2% This completes the proof of the theorem. Finally, we note that by computing the
z,’s modulo 2V rather than modulo 2% and by using a starting number ¢, that is not odd but
contains a factor 27, one would obtain a sequence of 2877 different numbers.

2 Informal memorandum, Applied Mathematics Laboratory, NBS, Oct. 27, 1951,
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9.2. Statistical Indications of Their Randomness

In order to be acceptable as a source of random numbers for a Monte Carlo calculation,
the pseudorandom number sequence {£,} must fulfill the following requirements:

(1) In any subsequence of reasonable length, such as would be used in generating neutron
histories, the £,’s must be distributed with uniform density in the interval (0,1).

(2) Successive §,’s must be uncorrelated.

These two conditions cannot be satisfied rigorously, but empirical statistical tests indicate
that they are satisfied in very good approximation. For example, elaborate tests on 16,384
pseudorandom numbers have been reported in the memorandum mentioned in footnote 24.

We have made some rough-and-ready statistical tests on 237,000 pseudorandom numbers
that were used to generate a set of 3,000 neutron histories.” These numbers were divided
into three sets, corresponding to the three types of pseudorandom number sequences (primary,
secondary, and tertiary) described in section 5.4. Set P includes the numbers in the primary
sequence, set S the numbers in all the secondary sequences, and set 7" the numbers in all the
tertiary sequences. Separate tests were applied to each set. In order to gauge the uni-
formity of the distribution of the numbers, we computed the averages £, and Z. In order to
check on the lack of correlation between successive pseudorandom numbers we computed the
mean square difference of successive numbers, (¢,,,—§,)% As a further test of possible correla-
tion, the algebraic sign of the differences between successive pseudorandom numbers was
examined, and an index ¢ was computed which was defined as the excess of positive over nega-
tive signs. Table B.1 compares the actual values of all these quantities with the values that
one would expect if the pseudorandom numbers were truly random. We infer from the table
that the pseudorandom numbers are sufficiently random for our purpose.

TasLE B.1. Analysis of the randomness of the pseudorandom numbers

In order to indicate the significance of the deviations of the empirical from the expected values of the various statistics, the standard devia-
tions of the empirical values are given. The pseudorandom numbers were obtained by starting a primary sequence with the initial value
¢=16,743,785,845. The number of pseudorandom numbers in each set is indicated within brackets.

[ Empirical value

Statistic Expected
value
Set P [3,000] Set S [220,776] Set 7' [13,384]
g ____________________________ 1% 0. 49402-£0. 00527 0. 4995524-0. 00061 0. 502334=0. 00250
e R S 5 | . 32937+ . 00544 . 33359+ . 00064 . 33580+ . 00258
(Ent1—£n)? % | . 16743+ . 00360 . 16579+ . 00042 .164614= . 00171
F S e | 0 | 28 =+55 —638 =+470 34 +116
| |

10. Appendix C. Tables of Differential Albedo

The following tables are indexed by table 6.1 and described in section 6.2 of the text.

TABLE 1.

cos 0

9 10 Sum

—

DD GO = e Ot

-
9

SN 5 19 24 64 72 112 125 127 157 184 889

25 This set of numbers was used repeatedly for most of our ealculations,

134



cos @
4 5 6 7 8 9 10 Sum
______________________________________________________________________ 1
20 32 37 48 30 3 | . 201
7 4 7 1 14 10 41 117
2 2 4 3 3 3 5 26
E 1 5 3 5 4 2 5 28
3 2 4 5 2 11 5 33
1 5 9 8 3 9 6 43
1 1 5 5 7 3 10 35
3 5 4 6 15 11 10 56
43 52 48 52 94 102 123 544
Sum____ 10 26 41 81 108 121 136 172 184 205 1,084
TaBLE 2b.
cos 0
.\ | '“1“" NS
~. k | 1 2 3 | 4 5 6 7 8 9 10 Sum
i \ |
____________________ 0
1| 172
86 113 266
8 12 39
E 3 7 35
7 7 34
7 4 32
8 11 52
9 10 55
86 88 459
Sum__. 8 17 34 69 101 120 135 193 215 252 1, 144
TaBLE 2c.
cos 0
\ k 1 2 3 4 5 6 7 8 9 10 Sum
0
162
177
0
E 0
0
0
0
0
0
Sum_ .. 1 0 4 9 19 31 42 77 68 88 339
TABLE 3a.
cosf
. —
~._ k 1 2 3 4 5 6 7 8 9 10 Sum
1
>~
1 2 1 3 2| S| S | SR R S 9
4 4 13 9 16 11 17 21 18 37 150
1 11 14 18 32 21 33 49 47 45 271
1 1 2 7 7 6 7 10 6 8 55
o 1 4 1 3 4 10 9 2 4 4 42
[ I 2 0 2 7 8 7 10 7 46
1 10 2 3 5 2 5 3 9 4 44
1 4 9 6 12 10 7 6 14 9 78
2 5 9 7 3 9 10 12 10 19 86
8 11 24 42 56 62 59 81 100 123 569
Sum__ .. 21 52 77 100 139 138 155 194 218 256 | 1,350
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TaBLE 3b.

cost
2 3 4 5 6 7 8 9 10 Sum
6
132
173
0
0
1
4
6
11
9
S gD —— 7 17 26 24 41 25 38 49 51 64 342
TABLE 4a.
cost
1 2 3 4 5 6 7 8 9 10 Sum
6 10 6 9 8 7 2 N[BT ]9 | AR 49
5 8 7 18 10 15 16 13 22 44 158
4 14 19 27 19 38 46 41 35 18 261
2 4 9 4 6 6 9 6 3 9 58
1 10 8 6 11 10 5 8 2 5 66
1 3 12 5 5 7 8 10 7 1 59
2 2 4 12 7 6 4 9 5 4 55
1 4 8 12 9 13 11 6 9 13 86
1 9 12 3 19 17 13 12 15 19 120
7 15 29 55 43 79 84 85 119 121 637
ST E— 30 79 114 151 137 198 198 190 218 234 1, 549
TABLE 4b.
cosf
k 1 2 3 4 5 6 U 8 9 10 Sum
i
6 38
4 136
3 158
1 1
il 9
11
__________ 15
1 14
.......... 27
__________ 17
Sum..___.._____ 17 41 38 54 39 62 45 42 42 46 426
TaBLE 5a.
cost
1 2 3 4 5 6 7 8 9 10 Sum
6 24 26 21 18 12 11 7/ 1 1 127
12 20 23 19 11 15 17 26 35 23 201
10 22 37 41 41 38 34 31 10 10 274
3 4 16 16 9 6 5 8 2 1 76
4 8 9 13 20 10 10 4 4 3 85
__________ 4 9 7 20 13 10 12 4 2 81
1 5 8 9 11 18 16 7 8 3 86
5 5 17 10 14 14 10 21 8 15 119
2 4 18 12 12 7 27 22 25 12 141
3 18 27 47 56 86 87 90 137 116 667
11 TY) S 46 114 190 195 212 219 227 228 234 192 1,857
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TABLE 5b.

cosf
3 4 5 6 7 8 9 10 Sum
23 109
13 167
27 160
13 27
E 4 26
1 20
1 27
6 33
6 47
1 24
Sum__________ 35 65 95 88 88 67 67 71 43 21 640
TABLE 6a.
cosd
SN
_\\k 1 2 3 4 5 6 7 8 9 10 Sum
1
e
111 84 61 41 52 42 30 19 15 3 458
45 33 41 56 20 30 35 30 24 8 322
47 53 57 43 57 38 9 8 4 3 319
11 13 18 14 20 24 5 4 i 4 120
E 11 11 18 15 15 13 22 2 1 1 109
8 5 13 10 8 11 18 20 2 1 96
4 11 15 11 9 17 18 26 8 1l 120
9 6 9 16 16 15 11 21 14 4 121
7 6 11 14 17 10 13 21 30 17 146
7 15 28 36 42 57 67 75 78 85 490
S LTI S, 260 237 271 256 256, 257 228 226 183 127 2,301
TasrLe 6b.
cosf
. =
~_ k 2 3 5 i 9 10 Sum
107 80 58 39 48 39 435
41 30 39 52 17 24 203
44 46 47 37 48 29 252
9 11 12 8 18 21 81
E 9 8 13 8 8 10 76
2 4 8 4 5 6 56
3 7 9 5 6 10 71
7 3 6 9 7 7 66
6 5 7 6 8 4 90
4 3 2 4 5 4 59
Sum. ... 232 197 201 172 170 154 127 113 80 33 1,479
TaBLE 7a.
cesd
S
~._ k 2 3 5 7 9 10 Sum
0
38
33
4
E 5
6
4
3
7
83
SUMSNSIIEE 1 9 3 12 16 21 26 34 31 30 183
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TABLE 7b.

cosf

Sum

392

10

81

69

N

I~

54

43

28

22

12

Sum__________

Te.

TABLE

cosf

m uw I~ o0
) RAR>ERE R
@ 5 <
o i =
NN imo 5
| =
|
|
!
i
” S
— =
1131555 1>
MmO =
HOWLN—NDO >
,32 - - o0
] —
MZ 1 - -~
|
i
|
t
|
moum o
SR L P @
o
&
~
5
™
)
bt
™
i
|
|
|
H
i
|
=]
71

TaABLE 8a.

Sum

535

100

91

|

63

46

20

17

SUIN TN

TAaBLE 8b.

Sum

502

112

82

71

80

52

48

27

20

Sumes(reaiaes
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TaBrLe 8Sc.

cost
A a
.\ k 1 2 3 4 5 6 7 8 9 10 Sum
0
56
28
0
0
0
0
0
0
0
ST SR 0 2 5 4 11 10 16 11 8 17 84
TABLE 9a.
cosd
4 5 6 7 8 9 10 Sum
1 s | e e [ e e 7
4 8 4 6 7 8 11 55
2 6 4 2 15 10 9 50
2 o e S 3 1 3 15
2 il 4 b BRSO s 4 2 20
3 1 4 4 3 4 2 25
___________ 3 1 4 3 6 2 22
3 7 5 3 4 9 2 47
7 9 8 7 10 6 11 66
26 36 38 45 56 82 78 390
SN 11 23 43 50 78 68 73 101 130 120 697
TasrLe 9b.
cost
\ I | -
~_ k 1 2 3 4 5 6 7 8 9 10 Sum
7
43
30
0
0
1
1
8
6
9
Sum._ .o 3 4 14 8 17 5 6 16 15 17 105
TaBrLe 10a.
cosfd
2 3 4 5 6 7 8 9 10 Sum
6 5 5 4 6 3 (1) [T | S — 33
1 6 4 5 6 4 8 10 15 62
1 5 5 4 6 it 12 7 5 58
3 4 1 3 2 TS| SN 4 3 23
8 6 3 5 5 3 4 1 2 37
2 14 5 3 5 5 5 3 2 46
3 5 9 7 1 4 5 4 3 43
5 8 8 12 13 10 9 9 5 80
3 2 6 10 10 9 10 1ty 16 83
14 18 27 34 54 70 77 92 92 480
111 SO 17 46 73 73 87 108 120 131 147 143 945
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TaBLE 10b.
cosf
N
~._ k 1 5 6 7 8 10 Sum
29
48
31
2
E 7
14
14
19
17
16
Sum__ .. 12 20 24 26 22 29 20 16 12 16 197
TasLe 1la.
cos9
1 4 5 7 8 10 Sum
5 9 12 14 10 10 5 6 5 |- 76
10 13 10 10 7 9 5 12 18 13 107
4 12 20 9 11 11 6 9 6 4 92
%) 2 12 22 6 4 2 2 1 3 56
E 1 4 4 10 22 6 7 3 3 2 62
__________ 11 7 7 22 13 10 5 4 4 83
__________ 5 9 8 7 19 10 9 5 5 7
1 5 17 10 19 18 17 20 1 10 128
3 2 9 14 7 14 31 20 14 19 142
1 11 28 46 42 66 74 92 119 115 594
Sum._._ 27 74 128 150 153 170 167 187 186 175 1,417
TasLe 11b.
cosf
4 5 7 S 10 Sum
9 11 13 69
10 3 3 78
12 18 5 58
1 10 18 31
E D 4 5 25
1 2 5 32
3 1 8 29
1 6 3 37
2 4 4 37
3 1 2 34
Sum._ ... 23 44 60 61 67 47 43 45 28 12 430
TABLE 12a.
cosf
1 4 5 7 8 10 Sum
81 62 50 26 29 25 10 15 10 8 316
38 30 38 57 19 13 16 16 14 11 252
19 23 22 30 46 18 3 3 4 3 171
17 20 19 16 26 38 78 . gi|saoiiin 145
E 16 20 19 22 17 20 29 2 1 1 147
7 12 15 12 10 14 33 25 5 2 135
7 17 19 12 15 22 17 36 7 2 154
11 9 13 19 21 18 19 28 20 2 160
13 10 16 11 20 11 23 28 38 18 188
4 19 23 38 44 52 73 n 93 99 516
ST SR 213 222 234 243 247 231 230 224 194 146 2,184
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TABLE 12b.

cosd
1 2 3 4 5 6 7 8 9 10 Sum
77 60 50 26 27 25 308
34 27 35 53 18 8 225
18 20 20 29 45 17 150
15 17 15 15 25 37 129
E 14 17 16 14 11 15 116
6 9 10 6 7 9 93
5 10 15 9 10 14 107
9 3 8 8 10 10 93
11 8 10 6 9 6 123
2 6 4 8 6 7 95
Sum. .. 191 177 183 174 168 148 126 129 93 50 1,439
TaBLE 13.
cosf
1 2 3 4 5 6 7 8 9 10 Sum
1o 5 15 6 8 5 6 5 0 1 3 56
2 6 5 7 13 5 10 10 6 12 21 95
3. 5 10 9 11 9 5 9 6 5 10 79
4. 1 3 8 3 6 6 2 0 | I 1 33
E |5 2 7 3 5 9 4 4 2 2 4 42
6 2 6 7 6 5 14 12 8 6 4 70
7. 1 3 8 7 11 10 10 9 6 7 72
8. 2 7 3 10 9 15 20 10 7 4 87
9 3 4 5 6 13 19 7 18 10 13 98
10 6 10 24 21 38 59 62 57 98 106 481
Sum_________ ] 33 ‘ 70 80 90 110 148 141 121 147 173 1,113
TABLE 14a.
cosh
6 7 8 9 10 Sum
____________________ 0
16 15 : 82
2 o) : 54
> 4 2 16
E 1 2 1 2 11
2 1 1 4 23
1 3 3 5 18
3 1 R 5 3 18
4 6 3 5 7 30
22 30 31 50 50 219
Sum____ 6 9 22 25 16 53 64 66 83 r97 471
TaABLE 14b.
cosf
6 7 8 9 10 Sum
__________________________________________________ 0
18 16 17 2} | 95
4 2 10 16 28 66
9 4 3 2 3 16
E 1 2 2 1 3 12
% 3 7 2 ‘ 26
1 3 3 3 5 21
g 1 1 5 3 20
4 6 3 5 8 33
22 31 33 51 51 225
Sum. ... 7 10 24 27 49 57 68 79 88 105 514

512903—59—4 141



TABLE 15a.

cosf

Sum

320

10

60

58

41

35

44

30

25

15

o

10

Sum__________

TaBLE 15b.

cosf

m oo [
=} EIRZR 2 =
177} — ~
(=3
el
0
<]
L=
3
0
2
o
w
o
-
0
o
=
=
2]
Ll
o
:
:
:
,
:
1
:
|
3
n

TaBLE 15¢.

cosf

£ OHMOHOD I W1 N
=] HFONNRN——~NDO =3
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L L R o T 0
) ! N [
= ' i
- ' i
' i
i i
0 i
.
1 <H < OU 00 0D 010 QO ©
- N <
i
> i
|
'
'
T
1= <10 00 00 O < 61 —~
i N 0
© H
'
I
!
v 1
O = 0O =
i | - F
| I
= | 1
i i
i '
7
1O CUOD — 0% H D NN D =
! 3 D
° |
I
i
i
]
100 — O~ 00 10 =3
i = &
i
e :
i
I
i
T T
1w 1N | N )
] ' IR “
' I I
< i ' 1
i 1 i
i ' [
] I i
i ' |
i
i =
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I
|
'
'
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' —
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I
0
T
'
'
i
1
|
'
'
'
=l
g
=]
7]

TABLE 16a.

cosf

Sum

372

75

64

49

47

42

39

32

12

Sum__________
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TABLE 16b.

cosé
5 6 7 8 Q 10 Sum
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 0
16 10 13 13 24|oosnsees 8
3 1 2 7 13 13 39
SR— 2 | S 1 2 1 8
,,,,,,,,,,,,,,,,,, 4 1 P S 8
9 7 8 17 13 10 78
2 9 6 10 5 14 52
3 2 6 7 4 6 35
6 6 6 1 4 9 38
11 23 20 23 27 28 153
|
111 S % 12 19 43 50 60 65 80 72 81 489
TaBLE 16¢.
cosf
4 5 6 7 8 9 10 Sum
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 0
12 14 6 13 13 4 2 88
9 4 3 5 14 34 56 129
— . 3 1 8 5 2 4 26
E 3 2 3 4 3 4 4 24
2 2 4 3 4 10 1 28
2 3 4 4 2 4 4 23
1 3 4 3 1 5 4 23
2 3 5 2 4 8 9 36
13 10 15 22 15 21 16 117
Sum._.___.___. 10 14 20 44 44 45 64 61 92 100 494
TasLe 16d.
cosf
10 Sum
__________ 0
,,,,,,,,,, 27
21 33
2 6
E 1 6
it 13
2 8
1l 6
3 14
11 79
SRS Es 2 5 5 17 21 25 25 17 33 42 192
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